CSP-Powered Desalination Prospects in MENA

Conventional large-scale desalination is cost-prohibitive and energy-intensive, and not viable for poor countries in the MENA region due to increasing costs of fossil fuels. In addition, the environmental impacts of desalination are considered critical on account of GHG emissions from energy consumption and discharge of brine into the sea. The negative effects of desalination can be minimized, to some extent, by using renewable energy to power the plants.

What is Concentrated Solar Power

The core element of Concentrated Solar Power Plant is a field of large mirrors reflecting captured rays of sun to a small receiver element, thus concentrating the solar radiation intensity by several 100 times and generating very high temperature (more than 1000 °C). This resultant heat can be either used directly in a thermal power cycle based on steam turbines, gas turbines or Stirling engines, or stored in molten salt, concrete or phase-change material to be delivered later to the power cycle for night-time operation. CSP plants also have the capability alternative hybrid operation with fossil fuels, allowing them to provide firm power capacity on demand. The capacity of CSP plants can range from 5 MW to several hundred MW.

Three types of solar collectors are utilized for large-scale CSP power generation – Parabolic Trough, Fresnel and Central Receiver Systems. Parabolic trough systems use parabolic mirrors to concentrate solar radiation on linear receivers which moves with the parabolic mirror to track the sun from east to west. In a Fresnel system, the parabolic shape of the trough is split into several smaller, relatively flat mirror segments which are connected at different angles to a rod-bar that moves them simultaneously to track the sun. Central Receiver Systems consists of two-axis tracking mirrors, or heliostats, which reflect direct solar radiation onto a receiver located at the top of a tower.

Theoretically, all CSP systems can be used to generate electricity and heat.  All are suited to be combined with membrane and thermal desalination systems. However, the only commercially available CSP plants today are linear concentrating parabolic trough systems because of lower cost, simple construction, and high efficiency

CSP-Powered Desalination Prospects in MENA

A recent study by International Energy Agency found that the six biggest users of desalination in MENA––Algeria, Kuwait, Libya, Qatar, Saudi Arabia, and United Arab Emirates––use approximately 10 percent of the primary energy for desalination. Infact, desalination accounted for more than 4 percent of the total electricity generated in the MENA region in 2010. With growing desalination demand, the major impact will be on those countries that currently use only a small proportion of their energy for desalination, such as Jordan and Algeria.

The MENA region has tremendous wind and solar energy potential which can be effectively utilized in desalination processes. Concentrating solar power (CSP) offers an attractive option to power industrial-scale desalination plants that require both high temperature fluids and electricity.  CSP can provide stable energy supply for continuous operation of desalination plants based on thermal or membrane processes. Infact, several countries in the region, such as Jordan, Egypt, Tunisia and Morocco are already developing large CSP solar power projects.

Concentrating solar power offers an attractive option to run industrial-scale desalination plants that require both high temperature fluids and electricity.  Such plants can provide stable energy supply for continuous operation of desalination plants based on thermal or membrane processes. The MENA region has tremendous solar energy potential that can facilitate generation of energy required to offset the alarming freshwater deficit. The virtually unlimited solar irradiance in the region will ensure large-scale deployment of eco-friendly desalination systems, thereby saving energy and reducing greenhouse gas emissions.  

Several countries in the MENA region – Algeria, Egypt, Jordan, Morocco and Tunisia – have joined together to expedite the deployment of concentrated solar power (CSP) and exploit the region's vast solar energy resources. One of those projects is a series of massive solar farms spanning the Middle East and North Africa. Two projects under this Desertec umbrella are Morocco’s Ouarzazate Concentrated Solar Power plant, which was approved in late 2011, and Tunisia’s TuNur Concentrated Solar Power Plant, which was approved in January 2012. The Moroccan plant will have a 500-MW capacity, while the Tunisia plant will have a 2 GW capacity. Jordan is also making rapid strides with several mega CSP projects under development in Maa’n Development Area. 

Conclusions

Seawater desalination powered by concentrated solar power offers an attractive opportunity for MENA countries to ensure affordable, sustainable and secure freshwater supply. The growing water deficit in the MENA region is fuelling regional conflicts, political instability and environmental degradation. It is expected that the energy demand for seawater desalination for urban centres and mega-cities will be met by ensuring mass deployment of CSP-powered systems across the region. Considering the severe consequence of looming water crisis in the MENA region it is responsibility of all regional governments to devise a forward-looking regional water policy to facilitate rapid deployment and expansion of CSP and other clean energy resources for seawater desalination.

