Renewable Energy Investment in Jordan

Jordan has tremendous wind, solar and biomass energy potential which can only be realized by large-scale investments. In 2007, the Government of Jordan developed an integrated and comprehensive Energy Master Plan. Renewable energy accounted for only 1% of the energy consumption in Jordan in 2007. However, ambitious targets have been set in the Master Plan to raise the share to 7% in 2015 and 10% in 2020. 

This transition from conventional fuels to renewable energy resources will require capital investments, technology transfer and human resources development, through a package of investments estimated at US $ 1.4 – 2.2 billion. The investment package includes Build-Operate-Transfer (BOT) deals for wind energy with a total capacity of 660 MW and solar energy plants of 600 MW. This will be paralleled with the reduction of energy produced from oil from 58% currently to 40% in 2020.

As most of the clean energy technologies require high capital cost, investments in wind, solar and waste-to-energy plants will be possible only with appropriate support from the Government. Notably, the Government has expressed its readiness to provide necessary support within the framework of available resources. The Ministry of Planning and International Cooperation (MOPIC), is responsible for coordinating and directing developmental efforts in coordination with the public and private sectors, and civil society organizations. MOPIC is actively seeking support for renewable energy and energy efficiency initiatives through continuous cooperation with international partners and donors.

Jordan has significant strengths in the form of renewable energy resources, a developed electricity grid, strong legal and intellectual property protections, a market-friendly economy and a skilled workforce. So it is well positioned to participate in the expanding cleantech industry. The best prospects for electricity generation in Jordan are as Independent Power Producers (IPPs).  This creates tremendous opportunities for foreign investors interested in investing in electricity generation ventures.

Jordan enacted a Renewable Energy Law in 2010 which provides for legislative framework for the cleantech sector. The main aim of the law is to facilitate domestic and international projects and streamline the investment process.  The Law permits and encourages the exploitation of renewable energy sources at any geographical location in the Kingdom. In April 2012, the Ministry of Energy and Mineral Resources announced that it has qualified 34 international and local companies for investment in renewable energy projects, with an overall capacity reaching 1000 MW. Of the qualified companies, 22 companies will invest in solar power projects and the rest in wind energy.

Keeping in view the renewed interest in renewable energy, there is a huge potential for international technology companies to enter the Jordan market.  There is very good demand for wind energy equipments, solar power units and waste-to-energy systems which can be capitalized by technology providers and investment groups from around the world.

Republished by Blog Post Promoter

Water Crisis in Refugee Camps

The refugee crisis has hit record heights in recent years. According to the UNHCR, as of the end of 2014 there were approximately 60 million refugees worldwide. This is a significant increase from a decade ago, when there were 37.5 million refugees worldwide. Syria’s ongoing civil war, with 7.6 million people displaced internally, and 3.88 million people displaced into the surrounding region and beyond as refugees, has alone made the Middle East the world’s largest producer and host of forced displacement. Adding to the high totals from Syria are displacements of at least 2.6 million people in Iraq and 309,000 in Libya. This significant increase in refuges has only escalated the need for specific water quality and quantity regulations for refugee camps.

Water Shortages in Refugee Camps

A human being can survive a week without food but cannot live more than three days without water. While the abundance of water in our daily lives means most of us take it for granted, the reality on the ground is that millions around the world suffer from lack of access to water – many of which are refugees. Refugee camps often do not have enough water to supply all refugees residing within them.

Majority of refugee camps in the world are unable to provide the recommended daily water minimum of 20 liters water per person per day. In addition, many countries holding refugees are water-scarce. Jordan, for example, is one of the top 10 water-scarce countries in the world and holds more than 1.4 million refugees (mainly from Syria). This has caused tremendous strain on the country’s very low water resources, making it extremely difficult to supply sufficient water for refugees. However the biggest reason behind lack of water at refugee camps across the globe is the lack of water infrastructure.

The lack of water infrastructure makes it very difficult to transport sufficient amounts of water, and provide proper sanitation to all residents of a refugee camp. In fact, a recent study by the Jordanian Ministry of Water and Irrigation showed that the country’s sewerage network are being overflowed and are subsequently leaking due to the increase in the number of refugees. Furthermore, studies have shown that water borne diseases are more persistently present when the minimum water requirement (20 liters per person) is not met simply because there is less water for sanitation and cleaning purposes. That is why it is absolutely vital that governments ensure that recommended daily water minimum is provided to all refugees.

Water Quality Issues

Poor quality of water in refugee camps has created a “crisis within a crisis” causing outbreaks of waterborne diseases such as cholera, typhoid and hepatitis. This is due to misuse of the water quality regulations present and the lack of time available to implement these regulations on water quality in refugee camps.

