Medical Waste Management in MENA

Healthcare sector in MENA region is growing at a very rapid pace, which in turn has led to tremendous increase in the quantity of medical waste generation by hospitals, clinics and other establishments. According to a recent Ministry of State for Environmental Affairs report, Egypt generated 28,300 tons of hazardous medical wastes in 2010. In the GCC region, more than 150 tons of medical waste is generated in GCC countries every day. Saudi Arabia leads the pack with daily healthcare waste generation of more than 80 tons. These figures are indicative of the magnitude of the problem faced by municipal authorities in dealing with medical waste disposal problem across the MENA region. 

Multitude of Problems

The growing amount of medical wastes is posing significant public health and environmental challenges in major cities of the region. The situation is worsened by improper disposal methods, insufficient physical resources, and lack of research on medical waste management. Improper management of medical wastes from hospitals, clinics and other facilities in MENA pose occupational and public health risks to patients, health workers, waste handlers, haulers and general public. It may also lead to contamination of air, water and soil which may affect all forms of life. In addition, if waste is not disposed of properly, ragpickers may collect disposable medical equipment (particularly syringes) and to resell these materials which may cause dangerous diseases.

Improper management of medical wastes from hospitals, clinics and other facilities in MENA pose occupational and public health risks to patients, health workers, waste handlers, haulers and general public. It may also lead to contamination of air, water and soil which may affect all forms of life. In addition, if waste is not disposed of properly, ragpickers may collect disposable medical equipment (particularly syringes) and to resell these materials which may cause dangerous diseases.

Medical waste management method in MENA is limited to either small-scale incineration or landfilling. The practice of landfilling of medical wastes is a matter of serious concern as it poses grave risks to public health, water resources, soil fertility as well as air quality. In many Middle East and North Africa countries, medical wastes is mixed with municipal solid wastes and/or industrial wastes which transforms medical wastes into a cocktail of dangerous substances. 

The WHO policy paper of 2004 and the Stockholm Convention, has stressed the need to consider the risks associated with the incineration of healthcare waste as a typical medical waste incinerator releases a wide variety of pollutants which may include particulate matter, heavy metals, acid gases, carbon monoxide and organic compounds. Sometimes pathogens may also be found in the solid residues and in the exhaust of poorly designed and badly operated incinerators. In addition, leachable organic compounds, like dioxins and heavy metals, are usually present in bottom ash residues. Due to these factors, many industrialized countries are phasing out healthcare incinerators and exploring technologies that do not produce any dioxins. Countries like United States, Ireland, Portugal, Canada and Germany have completely shut down or put a moratorium on medical waste incinerators. 

Promising Treatment Options

The alternative technologies for healthcare waste treatment are steam sterilization, advanced steam sterilization, microwave treatment, dry heat sterilization, alkaline hydrolysis, and biological treatment. Nowadays, steam sterilization (or autoclaving) is the most common alternative treatment method. Advanced autoclaves or advanced steam treatment technologies combine steam treatment with vacuuming, internal mixing or fragmentation, internal shredding, drying, and compaction thus leading to as much as 90% volume reduction. 

Microwave treatment is a promising technology in which treatment occurs through the introduction of moist heat and steam generated by microwave energy. Alkaline digestion is a unique type of chemical process that uses heated alkali to digest tissues, pathological waste, anatomical parts, or animal carcasses in heated stainless steel tanks. Biological processes, like composting and vermicomposting, can also be used to degrade organic matter in healthcare waste such as kitchen waste and placenta.

Republished by Blog Post Promoter

Say ‘No’ to Disposables

The waste quantities in all parts of the world are increasing many folds. In the past three decades, the waste quantities have almost been doubled. The per capita waste generation is alarmingly high especially in GCC countries. The municipal and governmental authorities have to spend huge resources in collection, storage, transportation, treatment and disposal of these wastes. With limited recycling facilities and absence of reusing culture, more quantities of the waste is now to be managed.

Major part of our municipal waste is still heading towards our landfill sites where it is being dumped, compacted and covered. The landfills are in quarries areas which are becoming soon filled up with the waste. In Bahrain almost 1.7 cum of space is required to accommodate 1 tons of waste.

Use of disposable cutlery has been increasing exponentially in developing countries

Despite a growing push to recycle and reuse, we must try to correct not the symptoms but the disease, and to do that, we should all avoid and reduce. The use of ‘disposables’ in the Middle East has increased exponentially in recent years and the items and quantities are increasing with each passing day. Here are few suggestions to avoid the use of disposables in our daily lives:

  • Avoid Paper Cups and Plates as paper manufacturing consume trees and are bleached white with chlorine, a process that releases dioxin, one of the most toxic chemicals on the planet, and emit methane, a greenhouse gas when trashed and thrown in a landfill.
  • Avoid Polystyrene & Styrofoam which are hazardous, carcinogens, cause air pollution and can cause nervous system impairments among workers. Styrene can leach from containers into our food. Polystyrene cannot be recycled and never biodegrades; it only breaks down into smaller pieces, polluting the environment and harming the animals that mistake it for food.
  • Avoid Bottled Water and use reusable containers for water storage and drinking.
  • Avoid Plastic and Paper Shopping Bags. Keep your own cloth bag ready for all occasions.
  • Avoid Plastic Utensils, paper napkins, plastic cutlery, forks, spoons and knives. Use chinaware or glassware instead.
  • Avoid Use rechargeable batteries instead of single use batteries. •Avoid using disposable diapers and use cloth diapers.
  • Using ink pen rather than ball points and getting a refillables. •Using handkerchief rather than tissue and paper towels.
  • Avoid using disposable stirrers and individually packaged sugar, milk and creamer. Use a spoon for stirring and place the sugar and milk in reusable containers or jugs.
  • Avoid using individual sachets of chilly, mayonnaise or ketchup sauce. Store the sauce in reusable bottles and dispensers instead.
  • Avoid Gift Wrapping and put the gift in a reusable bag instead..