Republished by Blog Post Promoter

Vanishing Aquifers in MENA

aquifer-menaAquifers are of tremendous importance for the MENA as world's most water-stressed countries are located in the region, including Kuwait, Qatar, UAE, Palestine, Saudi Arabia, Oman, Iran, Lebanon and Yemen. However, aquifers in MENA are coming under increasing strain and are in real danger of extinction. Eight aquifers systems, including those in MENA, are categorized as ‘over stressed’ aquifers with hardly any natural recharge to offset the water consumed.

Aquifers in MENA

Aquifers stretched beneath Saudi Arabia and Yemen ranks first among ‘overstressed’ aquifers followed by Indus Basin of northwestern India-Pakistan and then by Murzuk-Djado Basin in North Africa. The Nubian Sandstone Aquifer in the Eastern end of Sahara deserts (parts of Sudan, Chad, Libya and most of Egypt) is the world’s largest known ‘fossil’ aquifer system and Bas Sahara basin (most of Algeria-Tunisian Sahara, Morocco and Libya) encloses whole of the Grand Erg Oriental. The non-renewable aquifers in the Middle East are the Arabian Aquifer and The Mountain Aquifer between Israel and Palestine. Some parts in MENA like Egypt and Iraq rely on major rivers (Nile, Tigris and Euphrates) but these surface water flows does not reach the ocean now. Needless to say, water demand in arid and dry MENA countries is met primarily by aquifers and seawater desalination.

MENA region is the most water-scarce region of the world. The region is home to 6.3 percent of world’s population but has access to measly 1.4 percent of the world’s renewable fresh water. The average water availability per person in other geographical regions is about 7,000 m3/year, whereas water availability is merely 1,200 m3/person/year in the MENA region. The region has the highest per capita rates of freshwater extraction in the world (804 m3/year) and currently exploits over 75 percent of its renewable water resources.

Primarily global exploitation of groundwater is for agricultural irrigation. In Saudi Arabia, during 1970’s, landowners were given free subsidies to pump the aquifers for improvisation of agricultural sectors. Soon the country turned out to be world’s premium wheat exporters. But as years passed, water consumption was high in such a rate that the aquifers approached total depletion. Government announced peoples demand to be met by desalination, which is an expensive approach to meet agricultural sector requirement. By end of 1990’s agricultural land declined to less than half of the country’s farm land. Saudi Arabia is no more a wheat exporter rather relies almost entirely on imported crop from other countries. Unfortunately, country has exploited nonrenewable and ancient ‘fossil’ aquifers which could not be recharged by any form of precipitation.

Key Issues

Stress on a country’s agricultural and water resources majorly cause problems in human health as well as instability and conflicts over shared resources. Climate change has also exacerbated water availability in the Middle East. Infact, water stresses has triggered brutal civil war in Syria and worsened the Palestine-Israel conflicts over sharing aquifers. The key issues, according to World Bank, in water utilization in MENA are as follows:

  • Unsustainable and inefficient use: Middle East countries have the highest per capita consumption of domestic water in the world with 40-50% leakage in the urban systems. And 50% water withdrawn for agriculture does not reach as intended.
  • Ineffective policies: the countries diverts 85% of water to grow crops which would be better importing.
  • Deteriorating water quality: contaminated water systems due to insufficient sanitation infrastructure has caused negative impacts on environment and health issues. Like, in Iran where issues associated with inadequate waste water collection and treatment cost estimated 2.2% of GDP.
  • Excessive reliance on the public investment on water accounts for 1-5 percent of GDP.

In MENA an unexpected climate change is likely to bring 20% rainfall reduction and high rate of evaporation which intensifies water stress. And proportionate climate initiated human behavior, more it gets dry, less water in the river, more tendencies to substitute by groundwater. Also depletion of water below the ground will rise to other disasters like sea water intrusion, land subsidence, especially in Arabian Peninsula, in turn destroys the constructions, infrastructures and developments of the country made-up till date.