In refugee camps, surface water is usually treated in three steps:

  • Sedimentation: The water is stored for a few hours so that the biggest particles can settle to the bottom.
  • Filtration: It is then necessary to get rid of the small, invisible particles by filtering the water through sand filters.
  • Chlorination: The last stage, chlorine solution is added to the water which kills all the microorganisms.

Groundwater, on the other hand, is generally subjected to chlorination. These techniques seem to be sufficient to provide an acceptable quality of drinking water. However, according to Syed Imran Ali, an environmental engineer affiliated with UC Berkley, who worked extensively in refugee camps across Africa and the Middle East, the amount of chlorine used to purify the water is not sufficient enough to completely eliminate all the bacteria in the water used in refugee camps. The reason being that the current emergency guidelines on free residual chlorine concentrations (0.2 – 0.5 mg/L in general, 0.8 – 1.0 mg/L during outbreaks) are based on conventions from municipal piped-water systems (i.e. used in cities) rather than refugee camps.

A study conducted by Ali in South Sudan, where there was an outbreak of hepatitis E and other waterborne diseases, showed that the decay of chlorine added to drinking water is much faster in refugee camps than it is under urban conditions, and within 10-12 hours of household storage and use the chlorine all but disappears. Within a refugee camp, water is distributed from one point within the camp, carried to homes via containers and then stored and used over 24 hours or more. Therefore, due to all these different factors the guidelines used may not be sufficient enough to maintain an acceptable quality of water in all refugee camp settings.

Refugee camps must have specific guidelines created to deal with the water quality provided within the camps to prevent outbreaks and improve livelihood within the refugee camps. In his study in South Sudan, Ali recommended that guidelines for chlorination control to be revised to 1.0 mg/l in the camps there rather than 0.2 – 0.5 mg/l. This would provide protection of at least 0.2 mg/l for up to 10 hours post-distribution, which is consistent with the recommended concentration for point-of-use water chlorination in emergency and nonemergency settings and is within the WHO limits generally considered to be acceptable to users (2.0 mg/L).

Time to Act

With the refugee situation worsening and no permanent solution to this crisis in sight, the minimum that can be done is to provide an adequate amount and quality of water for these refugees. The current purification techniques are not efficient enough to protect refugees from all harmful bacteria. There are a variety of ways that water can be provided.

Wastewater treatment, rain harvesting, humidity harvesting, among others are sustainable sources of water. However, providing water is not sufficient; water quality is just as important as water quantity. There must be water quality regulations specific to refugee camps that take into account the different aspects that might affect the quality of water (transport, storage, temperature). If things are to improve, it is absolutely vital for concerned governments, aid agencies, NGOs, volunteers etc. to band together and create water quality guidelines specific to refugee camps and that are capable to withstand different aspects within these camps. Without these guidelines, the condition of refugees will continue to worsen, and the refugees will continue to flee to Western countries in search of better living conditions.

Republished by Blog Post Promoter

Towards Effective Environmental Education

green-hope-uaeChildren are the "Future Generation" and their engagement in environmental conservation is an absolute must. Education is the key to fostering this engagement and hence , all efforts must be made in this regard. One of the main reasons for the current state of environmental degradation is the general apathy of civil society and the only way to address this issue is through intrinsic involvement of all stakeholders, in particular, children,  since it is their future that is at stake.

Involvement of children in environmental conservation initiatives will also ensure that the movement becomes "bottom-up" rather than something that is mandated by legislation — this "bottom-up" approach has always been seen to be more effective in terms of implementation.

Towards Effective Environmental Education

In order to be effective, environmental education needs to be both formally and informally imparted. Otherwise it ceases to be attractive and loses its effect. It becomes just another textbook one has to read and answer questions on. Children are inherently creative and the environmental education curriculum must try to build on this creativity. Rather than prescribing solutions, it must seek to obtain the answers from the children. After all, it is their future that is being decided upon.

Once this fundamental truth is understood, children will come forward with their views and actions to mitigate the environmental challenges. To be effective, environmental education needs to be imparted outside the four walls of the classroom. However, the weather in the Middle East, for most part of the year, is hardly conducive to outdoor activities and this should to be taken into account.

A beach cleanup campaign by Green Hope

A beach cleanup campaign by Green Hope

Green Hope – A Shining Example

My youth organisation, Green Hope, engages and educates young people through our "Environment Academies" which are tailor-made workshops on environmental issues. Till date, we have interacted with several hundred school and university students following all curriculum — our attendees are from all nationalities including native students. I have found them to be immensely concerned and motivated on environmental issues. Being from the region, they also have a lot of traditional knowledge about adapting to the natural environment which is a learning for those who have recently moved here. 