Each time you throw something in the trash, please consider that you have paid its cost and are contributing towards more waste at the landfill.

Please avoid disposables. Be wise and environmental friendly.

COP21 Paris: Powered by 200 Megatonnes of Coal-fired CO2

As negotiators around the world gather for what many expect to be a groundbreaking UN climate negotiating session at the 21st Conference of Parties (COP21) which will seek a legally binding agreement on climate action, few may know that their meeting is being funded by the Coal industry. The corporate sponsorship of COP21 creates a dangerous conflict of interest in three key respects. Many of the sponsors are highly invested in oil, gas, coal, and other carbon-polluting sectors, and have a vested interest in obstructing or weakening any real action on climate change. However, with major industrial polluters using their deep pockets to influence climate policy at every level, how will a meaningful agreement be secured?

Corporate Interest at COP21

A new report released by Corporate Accountability International highlights that 4 of the leading sponsors of this year’s UN climate negotiations are collectively responsible for more than 200 megatonnes of CO2 emissions worldwide. The report titled, ‘Fueling the Fire – The corporate sponsors bankrolling COP21’ reveals how European energy giants Engie, Électricité de France (EDF), Suez Environment and BNP Paribas collectively own more than 46 coal-fired power plants around the world, including investments in oil sands exploration in Canada and fracking for shale gas in the UK. This has raised serious concerns ahead of the UN conference as to the role that corporate lobby groups should have, as many feel that this direct financial interest goes against the moral focus of the negotiations.

Patti Lynn, Executive director of Corporate Accountability International noted that the decision to allow these large polluters to sponsor the conference is “akin to hiring a fox to guard a hen house". She also argued that the UN climate negotiation was at risk of becoming a “corporate tradeshows for false market-based solutions.”

The report not only highlights the public behaviour of many of these companies, but also what they do behind the scenes. Earlier this year, ExxonMobil was famously outed for having suppressed knowledge of their role on contributing to Climate Change for the past 30 years.  However, it appears that many of the new conference sponsors have similarly questionable records on direct policy interference. While EDF claims to be “committed to a decarbonized world,” it is an active member alongside ExxonMobil and Shell of Business Europe.  This group has been linked to; openly oppose the “market deployment of energy produced from renewable sources” across Europe.

But it is perhaps their public actions that speak the loudest. In 2014, the sponsoring energy giant Engie directly profited from more than 131 megatons of greenhouse gas emissions. That is equivalent to the pollution emitted from driving a car around the globe 12 million times. "Despite recent announcements to stop new coal projects, Engie still owns 30 dirty coal power plants worldwide." Célia Gautier, policy advisor at Climate Action Network France. The report finally calls for future climate policy-making to be free of corporate interests through directly disallowing large contributors to climate change from the policy-making process, in a similar way that big tobacco was kicked out of health talks a decade ago.

UNFCCC – Twenty Years of Inaction

After two decades of negotiations, the UNFCCC has been unable to achieve meaningful action on climate change. The failure of 20 climate summits to date has corresponded with a dramatic speed up of greenhouse gas emission rates. In fact, since 1988, more than half of all industrial carbon emissions have been released, raising the prospect of irreversible climate change.

Global inaction on climate change is also the consequence of political and economic interference by the fossil fuel industry. For decades, corporations, like ExxonMobil and Shell, have run sophisticated and effective campaigns of denial and deception about climate change. To undermine progress on climate policy and to secure their own profits, they have utilized a range of interference tactics, including financial contributions, corruption and lobbying, PR campaigns, litigation and legal threats, funding junk science, issuing contradictory statements, and sponsoring front groups, think tanks, and trade associations to do their dirty work.

The association of such corporations with the UNFCCC has not simply blocked or impeded meaningful climate action. It also has shifted the focus of negotiations onto market-based solutions, such as carbon prices and trading, as well as onto techno-fixes, such as carbon sequestration, fracking, and nuclear energy none of which have reduced overall emissions globally or spurred wide-spread low-carbon investments in national economies that meet the the deadlines for averting climate chaos. These same corporations have also interfered with the proceedings and operations of the UNFCCC. From the earliest COP meetings to today, transnational corporations and their associated business lobbies have positioned themselves to undermine or influence any potential climate treaty.

Time for Action

The time for action is now. With the world watching, governments must agree to remove the influence of fossil fuel corporations and other polluting industries from climate change negotiations. With precedent established in international law specifically, in the World Health Organization’s Framework Convention on Tobacco Control it is possible to exclude the big carbon polluters from U.N. summits on climate change. Indeed, it is the only way to secure bold, effective policy at COP21 that will curb the effects of climate change and move us to a more just, equitable future for all.

Republished by Blog Post Promoter

Litani River: A Sorry State of the Affairs

litani-river-pollutionThe Litani River, the largest river in Lebanon, faces a multitude of environmental problems. Due to decades of neglect and mismanagement, the river has become heavily polluted. The main contributors to the degradation of Litani River are industrial pollution from factories and slaughterhouse, untreated sewage, chemicals from agriculture runoffs and disposal of municipal waste. The pollution has reached such a level where it is obvious to the human eye.