Tips to Save Aquifers

We do not know how much water is remaining beneath, but we must understand it is vanishing at a very high rate. MENA must treasure aquifers and natural water resource as same as oil reserves are valued. Individual can play a significant role in saving aquifers in MENA by adopting these simple water conservation guidelines

  • Do not drain cooking oil or grease into sink; use adequate amount, reuse like as a shovel cleaner, polish or donate to machinery shops.
  • Effective use of tap; do not run water while brushing. During winters, store the initial cold water that runs out of the tap prior to the hot water from heater. And also know the convenient tap adjustments.
  • Maintain healthy, hygienic and sanitation practices.
  • Replace conventional water pumps and home appliances with advanced water conservative ones.
  • Avoid unnecessary products, food materials and reduce wastage; water consumed in a diet account’s 92% of water footprint of an individual.
  • Avoid sprinklers for irrigation and in garden use to avoid water loss by evaporation and substitute with efficient water distribution system.

By nature, water is definite in this ‘blue planet’. But when there is no right quantity of water at right quality and time it is called ‘Crisis’.

 

Republished by Blog Post Promoter

Leakage Control: Effective Tool for Water Conservation

water-leakageWater is a basic need of our life and is amply provided by the Governmental agencies. However, we as consumers do not prioritize on water wastage and leakages issue due to the subsidized water cost. The leakages from taps, valves and appurtenant are often noticed but the invisible leakages under the sink often goes un-noticed and drips occurring are not taken seriously and addressed till the leakage get larger and leak get worse.

The Menace of Water Leaks

Water leaks from pipes, plumbing fixtures, faucets, valves and fittings are a common sight in buildings and structures and is a significant source of water wastage.  Only a small drip from a worn faucet washer can waste around 75 liters of water per day. Thus, we need to check all the water pipes and fittings regularly to assess their operational status and any leak occurring should be urgently repaired or replaced.

Leaks from pipes, plumbing fixtures and fittings are a significant source of water wastage for many households.  Research has shown that the typical home can lose 7.6 m3 to 76 m3 of water per year due to leaks. Some leaks are obvious, such as dripping faucets and leaking water heaters. Unfortunately, many leaks go undetected for years because the source of the leak is not visible. Faucet leaks are a common occurrence and usually simple to repair.  A faucet dripping slowly at only one drop every two seconds will waste more than 1,000 gallons or 3.7 m3 per year.   

Toilets are another common source of leaks in the home, and usually go unnoticed because the leaks are often silent and out of view.  Several research studies have found 20% to 35% of all residential toilets leak to some degree. Large toilet leaks can be detected when the valve constantly emits a hissing or gurgling sound when the toilet is not in use.

Detection of Water Leakages

We frequently see dripping and leaking water gadgets, pipes and toilets but do not take any action for its correction, mainly because of our attitude and lack of awareness. It is now important to inspect our water gadgets, pipes and fittings in our home, dwelling and place of work or study and take corrective actions. For checking the water leakages, first note water meter reading. Re-check again after two hours with all water gadgets are shut. If the meter does not read exactly the same, you probably have a leak in the system whereby water is being wasted for which you have to pay the cost which will be increasing with time. 

If your toilet is leaking, the cause is often an old, faulty rubber packing/ washer which decay with number of uses or minerals build up on it. Replacing the damaged rubber packing is inexpensive and can be done easily. Another way to find out if you have a toilet leak is to place a drop of color dye in the toilet tank. If the color shows up in the bowl within 15 minutes without flushing, you have a leak. Make sure to flush water immediately after this experiment to avoid staining the tank and toilet.

Conclusion

Potable water is supplied to our homes, offices and institutions after abstraction, treatment and through long distribution and pumping network and entails huge cost which is heavily subsidized by the Government. It is high time that we consider water conservation as a priority step and avoid any water wastage and leakages at home, offices and institutions.  

The time is now to deal with our water leaks promptly and giving it a priority. Remember- fixing leaks will save money, is good for the environment and will save our limited water resources.  

Republished by Blog Post Promoter

مستقبل تحلية المياة لمنطقة الشرق الأوسط وشمال أفريقيا

تحلية المياه هي عملية معالجة للمياه يتم فيها فصل الأملاح من المياه المالحة لانتاج مياه صالحة للشرب. عملية التحلية تستهلك كمية كبيرة من الطاقة لانتاج الماء العذب من مصادر المياة المالحة. يتم ضخ الماء المالح في عملية التحلية وتكون المخرجات عبارة عن خط ماء عذب بالاضافة لخط أخر من المياة عالية الملوحه جداً.

يوجد أكثر من 15000 وحدة تنقية مياه على المستوى الصناعي في العالم، بطاقة اجمالية تزيد على 8.5 مليار جالون يومياً. يتفوق أسلوب الترشيح بالأغشية في هذا المجال حيث تبلغ نسبته حوالي 44% من اجمالي الطاقة الاجمالية، يليه التحلية بالتسخين MSF بنسبة حوالي 40 %. وبالنسبة للمصادر، تمثل مياة البحار حوالي 58 % والمياه الجوفية المالحة نسبة 23 % والباقي من مصادر أخرى كالانهار والبحيرات المالحة.