Asbestos Waste Management in MENA

Each year countries from the Middle East and North Africa import large amount of asbestos for use in the construction industry. As per the last known statistics, the Middle East and Africa accounted for 20% of world demand for the material. Iran and the United Arab Emirates are among the biggest consumers of the material. Infact, the entire Middle East has been steadily increasing their asbestos imports, except for Egypt and Saudi Arabia, which are the only two countries that have placed bans on asbestos but with questionable effectiveness. Iran alone has been reported to order 30,000 tons of asbestos each year. More than 17,000 tonnes of asbestos was imported and consumed in the United Arab Emirates in 2007. 

Fallouts from Wars and Revolutions

Asbestos is at its most dangerous when exposed to people who are not protected with masks and other clothing. In times past, such considerations were not thought about. At the moment, most people think of asbestos exposure as part of the construction industry. This means demolition, refurbishment and construction are the prime times that people can be exposed to the fibres.

In the Middle East and North Africa, however, turbulent times have increased the danger of exposure for people across the region. Since 2003, there has been the Iraq War, revolutions in Egypt, Libya and Tunisia, plus the uprising in Syria. Not to mention a raft of conflicts in Lebanon, Palestine and Israel. The upshot of this is that a building hit by an explosive, which contains asbestos, is likely to put the material in the local atmosphere, further endangering the lives of nearby.

Asbestos Waste Management

In many countries around the world companies, institutions and organizations have a legal responsibility to manage their waste. They are banned from using substances that are deemed hazardous to the general public. This includes a blanket ban on the use of asbestos. Where discovered it must be removed and dealt with by trained individuals wearing protective clothing. In the Middle East and North Africa, it is vitally important for there to be the development of anti-asbestos policies at government and business levels to further protect the citizens of those countries.

Not a single Middle East country has ratified International Labour Organization Law Number 162, which was instituted at the 1986 Asbestos Convention. The ILO No. 162 outlines health and safety procedures related to asbestos, including regulations for employers put forth in an effort to protect the safety of all workers. Asbestos waste management in the MENA region needs to take in several distinct action phases. Education and legislation are the first two important steps followed by actual waste management of asbestos. 

Largely speaking, the MENA region has little or no framework systems in place to deal with this kind of problem. Each year more than 100,000 people die worldwide due to asbestos-related diseases and keeping in view the continuous use of asbestos use in the region, it is necessary to devise a strong strategy for phasing out of asbestos from the construction industry.

Future Strategy

Many may argue that there is still a philosophical hurdle to overcome. This is why education must go in tandem with legislation. As of 2006, only Egypt and Saudi Arabia had signed up to a ban on asbestos. Even then, there is evidence of its continued use. Whether as part of official pronouncements or in the papers, on the TVs or in schools, it is vitally important that bans are backed up with information so the general public understand why asbestos should not only be banned, but removed. It is important that other countries consider banning the material and promoting awareness of it too.

Governments have the resources to open up pathways for local or international companies to begin an asbestos removal programme. In many places education will be required to help companies become prepared for these acts. Industrial asbestos removal begins with a management survey to identify what asbestos materials are in a building and where. This is followed up by a refurbishment and pre-demolition survey to best see how to remove the asbestos and replace it with better materials. These come in tandem with risk assessments and fully detailed plans.

Asbestos management cannot be completed without such a survey. This may prove to be the most difficult part of implementing widespread asbestos waste management in the Middle East and North Africa. Doing so will be expensive and time consuming, but the alternative is unthinkable – to rip out the asbestos without taking human safety into account. First, therefore, the infrastructure and training needs to be put into place to begin the long work of removing asbestos from the MENA region.

Republished by Blog Post Promoter

Agricultural Scenario in MENA

Agriculture plays an important role in the economies of most of the countries in the Middle East and North Africa.  The contribution of the agricultural sector to the overall economy varies significantly among countries in the region, ranging from about 3.2 percent in Saudi Arabia to 13.4 percent in Egypt.  Large scale irrigation is expanding, enabling intensive production of high value cash and export crops, including fruits, vegetables, cereals, and sugar.

Egypt is the 14th biggest rice producer in the world and the 8th biggest cotton producer in the world. Egypt produced about 5.67 million tons of rice and 635,000 tons of cotton in 2011. The area of cotton crop cultivation accounts for about 5% of the cultivated area in Egypt. The total amount of crop residues is about 16 million tons of dry matter per year. Cotton residues represent about 9% of the total amount of residues. These are materials comprising mainly cotton stalks, which present a disposal problem.

Although the Kingdom of Saudi Arabia is widely thought of as a desert, it has regions where the climate has favored agriculture. By implementing major irrigations projects and adopting large scale mechanization, Saudi Arabia has made great progress in developing agricultural sector. The Kingdom has achieved self-sufficiency in the production of wheat, eggs, and milk, among other commodities, though it still imports the bulk of its food needs. Wheat is the primary cultivated grain, followed by sorghum and barley. Dates, melons, tomatoes, potatoes, cucumbers, pumpkins, and squash are also important crops.