The Litani River is a source of income for many families who use it in summer for many recreational activities; moreover, it is used for irrigation. On the banks of the Litani River, many hydroelectric and electric projects have been set up. The Lebanese government had made a dam that is linked to a hydroelectric power plant of 185MW capacity. The dam had been responsible for the formation of Qaraoun Lake; a polluted man-made lake.

In 2016, the World Bank approved a loan of $55 million to address the wastewater and agricultural runoff along the lake and the river.  The problem of the fund is that they did not give a bigger investment to agricultural runoff. The Litani provides irrigation to 80% of agriculture lands in Bekaa and 20% in south Lebanon. Many agricultural projects were implemented on the basin as Joun project and Al-Qasmieh project. Farmers are using the fertilizers and pesticides that are polluting the river with chemicals. On the other hand, farmers are impacted by the water they are using to irrigate their crops since it is polluted with chemicals and full of soil, gravel and sand.

Serious and concerted efforts are urgently required to restore Litani River to its lost glory

Serious and concerted efforts are urgently required to restore Litani River to its lost glory

Two years ago, the Lebanese government announced $730 million project to clean up the pollution of Qaraoun Lake and Litani river. The seven years ambitious plan is divided into four components: $14 million will go to solid waste treatment, $2.6 million for agricultural pollution, $2.6 million for industrial pollution and $712 million for sewage treatment.

The Way Forward

In order to save the Litani River, here are few steps that must be taken urgently:

  • Establish a sewage system especially for the new refugee camps near the river basin.
  • Promote measures to tackle the industrial pollution.
  • Stop industrial effluents from polluting the River.
  • Establish waste treatment plants in the area.
  • Hire staff to operate existing wastewater treatment plants. For example Zahle plant that lacks staff to operate.
  • Build water treatment facilities for the local communities.

Small steps can effectively reduce the pollution and restore the lost glory of the Litani River.  Thousands of people volunteered to clean up the Litani River on the national day of the Litani River. This took place after there was a huge online campaign titled “together to save the Litani River” initiated by activists. Thousands of people engaged online and then onsite to fish out rubbish; bulldozers removed accumulated sands and mud in the river from nearby sand quarries.

Earth Day 2015 – It’s Our Turn to Lead

Like Earth Days of the past, Earth Day 2015 will focus on the unique environmental challenges of our time. As the world’s population migrates to cities, and as the bleak reality of climate change becomes increasingly clear, the need to create sustainable communities is more important than ever. Earth Day 2015 will seek to do just that through its global theme: It’s Our Turn to Lead. With smart investments in sustainable technology, forward-thinking public policy, and an educated and active public, we can transform our cities and forge a sustainable future. Nothing is more powerful than the collective action of a billion people.

Due to rising population, more migration is taking place from rural to urban areas. Today, more than half of the world’s population lives in cities with urbanisation rates rising and impacts of climate change have prompted the need to create sustainable communities. The Earth day is observed believing that nothing is more powerful than the collective action of a billion people.

It is a fact that people are crowding cities and with the increase in population density, pollution of all sorts is increasing as well. Many cities are finding it difficult to cope with this fast urbanisation and to provide basic facilities like shelter, infrastructures, water, sanitation, sewerage, garbage, electricity, transportation etc. to its inhabitants.

People who live in high-density air pollution area, have 20 per cent higher risk of dying from lung cancer, than people living in less polluted areas. Children contribute to only 10 per cent of the world’s population but are prone to 40 per cent of global diseases. More than 3 million children under the age of 5 years die every year due to environmental factors like pollution.

Earth Day 2015 will seek to create awareness amongst people to act in an environmental friendly manner, promote and do smart investments in sustainable urban system transforming our polluted cities into a healthier place and forge a sustainable future. It’s exceptionally challenging for our communities and cities to be green.

Time for Action

It’s time for us to invest in efficiency and renewable energy, rebuild our cities and towns, and begin to solve the climate crisis. Most of the Middle East nations have limited land area and are particularly vulnerable to the impacts of climate change which is affecting the social and environmental determinants of health, clean air, safe drinking water, sufficient food and secure shelter. We need to audit our actions and see what are we contributing towards your environment and community? Earth Day is a day for action; a chance to show how important the environment is to us. Earth Day is about uniting voices around the globe in support of a healthy planet. The earth is what we all have in common.

Let us be a part of this green revolution, plan and participate in Earth Day activities moving from single-day actions, such as park cleanups and tree-planting parties to long-term actions and commitments and make our city a healthier place to live as the message of the Earth Day is to “Actively participate and adopt environmental friendly habits”.

Republished by Blog Post Promoter

Saudi Arabia’s Road to Fuel Economy

Saudi Arabia is a private car-oriented society, and has one of the world’s highest per capita fuel consumption in the transportation sector. This is primarily due to lack of efficient public transportation and current fuel subsidy policy. The country is witnessing an escalating demand on its domestic energy needs and it is imperative on policymakers to devise policies for conservation of energy resources and reduction of GHGs emissions in the transportation sector. Adapting energy-efficient fuel standards will help Saudi Arabia country to bridge the gap with the developed countries. The enforcement mechanism for the establishment of Saudi fuel economy standards will lead to achievement of strategic energy conservation objectives.