مشاكل المياة في منطقة الشرق الأوسط وشمال افريقيا

الحصول على الماء العذب يعد من أكبر مجالات الاهتمامات الصحية اليوم. فمنطقة الشرق الأوسط وشمال افريقيا من أكثر مناطق العالم جفافا. وتؤدي معدلات زيادة السكان العالية بالاضافة للتمدن والزيادة الصناعية مع ندرة المصادر الطبيعيه للماء العذب الي عجز حقيقي في الماء العذب في هذه المنطقة. مصادر المياه العذبه في منطقة الشرق الأوسط وشمال افريقيا يساء استغلالها دائماً مما يؤدي حتما الي زيادة الطلب على المياه المحلاه للحفاظ على مستوى مقبول من امدادات المياه.

ان محطات التحلية التقليديه كبيرة الحجم عالية التكلفة وشديدة الاستهلاك للطاقة، وليست مناسبة للبلدان الفقيرة في منطقة الشرق الأوسط وشمال افريقيا للزيادة في تكاليف الوقود الأحفوري. بالاضافة لذلك، التأثير البيئي لهذه المحطات يعد خطراً على مستوى الانبعاثات الناتجة من استهلاك الطاقة وصرف المحلول الملحي في البحر. المحلول الملحي الناتج له كثافة ملح عالية جدا ويحتوي ايضاً على بقايا لكيماويات ومعادن ناتجه من عملية التحلية مما يهدد الحياة البحرية.

التأثير السلبي لعمليات التحلية يمكن تقليله الي حد ما عن طريق استخدام الطاقة المتجددة لتغذية المحطات بالطاقة. فالمحطات المداره بالطاقة المتجددة تقدم طريقة مستدامة لزيادة توريد المياه العذبة لدول المنطقة، فدول المنطقة لديها امكانيات كبيرة في طاقة الرياح والطاقة الشمسية، والتي يمكن استخدامها بكفاءة في عمليات التحلية مثل التناضح العكسي، والفصل الكهربي وعمليات الفلتره. ان المحطات المداره بالطاقة المتجددة ستزداد جاذبيتها مع تقدم التكنلوجيات وزيادة اسعار الماء العذب والوقود الأحفوري.

محطات التحلية المدارة بالطاقة الشمسية

يمكن استخدام الطاقة الشمسية مباشرة او بشكل غير مباشر في عملية التحلية. أنظمة التجميع التي تستخدم الطاقة الشمسية للتجميع مباشرة في المجمعات الشمسيه تسمى نظم مباشرة، بينما العمليات التي تستخدم مزيج من الطاقة الشمسية مع الطاقة التقليدية  للتحلية تسمى نظم غير مباشرة. العقبة الرئيسية في استخدام الطاقة الحرارية الشمسية على نطاق محطات التحلية الكبيرة هي قلة معدل الانتاجية، وقلة الكفاءة الحرارية واحتياجها لمساحات واسعة. محطات التحلية المعتمدة على الطاقة الحرارية الشمسية تناسب الاحتياجات الصغيره خصوصا في المناطق البعيده والقاحلة والجزر التي تعاني فقرا في مصادر الطاقة التقليدية.

تقدم الطاقة الشمسية المركزة (CSP) خياراً جذاباً لتزويد مجال التحلية على المستوى الصناعي بالطاقة اللازمة والتي تحتاج الي سوائل عالية الحرارة وطاقة كهربائية. وتوفر الطاقة الشمسية المركزة طاقة مستقرة للاستخدام المستمر لعمليات محطات التحلية المعتمدة على التسخين او الأغشية في عمليتها. في الواقع، بدأت دول كثيرة في المنطقة كالأردن ومصر والمملكة العربية في تطوير مشاريع تحلية ضخمه معتمدة على الطاقة الشمسية المركزة تبشر بعهد جديد في منطقة الشرق الأوسط.