Despite the fact that MENA is the most water-scarce and dry region worldwide, many countries across the region, especially those around the Mediterranean Sea, are highly dependent on agriculture.  For example, the Oum Er Rbia River basin contains half of Morocco’s public irrigated agriculture and produces 60 percent of its sugar beets, 40 percent of its olives, and 40 percent of its milk.

Agricultural output is central to the Tunisian economy. Major crops are cereals and olive oil, with almost half of all the cultivated land sown with cereals and another third planted. Tunisia is one of the world's biggest producers and exporters of olive oil, and it exports dates and citrus fruits that are grown mostly in the northern parts of the country.

Agriculture in Lebanon is the third most important sector in the country after the tertiary and industrial sectors. It contributes nearly 7% to GDP and employs around 15% of the active population. Main crops include cereals (mainly wheat and barley), fruits and vegetables, olives, grapes, and tobacco, along with sheep and goat herding.

Republished by Blog Post Promoter

Agricultural Biomass in MENA

 

Agriculture plays an important role in the economies of most of the countries in the Middle East and North Africa region.  Despite the fact that MENA is the most water-scarce and dry region in the world, many countries in the region, especially those around the Mediterranean Sea, are highly dependent on agriculture.  The contribution of the agricultural sector to the overall economy varies significantly among countries in the region, ranging, for example, from about 3.2 percent in Saudi Arabia to 13.4 percent in Egypt.  Large scale irrigation coupled with mechanization has enabled entensive production of high-value cash crops, including fruits, vegetables, cereals, and sugar in the Middle East.

The term ‘crop residues’ covers the whole range of biomass produced as by-products from growing and processing crops. Crop residues encompasses all agricultural wastes such as bagasse, straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. Wheat and barley are the major staple crops grown in the Middle East region. In addition, significant quantities of rice, maize, lentils, chickpeas, vegetables and fruits are produced throughout the region, mainly in Egypt, Tunisia, Saudi Arabia, Morocco and Jordan. 

Egypt is the one of world's biggest producer of rice and cotton and produced about 5.67 million tons of rice and 635,000 tons of cotton in 2011. Infact, crop residues are considered to be the most important and traditional source of domestic fuel in rural Egypt. The total amount of crop wastes in Egypt is estimated at about 16 million tons of dry matter per year. Cotton residues represent about 9% of the total amount of residues. These are materials comprising mainly cotton stalks, which present a disposal problem. The area of cotton crop cultivation accounts for about 5% of the cultivated area in Egypt.

Agricultural output is central to the Tunisian economy. Major crops are cereals and olive oil, with almost half of all the cultivated land sown with cereals and another third planted. Tunisia is one of the world's biggest producers and exporters of olive oil, and it exports dates and citrus fruits that are grown mostly in the northern parts of the country.

To sum up, large quantities of crop residues are produced annually in the region, and are vastly underutilised. Current farming practice is usually to plough these residues back into the soil, or they are burnt, left to decompose, or grazed by cattle. These residues could be processed into liquid fuels or thermochemically processed to produce electricity and heat in rural areas. Energy crops, such as Jatropha, can be successfully grown in arid regions for biodiesel production. Infact, Jatropha is already grown at limited scale in some Middle East countries and tremendous potential exists for its commercial exploitation.

Republished by Blog Post Promoter

Education for Sustainable Development: Key Challenges

education-for-sustainable-developmentThe basic aim of 'Education for Sustainable Development' is to nurture an individual who is capable to solve environmental challenges facing the world and to promote the formation of a sustainable society. The first challenge is to have an ethos in schools that openly and enthusiastically supports the development of ESD (Education for Sustainable Development). This is partly down to the curriculum the school follows, but is mainly as a result of the interest and effort shown by senior management in promoting integration and whole school engagement; a critical element being teacher training. It is also down to the expectations that are put upon schools by education authorities when it comes to ESD.

With trained and motivated teachers, it is far easier to inspire and motivate students. Teachers can often use the environment as a vehicle for teaching certain concepts in their own specific subject. Once teachers have decided that this is something they feel is worthwhile, they will increasingly find ways to do so.

Using environmental issues in student learning shows students the bigger picture, which can significantly improve motivation. By letting pupils know why the work they are completing is important, and showing them where it fits in on a local and global scale, you’re enabling them to see its value.

Another challenge is being able to bridge the gap between what happens at home and what is taught in schools. For example, if a child is learning about recycling at school, but parents are not open to supporting their learning by adopting recycling practices at home, then the child, especially at a young age, receives very conflicting messages.