Energy intensity in Saudi Arabia has set high records reflecting the growth of the economy and the increasing demand on fossil energy in the domestic use and heavy industries operations. Energy intensity in the Kingdom was twice the world average in 2010 and with unbalanced growth between energy use and economy, this should rang the bell for the Saudi government to adapt a bundle of energy policies that curtail the increasing growth of energy demand domestically.

CAFE Standards

Corporate Average Fuel Efficiency standard (CAFE) was first enacted after the Energy Policy and Conservation Act of 1975 in the USA. That policy was due to energy security concerns and environmental objectives. The USA current standard is 27.5 mpg for passenger’s vehicle and 20.7mpg for light trucks. Similarly to the USA CAFE objectives, the Kingdom approach is to reduce gasoline consumption and induce conservation and increasing efficiency of the light-duty vehicles (LDV).The proposed standard mandates require that all new and used passenger vehicles and light trucks either imported or locally manufacture should comply with new fuel standards. The framework for this law to be effective will start by January 1, 2016 and fully phased out by December 31, 2025. The Saudi Energy Efficiency Center (SEEC) and other entities including the Saudi Standards, Metrology and Quality Organization, Saudi Customs, and Ministry of Commerce and Industry have been asked to monitor the implementation of the CAFE standards.

The purpose of the fuel standards is to commit the light-duty vehicle manufactures sell their cars in the kingdom and comply with the Saudi CAFE. This standard has a double dividends from the automobile manufacturer side its incentivize them to introduce the up-to-date efficiency technologies and cut the supply the low-efficient technologies to the Saudi market. The Saudi CAFE standard targets an improving in the overall fuel economy with an average of 4% annually. This would lift up the Kingdom’s fuel economy LDVs from its current level of 12 km per liter to 19 km per liter by 2025.

The Saudi CAFE standard shows a focused strategy to setting long-term standards over the course of a given time frame and its committed efforts to manage both newly imported or used LDVs. According to Prince Abdulaziz bin Salman al-Saud, the Saudi transportation sector consumes about 23 percent of the total energy in the kingdom and about 12 million vehicles consume about 811,000 barrels of gasoline and diesel per day. Moreover, there are 7 LDVs entering the market every year with a forecast to reach 20 million by 2030.

Conclusion

Saudi Arabia’s CAFE standard is a means to stimulate energy efficiency and encourage resource conservation and contribute to the environment. This will enable consumers to save money, reduce fossil fuel consumption and strengthen the Kingdom’s role in the fight against climate change.

Republished by Blog Post Promoter

Carbon Capture and Storage: Prospects in GCC

Gulf Cooperation Council countries are burgeoning economies which are highly dependent on hydrocarbons to fuel their needs for economic growth. GCC nations are fully aware of the mounting consequences of increasing levels of CO­2 on the environment, mainly attributed to soaring energy demand of domestic and industrial sector. Regional countries are undertaking concrete steps and measures to reduce their carbon footprint through the introduction of renewable energy and energy efficiency measures. Among other options, Carbon Capture and Storage, popularly known as CCS, can be an attractive proposition for GCC nations.

What is CCS

Carbon capture and storage (or carbon capture and sequestration) is the process of capturing waste carbon dioxide from large point sources, such as fossil fuel power plants, transporting it to a storage site, and depositing it where it will not enter the atmosphere, normally an underground geological formation. CCS is a potential means of mitigating the contribution of fossil fuel emissions to global warming and ocean acidification. As at September 2012, the Global CCS Institute identified 75 large-scale integrated projects in its 2012 Global Status of CCS report. 16 of these projects are in operation or in construction capturing around 36 million tonnes of CO2 per annum.

Among notable CCS projects world, In Salah project in Algeria is a fully operational onshore gas field with CO2 injection. CO2 is separated from produced gas and reinjected in the producing hydrocarbon reservoir zones. Since 2004, about 1 Mt/a of CO2 has been captured during natural gas extraction and injected into the Krechba geologic formation at a depth of 1,800m. The Krechba formation is expected to store 17Mt CO2 over the life of the project.

CCS Prospects in GCC

GCC accounts for 0.6% of the global population but ironically contributes 2.4% of the global GHG emissions per capita.  GCC countries are among the top-14 per capita emitters of carbon dioxide in the world. The GCC region is witnessing rapid economic growth and massive industrialization which has led to almost 8% growth in power consumption each year. The region is heavily dependent on hydrocarbons combustion for power generation and operation of energy-intensive industries.

There is an urgent need for carbon abatement measures for the industrial sector in Middle East nations as increasing carbon dioxide emissions will have serious repercussions for GCC and adjoining regions. Some of the potential impacts can be rise in sea level, droughts, heat waves, sandstorms, damage to ecosystem, water scarcity and loss of biodiversity. Carbon dioxide emissions reductions can be achieved from point sources such as refineries, power plants, manufacturing industries etc.

At the regional level, GCC nations have both the drivers and environmental gains to adopt the CCS technologies. Some of the GCC countries are already engaged in R&D initiatives, for example, Saudi Arabia has KACST- Technology Innovation Center on Carbon Capture and Sequestration while Saudi Aramco have their own CCS R&D program for CCS. In Qatar there is the Qatar Carbonate and Carbon Storage Research Center while Bahrain has Sitra Carbon Capture System. Recently, Masdar and ADNOC launched Middle East first Joint Venture for carbon capture usage and storage. On a multilateral level, back to 2007, King Abdullah pledged $300 million to finance a research program on the future of energy, environment and climate change. In addition, a sum of $150 million from Qatar, Kuwait and UAE has been allocated to support CCS research.