ان منطقة الشرق الأوسط وشمال افريقيا لديها امكانيات ضخمة في مجال الطاقة الشمسية والتي تسهل عملية توليد الطاقة اللازمة لتعويض العجز الظاهر في الماء الصالح للشرب. قد تتعرض المنطقة لأزمة مياه شديدة مع عدد السكان الذي من المتوقع ان يتضاعف بحلول عام 2050. يمكن لمحطات التحلية التي تعمل بالطاقة الشمسية مع الاستعمال السليم لمخزون المياه واعادة استعمال مياه الصرف ان تساعد في التقليل من الأزمة المائية في المنطقة. وسوف تقلل ايضاً من الاعباء المادية على حكومات المنطقة من قطاع المياه والكهرباء، ومن ثم توجيه هذه المخصصات المالية في قطاعات أهم كالتعليم والصحة والقطاع الصناعي.

ترجمة: طه واكد – مهندس مدني مهتم بشؤون البيئة – مصر

شريك مؤسس في مشروع دقيقة خضراء  –  معد وكاتب حلقات دقيقة خضراء عاليوتيوب

للتواصل عبر taha.waked@gmail.com   أو admin@green-min.com

Republished by Blog Post Promoter

Water Resource Management in GCC – Issues and Challenges

GCC countries are suffering from a huge deficit in their water resources reaching more than 20 billion cubic meter, being met mainly by an intensive over-drafting of renewable and non-renewable groundwater resources for the agricultural sector, and by the extensive installation of highly expensive desalination plants for the municipal sector, and by reusing a small percentage of treated wastewater in the agricultural and municipal sector. Furthermore, conflict between the agricultural and domestic sectors on the limited water resources in the region are rising, and as a result, groundwater over-exploitation and mining is expected to continue in order to meet growing demand in these two sectors.

If current population growth rates, water management approach, water use practices and patterns continue, annual water demand may reach more than 50 billion cubic meter (Bcm) by the year 2030.  With the anticipated future limited desalination capacity and wastewater reuse, this demand will have to be met mainly by further mining of groundwater reserves, with its negative impacts of fast depletion and loss of aquifer reserves and the deterioration of water quality and salinization of agricultural lands, of which these resources usefulness is questionable with the expected deterioration of their quality. Under these circumstances, water will become an increasingly scarce commodity, and would become a limiting factor for further social, agricultural and industrial development, unless major review and shifts in the current policies of population and adopted food self-sufficiency are made, and an appropriate and drastic measures in water conservation are implemented.

A diagnosis of the water sector in Gulf Cooperation Council countries indicated that the main problems and critical issues in these countries are:

  1. Limitation of water resources and increasing water scarcity with time due to prevailing aridity, fast population growth, and agricultural policies;
  2. Inefficient water use in the agriculture (traditional irrigation practices), and municipal/domestic sectors (high per capita water use, high rates of unaccounted-for-water);
  3. Rising internal water allocation conflicts between the agricultural and municipal sector;
  4. Rapid depletion and groundwater quality deterioration due to their over-exploitation, with multiple impacts on agricultural productivity and ecosystems;
  5. Inferior quality of water services in large cities due to fast pace of urbanization; and
  6. Weak water institutions due to fragmentation of water authorities and lack of coordination and inadequate capacity development.

Currently, there are two main challenges of water resources management in the GCC countries. These are the unsustainable use of groundwater resources with its ramification on these countries socio-economic development, and the escalating urban water demands and its heavy burden on their national budget and negative impacts on the environment.

As the quality of groundwater deteriorates, either by over-exploitation or direct pollution, its uses diminishes, thereby reducing groundwater supplies, increasing water shortages, and intensifying the problem of water scarcity in these countries. It is expected that the loss of groundwater resources will have dire consequences on the countries’ socio-economic development, increases health risks, and damages their environment and fragile ecosystem regimes.  Moreover, the development of many GCC countries is relying heavily on non-renewable fossil groundwater, and the issue of “sustainability” of non-renewable resources is problematic, and requires clear definition.

Sustainability of these resources need to be interpreted in a socio-economic rather than a physical context, implying that full considerations must be given not only to the immediate benefits and gains, but also to the “negative impacts” of development and to the question of “what comes after?” An “exit strategies” need to be identified, developed, and implemented by the time that the aquifer is seriously depleted. An exit strategy scenario must include balanced socio-economic choices on the use of aquifer storage reserves and on the transition to a subsequent less water-dependent economy, and the replacement water resource.