Schools are busy places and there are increasing pressures on teachers within the workplace. These can create additional challenges such as gaps between awareness and understanding; motivation to and knowledge of how to become more sustainable; individual to collective empowerment; finding time; budget restraints; linking infrastructure change to mind set change and whole community engagement.

However, with a more directed focus and commitment towards ESD in schools, children generally need very little motivation to care for their environment. You just have to give them a voice and they are away! The problem often comes from adults not understanding the bigger picture about caring for the long term future of the planet.

Strategy for GCC Countries

When it comes to educating locals and expats in the GCC, it can be categorized into three parts:

The physical change: looking at how schools, households and businesses can reduce their waste, water and energy and focus on more sustainable resources in general.

The mind set change: this is all about raising environmental understanding, awareness and action programmes throughout the school and business communities through workshops, cross-curricular activities and presentations, so that everybody is on the 'same page', as well as giving students and employees a voice. This leads to a fundamental change in attitudes and the choices people make.

Learning to respect others and appreciate the environment, as well as giving back to society: this is focused around the opportunities to learn beyond the workplace and home, and connect back to nature, as well as help communities in need. In a nutshell, it about being more caring.

Partnerships and action orientated behaviour within all 3 parts are crucially important to their success. Environmental awareness in itself is not enough, simply because awareness without leading to meaningful action and behaviour change goes nowhere.

Using environmental issues in student learning shows children the bigger picture

Using environmental issues in student learning shows children the bigger picture

This approach can be illustrated in the Beyond COP21 Symposium series that I am currently running globally with the support of Eco-Schools. The event consists of themed high impact presentations from, and discussions with, guest speakers on the SDGs Agenda 2030 and climate negotiations in and beyond Paris; individual & community action; pledge- making and practical activities/workshops.

Local sustainable companies and organisations are invited to showcase their initiatives and engage with students from a variety of schools, both local and expat, in each city or region. Successfully run in Dubai twice and with an upcoming event in Jordan, the Middle East region has certainly embraced the partnership approach when it comes to supporting environmental education initiatives that benefit all those involved.

Role of Technology and Social Media

The greatest role it can play is through the spread of information and ideas, as well as the sharing of good practice within the GCC. Sometimes the hardest thing is to know where to start and how to become motivated, and certainly both can help. Also technology can help to source important resources for teachers. Bee’ah’s School of Environment, which I have been recently developing new online resources for, is a very good example of how well this can work.

Please visit my website http://www.target4green.com for more information about my organization and its activities.

Water Conservation in Islamic Teachings

water-conservation-islamWater occupies a pivotal role in Islam, and is recognized by Muslims as a blessing that “gives and sustains life, and purifies humankind and the earth”. The Arabic word for water, ma’a, is referenced exactly 63 times throughout the Holy Qur’an and is a recurring topic in many of the sayings of the Prophet Mohammed (peace be upon him).

Water is not only praised for its life providing and sustaining properties, but it is essential in the daily life of a Muslim. A follower is required to complete ablution prior to the performance of the prayer, five times a day. This ritual cleansing before the prayer signifies the attainment of cleanliness and purification of the body and soul. According to a Hadith narrated by Hazrat Abu Huraira, no prayer is accepted without ablution (Sahih al Bukhari, Vol. 1, Book 4).

The Holy Quran and the Hadith teach its followers principles of social justice and equity which extends into the practice of preserving earth’s natural resources, particularly water conservation. According to Islam, water is community resource and is a right for all humankind. Prophet Muhammad (SAW) highlights this in the following hadith:

“Muslims have common share in three things: grass [pasture], water, and fire [fuel]” ( Musnad Vol. 2, Book 22 ).

The Holy Qur’an has set down the foundations of water conservation and demand management by making it known to humankind that earth’s water resources are finite in verse 23:18 of Surah Al Mu’minun (The Believers):

 “And We sent down from the sky water (rain) in (due) measure, and We gave it lodging in the earth, and verily, We are Able to take it away.”

Furthermore, God has instructed humankind not to be wasteful in the following verse: “O Children of Adam! Eat and drink but waste not by excess, for God loveth not the wasters” ( Surah al Araaf, The Heights 7:31 ).

Prophet Mohammed (peace be upon him) exemplifies the “logical approach to sustainable water use” through the manner in which he performed the ritual ablution. The principle of water conservation is beautifully illustrated by the rule which says that while making ablutions (wudu) we should be abstemious in the use of water even if we have a river at our disposal. : “Do not waste even if performing ablution on the bank of a fast flowing large river” (Al Thirmidhi). The Prophet himself would perform ablution with just one mudd of water (equivalent to 2/3 of a liter), and take bath with one saa’ of water (equivalent to around 3 liters in modern volume measurements).