To sum up, CCS is a viable option to help GCC countries maintain their hydrocarbons-driven economies while enabling low-carbon electricity generation from existing hydrocarbons powerplants.

Republished by Blog Post Promoter

Guide to Green Shopping

With the advent of December, many festivities, celebrations and seasonal parties are planned globally. These events require feverish shopping leading to usage and wastage of more resources. In addition, December is also famous for the shopping mania that grips people from all walks of life. ‘Shopping’ is certainly one of the most famous ‘indoor sport’ being practiced equally by people of developed and developing countries depending on their life style and budget and is mainy being done by the female gender.

‘Going green’ is a way forward for all of us as it is a life style change including improving our shopping and purchasing habits so that the additional environmental burden can be reduced. The market forces, industries, manufacturers are supported by extensive media and marketing campaigns which lure us to buy more and unnecessary commodities.

The responsibility of environmental stewardship lies on us to control and behave and move to ‘green shopping’ altering our pampered purchasing habits. Start by auditing your lifestyles and shopping list and see where improvement can be achieved to reduce pollution.

Being a green consumer we need to conserve resources, save  energy, and prevent waste by buying  products that are energy efficient, are used or reusable, made with  recycled content or are  recyclable and have no  or less packaging.

Green shopping involves learning how to buy smartly and keeping environmental considerations in mind. Here are some useful eco-friendly shopping tips:

  • Check if the item is ‘really’ or ‘urgently’ required. May be you do not have an immediate use or can postpone it to any later date.
  • Check what quantity and content of the item is required and for what duration?
  • What are the alternatives to the item in terms of cost, size, number etc?
  • Buy durable products instead of disposable items. Buy things which last longer and can be reused like rechargeable batteries and avoiding plastic cutlery and plates.
  • Avoid excess packaging. Look for products that have less packaging or buy in bulk meaning less garbage generation, disposal and transportation.  
  • Share items with friends. Another way to save resources and energy is to swap and exchange with friends and family instead of buying brand-new products. This includes sharing video games, CDs, DVDs etc. instead of individuals owning them.
  • Buy energy-efficient appliances and electronic items and promote energy-efficient products.
  • Buying useful presents and gifts aiming at its use and not cost.
  • Select items made with recycled-content materials.
  • When selecting between two similar products, go for the one you can re-use or re-fill later, or the one that hasn't wasted resources on a wrapper you'll throw away as soon as you get home.
  • Buy sustainable products which have the ability to be produced (over and over again) without doing much harm to the environment.
  • Buy locally made or grown food. Local foods are fresher and keep local farmers in business, while avoiding the pollution caused by transporting products around the country or region.

Let us inspire ourselves to live a greener more environmentally friendly, healthy and sustainable lifestyle.

Become a Green Shopper. Explore, Enjoy and Make A Difference! 

Republished by Blog Post Promoter

Egypt’s Water Crisis and Degeneration of Nile

pollution-nileEgypt is struggling to cope with water shortages and food production. It is expected that Egypt’s per capita annual water supply will drop from 600 cubic meters today to 500 cubic meters by 2025, which is the UN threshold for absolute water scarcity. Egypt has only 20 cubic meters per person of internal renewable freshwater resources, and as a result the country relies heavily on the Nile for its main source of water. Water scarcity has become so severe that it has been recorded that certain areas in the country could go days without water, with pressure sometimes returning only for a few hours a week. The country can no longer delay action and must act now.

Agriculture

Agriculture contributes roughly 15% of Egypt’s GDP, and employs 32% of Egypt’s workforce with rice being the biggest produce in the country. Rice is an important part of an Egyptian family’s diet. However, the cultivation of rice is very water intensive. On average about 3000 liters of water is used to produce 1 kilo of rice. This number can vary depending on climate, soil type and water management practices.

The government has restricted cultivation of rice to an area of 1 million acres (farmers were previously able to use most of the Nile Delta for cultivation) in specified areas of the Nile Delta. The government has even resorted to taking drastic measures as spreading incendiary compounds on rice fields cultivated outside the area allocated by the government. This has caused outrage and demonstrations by farmers who insist that the area allocated is not enough for them to be able to make ends meet. This type of tension caused by the lack of water was one of the catalysts of the Arab Spring in 2011/2012.

To alleviate population tension and unrest the government has been trying to increase water supply by exploring with reusing treated agricultural and municipal wastewater for agriculture. However implementation of such initiatives is not being applied fast enough to cope with the rising demand. Government must enforce new irrigation methods in the country (Egyptian farmers still rely heavily on flood and canal irrigation in the Nile Delta) as well as smart agricultural practices such as using less water intensive crops. Resorting less water intensive water crops could drastically cut water used in agriculture and help increase water supply.

Pollution of the Nile

The Nile has been a lifeline for Egypt at least since the time of the pharaohs. Yet, despite the world’s largest river’s importance to the country, its water is being polluted by various sources, and pollution levels increasing exponentially in recent years.

The degeneration of the Nile is an issue that is regularly underestimated in Egypt. With so many people relying on the Nile for drinking, agricultural, and municipal use, the quality of that water should be of most importance. The waters are mainly being polluted by municipal and industrial waste, with many recorded incidents of leakage of wastewater, the dumping of dead animal carcasses, and the release of chemical and hazardous industrial waste into the Nile River.