Despite their relatively enormous cost and heavy burden on the national budged, limited operational life (15-25 years), their dependence on depleting fossil fuel, and their negative environmental impacts on the surrounding air and marine environment, the GCC countries are going ahead with desalination plant construction and expansion in order to meet the spiralling domestic water demands – a function of population and urbanization growth.  The rapid increase in urban water demands in the GCC can be explained by two factors, rapid population growth and the rise in per capita consumption; per capita average daily consumption in the domestic sector ranges between 300-750 liters, which ranks the highest in the world. This is due mainly to the reliance on the supply side of management with little attention given to the demand management and the non-existence of price-signaling mechanism to consumers.

The other strategic issue is that, despite the current and anticipated future dependence of the GCC countries on desalination to meet its domestic/drinking water supply, desalination remains an imported technology for the GCC countries with limited directed R&D towards these technologies. Furthermore, desalination industry have limited added value to the GCC countries economies (e.g., localizing O&M, plant refurbishment, fabrication, manufacturing of Key Spare Parts, qualifying local labor to work in desalination industry, etc..).

Republished by Blog Post Promoter

فوائد لا تحصى للأراضي الرطبة

لطالما أغفلنا روعة وأهمية الأراضي الرطبة بسبب جهلنا للميزات العديدة لهذا النظام البيئي. و لطالما استخدم مصطلح الأراضي الرطبة   للتعبير عن المستنقعات العكرة  المليئة بالبعوض أو الأراضي غير المستغلة التي تحتاج إلى بعض التحسينات لتكون أكثر إفادة للإنسان. و قد أدى هذا التقليل من شأن وأهمية الأراضي الرطبة إلى فقدان الكثير منها، الأمر الذي استلزم التوقيع على معاهدة الأراضي الرطبة في رامسار، في إيران عام 1971. ولا تزال تلك المعاهدة تعد بمثابة الحركة الدولية للمحافظة على الأراضي الرطبة، حيث تضم أكثر من 160 دولة موقعة.

لقد وضح الراحل نيلسون مانديلا روعة التنوع البيولوجي الموجود في الأراضي الرطبة عندما ذكر منطقة القديس لوسيا في خطاب له قائلاً: "نستطيع القول أن الأراضي الرطبة هي المكان الوحيد على الكرة الأرضية الذي يتعايش فيه أقدم الثدييات البرية في العالم (وحيد القرن) وأكبر الثدييات البرية (الفيل) مع أقدم الأسماك في العالم ( سمك سيلكانث) وأكبر الثدييات البحرية في العالم الحوت)".

و يمكن أن تكون الأراضي الرطبة طبيعية أو اصطناعية، كما يمكن أن تكون مشبعة بمياه عذبة أو مالحة أوآسنة (و هي المياه التي تكون نسبة ملوحتها عالية ولكن ليس بقدر ملوحة مياه البحر)، هذا وتدعم هذه الأراضي الغطاء النباتي الذي يتم تكييفه خصيصا للنمو في التربة المشبعة. و بصرف النظر عن خصائصها الفريدة، فإن الأسرار الحقيقية لهذه الأراضي تكمن في منافعها المتعددة للإنسان وللبيئة.

و تعد واحدة من أهم خصائص هذا النظام البيئي المدهشة هو أنه يعد بمثابة اسفنجة أو نظام طبيعي للسيطرة على الفيضانات. حيث أن طبيعية الأراضي الرطبة تمكنها من استيعاب مياه الأمطار وبالتالي تقليل كمية الماء التي تصل إلى الأنهار والجداول مما يقلل بشكل طبيعي من خطر الفيضانات. ويساعد اتساع السهول الفيضية  أيضا على التحكم في حركة و تخزين مياه الأمطار. و بالإضافة إلى ذلك، فإن الميزة المدهشة الأخرى للأراضي الرطبة هي قدرتها على تنقية المياه من خلال احتجازها للملوثات داخل التربة والغطاء النباتي. وعليه فإن الأراضي الرطبة تعتبر فعالة جدا في تنقية المياه ولذا يتم استخدامها لتنقية المياه العادمة الناتجة عن الصناعة والتعدين و مياه الصرف الصحي.

و علاوة على ذلك، تساهم الأراضي الرطبة في تجديد إمدادات المياه الجوفية والتي تعتبر مصدرا هاما لتزويد المياه. كما تدعم حياة مجموعة كبيرة ومتنوعة من الأنواع الحيوانية والنباتية. و على الرغم من المزايا الإيجابية  المتعددة لهذه لأراضي إلا أنه وللأسف، هناك العديد من العوامل التي تهدد هذا النوع من المناظر الطبيعية. فعلى سبيل المثال،  تعاني الأراضي الرطبة في جنوب أفريقيا من عدة مشاكل تهدد ديمومتها منها: الرعي الجائر، والتلوث بالمبيدات الحشرية، والنمو التجاري والنباتات الدخيلة وسوء إدارة مياه الأمطار في المناطق الحضرية..