As per Islamic law (shariah), there is a responsibility placed on upstream farms to be considerate of downstream users. A farm beside a stream is forbidden to monopolize its water. After withholding a reasonable amount of water for his crops, the farmer must release the rest to those downstream. Furthermore, if the water is insufficient for all of the farms along the stream, the needs of the older farms are to be satisfied before the newer farm is permitted to irrigate. This reflects the emphasis placed by Islam on sustainable utilization of water.

References:

  1. Naser I. Faruqui, Asit K. Biswas, and Murad J. Bino. (2001) Water Management in Islam, UN University Press <available on http://www.idrc.ca/EN/Resources/Publications/openebooks/924-0/index.html>
  2.  Abumoghli, I. (2015), Islamic Principles on Sustainable Development, EcoMENA <available on http://www.ecomena.org/islam-sustainable-development/>
  3. Zafar, S. (2016) Environment in Islamic Teachings, Cleantech Solutions <available on http://www.cleantechloops.com/islam-environment/>

Republished by Blog Post Promoter

Litani River: A Sorry State of the Affairs

litani-river-pollutionThe Litani River, the largest river in Lebanon, faces a multitude of environmental problems. Due to decades of neglect and mismanagement, the river has become heavily polluted. The main contributors to the degradation of Litani River are industrial pollution from factories and slaughterhouse, untreated sewage, chemicals from agriculture runoffs and disposal of municipal waste. The pollution has reached such a level where it is obvious to the human eye.

The Litani River is a source of income for many families who use it in summer for many recreational activities; moreover, it is used for irrigation. On the banks of the Litani River, many hydroelectric and electric projects have been set up. The Lebanese government had made a dam that is linked to a hydroelectric power plant of 185MW capacity. The dam had been responsible for the formation of Qaraoun Lake; a polluted man-made lake.

In 2016, the World Bank approved a loan of $55 million to address the wastewater and agricultural runoff along the lake and the river.  The problem of the fund is that they did not give a bigger investment to agricultural runoff. The Litani provides irrigation to 80% of agriculture lands in Bekaa and 20% in south Lebanon. Many agricultural projects were implemented on the basin as Joun project and Al-Qasmieh project. Farmers are using the fertilizers and pesticides that are polluting the river with chemicals. On the other hand, farmers are impacted by the water they are using to irrigate their crops since it is polluted with chemicals and full of soil, gravel and sand.

Serious and concerted efforts are urgently required to restore Litani River to its lost glory

Serious and concerted efforts are urgently required to restore Litani River to its lost glory

Two years ago, the Lebanese government announced $730 million project to clean up the pollution of Qaraoun Lake and Litani river. The seven years ambitious plan is divided into four components: $14 million will go to solid waste treatment, $2.6 million for agricultural pollution, $2.6 million for industrial pollution and $712 million for sewage treatment.

The Way Forward

In order to save the Litani River, here are few steps that must be taken urgently:

  • Establish a sewage system especially for the new refugee camps near the river basin.
  • Promote measures to tackle the industrial pollution.
  • Stop industrial effluents from polluting the River.
  • Establish waste treatment plants in the area.
  • Hire staff to operate existing wastewater treatment plants. For example Zahle plant that lacks staff to operate.
  • Build water treatment facilities for the local communities.

Small steps can effectively reduce the pollution and restore the lost glory of the Litani River.  Thousands of people volunteered to clean up the Litani River on the national day of the Litani River. This took place after there was a huge online campaign titled “together to save the Litani River” initiated by activists. Thousands of people engaged online and then onsite to fish out rubbish; bulldozers removed accumulated sands and mud in the river from nearby sand quarries.

The Concept of Environmental Education

Unlike traditional forms of education, Environmental Education is a holistic, lifelong learning process directed at creating responsible individuals who explore and identify environmental issues, engage in problem solving, and take action effectively to improve the environment. As a result, individuals develop a deeper awareness and understanding of environmental issues and have effective skills to make informed and responsible decisions that lead to resolute the environmental challenges.

Environmental Education is neither environmental advocacy nor environmental information; rather, Environmental Education is a varied and diverse field that focuses on the educational process that has to remain neutral by teaching individuals critical thinking and enhancing their own problem-solving and decision-making skills in a participatory approach. The guiding principles of Environmental Education include awareness, knowledge, attitudes, skills and participation.

Environmental Education can be taught formally in schools classrooms, colleges and universities, or it can take place in informal learning contexts through NGOs, businesses, and the media, natural centers, botanic gardens, bird-watching canoeing, and scuba diving. Besides, Environmental Education takes place in various non-formal education programs such as experiential outdoor education, workshops, outreach programs and community education.

Environmental educator should deliver Environmental Education in a unique way as it is not only based on science, but also concerned with historical, political, and cultural aspects with the human dimension of socio-economic factors. It is also based on developing knowledge on socio-ecological systems.