Industrial waste has led to the presence of metals (especially heavy metals) in the water which pose a significant risk not only on human health, but also on animal health and agricultural production. Fish die in large numbers from poisoning because of the high levels of ammonia and lead. Agricultural production quality and quantity has been affected by using untreated water for irrigation as the bacteria and the metals in the water affect the growth of the plant produce, especially in the Nile Delta where pollution is highest.

Industrial pollution is wrecking havoc in Nile

Industrial pollution is wrecking havoc in Nile

Of course the pollution of Nile is a complex problem that has been continuing for more than 30 years and the government is trying to implement stricter rules on the quality and type of waste/wastewater dumped into the river to reduce the pollution of the Nile. However, swift and decisive action must be taken towards cleaning the Nile, such as treating the wastewater prior to disposal, and placing stricter restrictions on industries to dispose of their waste safely and responsibly. This issue cannot be ignored any further as the continual increase in population will cause an increase in demand on Egypt’s dwindling water resources. Every drop of water counts.

The Blue Nile Dam

Another challenge at hand is tackling the issue of Ethiopia building a dam and hydroelectric plant upstream that may cut into Egypt’s share of the Nile. For some time a major concern for Egypt was Ethiopia’s construction of the Grand Ethiopian Renaissance Dam (GERD) in the Blue Nile watershed, which is a main source of water for the Nile River. Construction of the Renaissance Dam started in December 2010, and has the capacity to store 74 to 79 billion cubic meters of water and generate 6,000 megawatts of electricity for Ethiopia a year. This creates major concern for Egypt, who is worried that this damn would decrease the amount of water it receives (55.5 billion cubic meters) from the Nile River. Egypt is concerned that during dry months, not enough water will be released from the GERD thus decreasing the water received downstream. This will greatly hinder Egypt’s attempts to alleviate the water shortages during those months.

Earlier this year, Egypt, Ethiopia and Sudan assigned two French companies to prepare a report on the impact of the dam on the three countries. This report will clarify the affects the Dam will have on downstream countries. The results of this report are yet to be released. 

Conclusion

In case of business-as-usual scenario, Egypt runs the risk of becoming an absolute water scarce country in less than a decade. Therefore Egypt has a battle on its hands to ensure adequate conditions for its population. Like many other water scarce countries around the world, it needs to mitigate water scarcity by implementing smart conservation techniques, adopting water saving technologies, and control water pollution. With climate conditions expected to get drier and heat waves expected to become more frequent in the MENA region, Egypt cannot afford to neglect its water conservation policies and must act immediately to meet the population’s water demand.

 

Sources of Information

http://www.ecomena.org/egypt-water/

http://www.mfa.gov.eg/SiteCollectionDocuments/Egypt%20Water%20Resources%20Paper_2014.pdf

http://www.waterhistory.org/histories/nile/nile.pdf

http://planetearthherald.com/egypt-faces-water-crisis-the-end-of-the-nile-as-we-knew-it/

https://www.theguardian.com/world/2015/aug/04/egypt-water-crisis-intensifies-scarcity

http://english.alarabiya.net/en/views/news/middle-east/2016/04/30/Egypt-must-preserve-its-lifeline-by-tackling-the-water-crisis-now.html

http://bigstory.ap.org/article/476db2e5769344c48997d41eb319bf64/egypt-looks-avert-water-crisis-driven-demand-waste

http://www.presstv.com/Detail/2016/06/14/470358/Egypt-water-crisis-street-protests-Dakahlia-North-Sinai

http://phys.org/news/2016-04-egypt-avert-crisis-driven-demand.html

http://www.al-monitor.com/pulse/originals/2016/06/egypt-crops-water-crisis-state-emergency.html

https://tcf.org/content/report/egyptian-national-security-told-nile/

http://www.al-monitor.com/pulse/originals/2016/04/egypt-water-minister-interview-nile-drought-ethiopia-sudan.html

http://ecesr.org/wp-content/uploads/2015/01/ECESR-Water-Polllution-En.pdf

http://www.al-monitor.com/pulse/originals/2015/05/egypt-nile-water-pollution-phosphate-ammonia-fish-drinking.html

http://www.aqua-waterfilter.com/index.php/en/articles/water-pollution/61-water-pollution-in-egypt.html

https://www.ukessays.com/essays/environmental-studies/water-pollution-in-egypt.php

https://usarice.com/blogs/usa-rice-daily/2015/08/28/egypt-bans-rice-exports-as-of-september-1

http://www.knowledgebank.irri.org/ericeproduction/III.1_Water_usage_in_rice.htm

http://www.al-monitor.com/pulse/en/originals/2016/04/egypt-ethiopia-drought-renaissance-dam-conflict.html

http://phys.org/news/2010-11-rice-production-withers-egypt.html

http://www.al-monitor.com/pulse/originals/2016/06/egypt-crops-water-crisis-state-emergency.html

http://www.salini-impregilo.com/en/projects/in-progress/dams-hydroelectric-plants-hydraulic-works/grand-ethiopian-renaissance-dam-project.html

http://www.juancole.com/2016/06/conflict-ethiopias-renaissance.html

Sustainable Agriculture: Perspectives for Jordan Valley

agriculture-palestineSustainable agriculture development is one of the most important pillars of the EcoPeace Middle East's Jordan Valley Master Plan as it provides livelihood and prosperity for all the people in the valley. The strategic agricultural objective for the study area is improving water use and irrigation efficiencies and economic outputs per unit of water used, and meanwhile stabilize, or even reduce the total water demands for the agricultural sector in the Jordan Valley. This will require adequate tariff policies on water used for irrigation, including enforcement, to stimulate more efficient use of water through for instance greenhouse drip irrigation. These are challenges specifically relevant for Jordan and Palestine.