و في المناطق الجافة في الشرق الأوسط، و نظرا لزيادة الطلب على المياه العذب فإن الأراضي الرطبة الداخلية، مثل الأنهار والبحيرات، بدأت في طريقها إلى الاضمحلال، و تعتبر واحة الأزرق (وهي موقع رامسار الوحيد في الأردن) ونهر الموجب من الأمثلة الجيدة على  الوضع الحرج للمياه في الشرق الأوسط. وتواجه الأراضي الرطبة في العراق أيضا خطر الاندثار كنتيجة لعقود ممتدة من الصراعات وسوء الإدارة بالإضافة إلى قربها من الحقول النفطية. ويعد فقدان الأراضي الرطبة مؤشراً واضحاً على مشاكل تتعدى كونها مشاكل انخفاض وفرة المياه؛ فهي مشكلة تهدد البيئة والناس الذين كانوا يعتمدون على هذه المناطق.

وبوصفنا حماة لهذه لأرض، فإن من مسؤوليتنا أن نخصص بعض الوقت ليس فقط للزيارة ومعرفة المزيد عن هذه البيئات ولكن ينبغي أن نشارك في مشاريع للمساعدة في حفظ وحماية وإعادة تأهيل النظم البيئية للأراضي الرطبة المتبقية في جميع أنحاء العالم. وفقنا الله وبارك لنا بوفرة في جهودنا لتحافظ على واستعادة بيئتنا(آمين).

 

ترجمة 

سمرطه

أخصائية في مجال البيئة  قامت بدراسات أثر بيئية لعدة مشاريع مختلفة في الأردن، حاصلة على درجتي الماجيستير في التقييم والمراقبة البيئية والعلوم البيئة وإدارتھا وبكالوريوس في إدارة المياه والبيئة.

Republished by Blog Post Promoter

The Menace of Marine Litter

Marine litter, long a neglected topic, has started to garner some attention. Marine litter is composed of a diverse mix of items from various sources and so a one-size fits all solution is unlikely to be effective. Abandoned, lost and discarded fishing gear (ALDFG), plastic packaging (bottles, caps, bags, etc.) and plastic manufacturing pellets are amongst the most common and persistent items found. Comparing the feasibility and the financial case for recovery versus prevention for each of these groups reveals a worrying gap in our attempts to deal with the problem.

Scale of the Problem

Abandoned, lost and discarded fishing gear (ALDFG) is arguably the most damaging type of marine debris as it continues to fish the oceans, trapping and killing animals for years after it goes overboard. Nets are often located in high numbers around known fishing grounds making targeted recovery possible. Even in such hotspots, recovery is costly and tends to fall to the third sector. An effectively priced deposit scheme with port and shore facilities to support the collection and recycling of damaged gear should reduce the amount of fishing gear discarded and fund the recovery of the remaining items.

While it is thought that 80% of marine litter originates on land, it seems clear that there is an on-going flux between terrestrial and marine environments. Floods can increase the flow of litter down rivers to the sea, while storms stir up the ocean, leading to litter that has already entered the marine environment being deposited in greater than usual amounts on beaches.

In 2013 the European Commission published three studies looking into the composition and sources of marine litter in European seas. In a chapter integrating the results it noted that:

“Plastics are the most abundant debris found in the marine environment and comprise more than half of marine litter in European Regional Seas. More than half of the plastic fraction is composed of plastic packaging waste with plastic bottles and bags being predominant types of plastic packaging…

Therefore, measures within a strategy to close the largest loopholes in the plastic packaging cycle should target plastic bottles and plastic bags.”

Capping the Problem

Plastic packaging is one of the most common items of marine debris with grave impacts upon marine wildlife. Foraging birds are known to ingest large quantities of plastic, especially caps and lids, turtles eat plastic bags mistaking them for jellyfish, and many species are recorded as trapped and disfigured by beverage can yokes.

However the impacts are even further reaching. As plastics break down they are ingested by smaller and smaller organisms. Recent studies have found that plankton ingest tiny fragments of plastic which are then passed up the food chain through predation. In fact, there may already be plastic in the tissue of the fish that we consume.