Environmental Education provides opportunities to kids to build skills, including problem-solving and investigation skills. Qualified environmental educators should work in the field, conducting programs, involving and collaborating with local communities, and using strategies to link the environmental awareness, building skills, and responsible action. It is through Environmental Education that citizens, especially children, can test various aspects of an issue to make informed, science-based, non-biased, and responsible decisions.

Environmental Education in Islam

Islam considers seeking knowledge as an obligation. Islam teaches its followers to keep streets clean, to help animals and any living being, prohibits the pollution of water, prohibits cutting down a fruitful tree and preserves the components of the environment. Islam also sets legislation for cultivating land and benefiting from it. Additionally, Islam has strict teachings to prevent environmental deterioration caused by industrial development, urbanization, poverty etc. Islam organizes the relationship between humans and nature where it calls for its protection and enrichment through a comprehensive educational process. Islamic teachings in preserving environmental components hold the sense of responsibility and sensitivity. Such teachings were extraordinary at a time when the environment was not suffering the pressures it is suffering nowadays.

Environmental Education in Jordan

As far as Jordan is concerned, National Environmental Education efforts remain largely focused on programs organized by NGOs. For example, JREDS is a Jordanian NGO which became the national organization for the Foundation for Environmental Education. JREDS is implementing three international eco-labeling programs – Green Key, Blue Flag and Eco-SchoolsRSCN is another Jordanian NGO that designed Environmental Education programs to improve peoples’ general understanding and awareness of environmental issues. Activities of nature protection organizations have been instrumental in fostering significant cultural change.

Environmentally-literate citizens take active part in solving and reducing the impact of environmental problems by buying "green" products and using natural alternatives to pesticides to name two. However, the success of environmental programs adopted by NGOs will be difficult to sustain for future generations without continuing Environmental Education.

Eco-literacy Outlook for Jordan

Jordan has typically centralized education system where teachers aren't consulted about curricula. School curricula are mono-disciplinary, making interdisciplinary learning hard to apply. Despite environmental topics incorporation into curricula recently, still it is fragmentary. Jordan has a long way to go before a national strategy of environmental education can be totally implemented in its educational system.

Jordan should employ a holistic Environmental Education program adopting sustainable development principles, and presenting green ideas that perceive handling the environmental issues as important target and offers various solutions to different environmental problems which has become a national scourge. Ministry of Education should merge the eco-traditional knowledge effectively with leadership due to the link between the two, and empower the youth to participate in solving their own environmental problems as well as affecting the actions of public towards the desired goal, which is participating in solving the grim reality of environmental problems in the country. The scientific community should also get involved in public relations efforts that enable communication of its research, in effective and understandable ways, to the organizations responsible for education.

Additionally, Jordan should adopt a holistic approach of zero-emission eco-schools throughout the country, eco-schools that relies entirely on renewables for their energy supply and be completely self-sustaining. The design shall adopt Earth building and be constructed out of locally sourced materials, while the geothermal energy will cool and heat it.  Furthermore, school garden and cleaning routines will use the harvested rainwater. Such an eco-school model, hold a bright future where students will eventually have access to a bright green education thereby facilitating a sustainable future.

Republished by Blog Post Promoter

Animal Waste Management in Africa

Livestock and poultry production are among the main economic activities in rural as well as urban areas of African countries.The livestock sector, in particular sheep, goats and camels, plays an important role in the national economy of African countries. In addition, the region has witnessed very rapid growth in the poultry sector.

However, livestock industry is contributing heavily to greenhouse gas emissions and waste management problems in Africa due to the absence of a sustainable Animal Waste Management System in the region. Most of the manure is collected in lagoons or left to decompose in the open which presents a severe environmental hazard.

The use of anaerobic digestion for animal waste disposal is an attractive way to address environmental problems, especially methane emissions. Anaerobic digestion of livestock manure is an alternative pathway for managing large organic waste loads and its associated problems encountered in large feeding lots and confined animal feeding operations.

Despite the numerous benefits associated with anaerobic digestion as a sustainable waste management strategy, these combined merits have never been quantified in African countries.The biogas potential of animal manure can be harnessed both at small- and community-scale. An essential aspect for adopting anaerobic digestion systems is the development of a methane market that acknowledges role of biogas systems in mitigating climate change.

With the present energy and pollution problem in Africa, conversion of animal manure as source of clean energy as well as organic fertilizer offers a great advantage. Anaerobic digestion technologies can help preserve and integrate livestock production within communities and create renewable energy resources to serve a growing bio-economy within rural communities.

Anaerobic digestion is a controlled biological treatment process that can substantially reduce the impact of livestock and poultry manures on air and water quality. An anaerobic digestion plant produces two outputs, biogas and digestate, both can be further processed or utilised to produce secondary outputs. Biogas can be used for producing electricity and heat, as a natural gas substitute and also a transportation fuel.