Greenhouses are a very effective manner to improve water efficiencies and economic outputs in the agricultural sector, using greenhouses reduce the production related risks, provide for better quality crops and provide wider options for crop diversification. Finally, evapotranspiration from greenhouses is substantially less than from open field agriculture (and it does not cause soil salinity). However, greenhouses decrease open spaces, with negative visual impacts to rural landscapes and to wildlife corridors. Hence greenhouse development needs to be carefully planned and many farmers would require adequate and reliable micro-credits in order to invest in greenhouses.

Drip irrigation is another effective manner to improve water efficiencies in the open fields. The challenge is to set up sustainable drip irrigation systems in the Jordan Valley, including appropriate operations and maintenance and monitoring systems. This requires also financial facilities for farmers to invest, standardization of designs and manufacturing and provision of technical support services.

A related challenge is to maximize the reuse of treated wastewater, efficient use of pesticides and fertilizers, introduction or expansion of growing high yield crops, and improving extension services and post harvesting support to the farmers to enable them to create higher economic returns.

Pollution and mismanagement has severely damaged the Jordan River

Pollution and mismanagement has severely damaged the Jordan River

Another major challenge is to address the negative environmental impacts associated with the fish farms. These farms consume substantial amounts of water, due to high evaporation rates, which may be as much as 1-2 meter of water per year. In addition the ponds are flushed once or twice per year, releasing water into the Jordan River, which is polluted with excrements from the fishes, and anti-biotic medications that have to be added to the fish ponds. Due to the evaporation, the effluent is usually brackish as well. Consequently, discharging this wastewater into the environment has substantial impacts to surface water and groundwater quality.

Mitigating these impacts require investments in wastewater treatment facilities, and converting the process to a closed system. Without resolving these issues the future of this industry in the valley must be in doubt, despite any ecological benefits that the fish farms present for bird migration and associated tourism related to bird watching. The master plan sees the need to ensure that those communities relying currently on the fish ponds as their main source of income enjoy stability and that they be supported in the effort to move to closed systems.

A related challenge will be to strengthen the Extension Services for the farmers in the Jordan Valley. These services might be provided through the existing water user associations. In terms of rural economics, an important challenge is to improve the post-harvesting and marketing potentials of the farmers in the Jordan Valley, including setting up product organizations, better information about markets (nationally and internationally) and related product requirements and creating better access to export markets, with particular focus on eco-friendly and sustainable production techniques, regional labeling and fair-trade related markets.

Note: This is the third article in our special series on 'Regional Integrated NGO Master Plan for the Jordan Valley.

رحلة عائلية خضراء بمنتجات بلاستيكية أقل

الرحلات العائلية هي أجمل اللحظات التي تجمع افراد العائلة في مكان واحد كالمواقع السياحية التي تبرز جمال الطبيعة مثل شاطئ البحر، العيون المائية ، الأودية، الكثبان الرملية الخ. لكن طالما الاستمتاع بروعة هذه المناظر لا يكتمل، فأصبحت القمامة تغزوا أرجاء الموقع و تشوه المنظر الطبيعي. حيث أن نسبة المنتجات البلاستيكية تشكل الجزء الأكبر من القمامة الملقاةتتراكم المنتجات البلاستيكية بألوانها وأشكالها المختلفة في الطبيعة لمدة زمنية كبيرة بدون تحلل و يرجع ذألك للخواص الكيميائية المكونة للبلاستيك، والتي ينتهي بها المطاف إلى مجاري المياه مثل الانهار والمحيطات، انتشارها في المناطق المحيطة او تراكمها في مرادم النفايات حيث يتم حرقها او دفنها.

في ظل التطورات و الازدهار زاد الطلب على المنتجات البلاستيكية التي توفر الخيار الأسهل في الحمل والاستخدام وبأقل تكلفة مالية، لذلك يستسهل الكثير من الناس شراء المنتجات البلاستيكية لتكفيه أغراض الرحلة مثل الاكواب، علب الماء والعصير، الاطباق، حاويات الطعام، الأكياس، الملاعق وغيرها الكثير. كل هذه المنتجات البلاستيكية تعتبر مواد دخيلة على الطبيعة و تشكل خطر تهديد للعوامل البيئية الحية والغير حية.وجود البلاستيك في مياه السطحية يتسبب في موت الاسماك الصغيرة و الحيتان، عن طريق ابتلاع أجزاء البلاستيك، كذلك العوالق البحرية التي تعرف  Zooplanktons، مما يتسبب في تدهور النظام البحري وتقلص التنوع الأحيائي البحري.  بينما لا يختلف الوضع في اليابسة حيث أن قطع البلاستيك يتم ابتلاعها كذلك من قبل الحيوانات و الطيور و والزواحف ليتسبب ذلك في نفوقها و تدهور النظام.