A biogas plant is a decentralized energy system, which can lead to self-sufficiency in heat and power needs, and at the same time reduces environmental pollution. The main features of a biogas facility are as follows:

  • Processing of renewable energy source
  • Reduction of malodors
  • Removal of harmful pathogens
  • Reduction of COD & BOD contents of processed waste
  • Production of organic fertilizer for green areas
  • Reduction in emissions of greenhouse gases
  • Production of relatively clean water for flushing or irrigation

Animal manure-to-biogas transformation has enormous potential in reducing greenhouse gas emissions and harnessing the untapped renewable energy potential of animal manure. Biogas can be used as a fuel for internal combustion engines, to generate electricity from small gas turbines, burnt directly for cooking, for space and water heating. or for running vehicles.

Republished by Blog Post Promoter

تحسين الوضع الاقتصادي للمجتمعات عن طريق تعزيز مشاريع إعادة التدوير

 

 تعتبر البلديات و المجالس المحلية المسئول المباشر عن إدارة ملف النفايات الصلبة في المدن حول العالم للحفاظ على المدن نظيفة. ففي الوقت التي تحتل فيه التكنولوجيا المتوفرة (جمع النفايات، النقل، إعادة التدوير، التخزين، المعالجة)، تزداد النداءات الدولية لإعادة النظر إلى مجال إدارة النفايات الصلبة كأداة لحل العديد من المشاكل الاقتصادية، الإجتماعية، و البيئية. و من هذه الأصوات الرئيس الأمريكي السابق "بيل كلينتون" عندما صرح في المؤتمر السنوي لمبادرة كلينتون العالمية عام 2010

" إذا أردتم محاربة التغير المناخي، تحسين الصحة العامة، إيجاد فرص عمل للفقراء و خلق مناخ مناسب للروّاد، فإن أفضل الطرق للوصول لهذا الشيئ هو إغلاق مكبات النفايات"

 

فيجب على السلطات أن تنظر إلى ملف إدارة النفايات الصلبة بمنظور أشمل بحيث يشمل تحسن عام في صحة الناس و البيئة، استخدام أمثل للمصادر (موارد الطاقة) و تحسين الوضع الإقتصادي. لهذا أصبحت إدارة النفايات الصلبة تحد صعب للجهات المختصة، رجال الأعمال، و المواطنين، فإدارة النفايات الصلبة تحتاج إلى "خلطة سحرية" تنمزج فيها السياسة الإدارية، المسئولية الإجتماعية، القطاع التجاري، و المواطنين. 

 

فنجاح تطبيق نظام فعّال لإدارة النفايات الصلبة يعتمد بشكل كبير على عوامل محلية و إقليمية متعددة في المجالات الاقتصادية، الاجتماعية، و السياسية في المجتمع المحلي. فباللإضافة إلى نظام إدارة يشمل جميع الحلول المتوفرة، ففهم جيد للآلية التي تؤثر فيها العوامل السياسية، الاجتماعية، و الاقتصادية مهمة لتطوير استراتيجية فعّالة لإدارة النفايات الصلبة. فعلى الجهات المسئولة النظر إلى هذا الملف كفرصة للنهوض بالوضع الاقتصادي للمجتمع من خلال خلق آلاف فرص العمل و إنشاء مجال جديد للاستثمار.

 

فمن أجل التأثير على الطبقة العامة من الناس تجاه إعادة تدوير المخلفات، يجب عليهم أن يشعروا بصورة مباشرة بالفائدة التي تعود عليهم، لذلك كمرحلى أولى يجب تغيير الصورة السيئة في مخيلاتهم عن هذا المجال عن طريق حملات التوعية و المبادرات و الدراسات التفصيلية لكي يشعروا بحجم الفرصة و فوائدها.

 

الفيديو التالي لمشروع إنشاء وحدة إعادة فرز للنفايات الصلبة في مدينة رفح (فلسطين). تم تنفيذ المشروع عن طريق جمعية أصدقاء البيئة  و بتمويل من الوكالة اليابانية للتنمية، فعلي الرغم من الجدل القائم في هذا المجال حول فاعلية المشروع، فقد خلقت العديد من فرص العمل للنساء و ساعدت على تقليل كميات النفايات المرسلة لمكب صوفا. إنها خطوة جيدة في الاتجاه الصحيح و لكن كان الأولى، قبل إنشاء وحدة الفرز، دراسة الحلول و الخيارات للنفايات المفرزة في نهاية خط الانتاج حيث أن هناك الآلاف الأطنان من النفايات المكدسة بسبب عدم وجود أي طريقة لإعادة تدويرها بعد عملية الفرز.

 

Republished by Blog Post Promoter