كل ذاك حاصل، ولكن ماذا عن نشر التوعية البيئية بين أفراد المجتمع للوصول إلى استخدام أقل للمنتجات البلاستيكية في الرحلات والمناسبات العائلية .هناك عدة طرق لتحقيق هذه المسألة؛ اولاً، ابتعد تماماً عن شراء منتجات بلاستيكية ذو الاستخدام لمرة واحدة فقط. ثانياً، استخدم المنتجات القابلة لإعادة التدوير. ثالثاً، علب الماء البلاستيكية استبدلها بقوارير الماء الشخصية ذات الاستخدام اليومي و التي لا يمكن رميها كعلبة البلاستيك. رابعاً، استخدم اكياس القماش لجمع وحمل الأغراض بدلاً من الاكياس البلاستيكية. خامسا,  في موقع الرحلة قدم النصيحة لجميع افراد أسرتك لجعل المكان نظيف و آمن في أثناء وقت الرحلة وبعده. كذلك لا تنسى وضع كيس بلاستيكي قابل لإعادة التدوير كحاوية نفايات مبسطة وبعد ذلك يمكنك رميها في اقرب حاوية نفايات. وأخيراً استمتع بالوقت مع عائلتك وانتم بأمان.

 كل فرد مسؤول عن تدهور النظام البيئي الذي يشكل خطر في وجود البشرية و وجود الكائنات الحية كذلك. أحد أشهر مقولات الزعيم الهندي الأحمر سياتل: "عند اقتلاع آخر شجرة و تسمم آخر نهر و نفوق آخر سمكة، سنكتشف أننا لا نستطيع أن نأكل المال".

Republished by Blog Post Promoter

Sustainable Water Management and River Rehabilitation in Jordan Valley

jordan-riverIn the context of EcoPeace Middle East's recently released Regional Integrated NGO Master Plan, the key challenge in sustainable water management is to overcome the water scarcity related problems  in the Jordan Valley. This means creating a sustainable water supply system that meets the current and future domestic and agricultural water demands; and at the same time preserves the water resources for future generations and for the environment. This requires an Integrated Water Resources Management regime for the whole (Lower) Jordan River, based on international co-operation among Israel, Jordan and Palestine, supported with adequate water management tools (like WEAP) to ensure sustainable water supply and an increase of the baseflow and rehabilitation of the ecological values of the Jordan River.

One of the related key challenges is to achieve full treatment of wastewater generated in the study area and full reuse for agricultural purposes. This will both reduce public health related risks and strengthen the agricultural sector. This requires development of a detailed technical and financial plan, including designs and tender documents, for full scale collection, treatment and reuse of the locally generated wastewater flows, including domestic, industrial (mainly oliveoil wastewater in Jordan) and manure management.

Another key challenge is to restore the function of the lower part of the Jordan River as a natural river and water conveyor in the valley for supply purposes, by keeping its flow as long as possible in the river. Rehabilitating the river will include actions in terms of realizing at least one minor flood (c.a. 20-50 m3/sec) per year. In order to bring back the original habitats of the river, also the flow bed of the river are to be widened to about 50-70 m in the north and at least 30 m in the south, with flood plains on both sides.

The salinity of the Jordan River has a natural tendency to increase downstream. This is caused by natural drainage of brackish groundwater into the river, particularly in the southern part of the valley near the Dead Sea. The key challenge is to prevent any inflow of salt or brackish surface water into the river above the point where the river would still be fresh, i.e. above the confluent with Wadi Qelt. This implies bypassing the salt water from the Israeli Saline Water Carrier (SWC), the brackish water from the Israeli Fish Ponds, and the brine from the Abu Zeighan desalination plant to a new outflow located south of the river’s confluent with Wadi Qelt, close to the Dead Sea. If this will be done, the river will be able to provide water of good quality for different user functions. In terms of chloride concentrations this means a maximum of 400 mg/l for drinking water purposes; 600 mg/l for fresh water irrigation; and 1500 mg/l for irrigation of date palms.

An olive oil mill in Jordan

An olive oil mill in Jordan

Another key challenge is to maintain total agricultural water demands at the same level as today, with the exception of Palestine which is currently heavily underdeveloped in terms of agriculture. To achieve a sustainable water balance within the valley and sufficient flows in the river it will furthermore be required that around 2020 Israel will largely cease pumping water to the extent possible out of the valley from the Sea of Galilee through the National Water Carrier (NWC), meanwhile maintaining its present agricultural water consumption within the valley; that the Sea of Galilee will be kept on a medium water level between the top and bottom red lines ("green line" as defined by the Israeli Water Authority); and that by 2050 Jordan will stop diverting water from the Yarmouk and other tributaries to the Kind Abdullah Canal (KAC) to the extent possible, and instead will use the Jordan River as main conveyor for its irrigation supply purposes. In addition, by 2050 Palestine would also use the Jordan River as its main water conveyor, meaning that the planned development of the West Ghor Canal will not be built.

These challenges require a series of related interventions, including adequate water data monitoring and modeling; promotion of water saving and water demand management measures in all sectors; provision of related training and institutional strengthening support services; improved regulations and enforcement on groundwater abstractions to stop groundwater depletion and salination; and implementation of efficient water pricing policies and related enforcement.

In terms of water governance, the challenge will be to strengthen the authorities, including JVA, PWA, in their role as regulator of the water sector in the Jordan Valley. This includes skills with regard to water data collection and management; water resources planning; efficient operations of the water storage and supply system; and strengthening the co-operation with the local water user associations. It also includes monitoring, regulations and enforcement of surface water and groundwater abstractions; protection of sensitive shallow aquifers, efficient tariff policies, and monitoring reduction of agricultural pollution loads.

Note: This is the second article in our special series on 'Regional Integrated NGO Master Plan for the Jordan Valley'.