Despite hype about profitable schemes that will clean the ocean gyres in five years, the breakdown of material makes recovery almost impossible. Plastic debris may outweigh plankton by a ratio of 6:1 in the areas of highest concentration but widespread skimming of the ocean surface will also harvest vast amounts of the phytoplankton, zooplankton and other organisms living there. The majority of marine life lives at the surface and so, considering the risk of disruption to the entire marine food chain, the plankton baby is one that you really don’t want to throw out with the plastic-polluted bathwater.

Whilst debris recovery efforts may be able to remove small quantities of plastic packaging, in particular the larger items, it cannot deal with the full spectrum and so is largely ineffective as a response to the litter problem. The real challenge is not to clear litter once it is in the ocean doing damage, but to prevent it from getting there in the first place. Container deposit schemes and plastic bag levies have been shown to be highly effectual means of reducing litter on land; and by extension, will help to prevent marine litter.

Ex-Pellets from the Oceans

Plastic manufacturing pellets, or nurdles as they are known in the industry, are often underreported debris items as they are so small that they often escape observation. They are typically less than 5mm in diameter and unusually for marine debris are from known sources as they are only used in the manufacturing of plastic products.

Locating and separating such small objects from the world’s oceans is clearly a mammoth task of considerable expense. Instead the manufacturing industry has initiated a programme of environmental responsibility to limit the loss of the pellets. Praised as an effective and affordable program, the initiative would have even greater impact if adopted as an industry standard world-wide, especially if combined with further efforts to reduce pellet loss during transport.

There are no effective natural processes that remove marine debris. The flow of material into the oceans vastly exceeds any practicable man-made method of extracting this growing soup of litter. The only way to tackle the issue is to prevent litter entering the oceans in the first place. Effective measures to prevent this pollution at source already exist. Some, such as levies on single use carrier bags, are becoming more widespread, but others such as deposit refund schemes are still very limited, both in terms of geography and the types of packaging targeted. 

 

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original article can be viewed at this link.

Republished by Blog Post Promoter

Reuse of Greywater

Greywater includes water from showers, bathtubs, sinks, kitchen, dishwashers, laundry tubs, and washing machines. The major ingredients of greywater are soap, shampoo, grease, toothpaste, food residuals, cooking oils, detergents, hair etc. In terms of volume, greywater is the largest constituent of total wastewater flow from households. In a typical household, 50-80% of wastewater is greywater, out of which laundry washing accounts for as much as 30% of the average household water use. The key difference between greywater and sewage (or black water) is the organic loading. Sewage has a much larger organic loading compared to greywater.

Importance of Greywater Reuse

If released directly into rivers, lakes and other water bodies, greywater can be a source of pollution which can affect marine life, human health, ecology etc. However, after appropriate treatment, greywater is suitable for irrigating lawns, gardens, ornamental plants and food crops, toilet flushing, laundry washing etc. Reusing grey water for irrigation and other non-potable water applications will help in reconnection of urban habitats to the natural water cycle, which will contribute significantly to sustainable urban development.

Reuse of greywater can help in substituting precious drinking water in applications which do not need drinking water quality such as industrial, irrigation, toilet flushing and laundry washing. This will, in turn, reduce freshwater consumption, apart from wastewater generation. For water-scarce regions, countries, such as the Middle East and Africa, greywater recycling can be instrumental in augmenting national water reserves. An increased supply for water can be ensured for irrigation thus leading to an increase in agricultural productivity.

The major benefits of greywater recycling can be summarized as:

  • Reduced freshwater extraction from rivers and aquifers
  • Less impact from wastewater treatment plant infrastructure
  • Nutrification of the topsoil
  • Reduced energy use and chemical pollution from treatment
  • Replenishment of groundwater
  • Increased agricultural productivity
  • Reclamation of nutrients
  • Improved quality of surface and ground water

How is Greywater Reused?

There are two main systems for greywater recycling – centralized or decentralized. In a decentralized system, greywater collected from one or more apartments is treated inside the house. On the other hand, a centralized system collects and treats greywater from several apartments or houses in a treatment plant outside the house.

Greywater reuse treatment systems can be simple, low-cost devices or complex, expensive wastewater treatment systems. An example of a simple system is to route greywater directly to applications such as toilet flushing and garden irrigation. A popular method for greywater reuse is to drain water from showers and washing machine directly for landscaping purposes. Modern treatment systems are complex and expensive advanced treatment processes comprised of sedimentation tanks, bioreactors, filters, pumps and disinfections units.

In order to transform greywater into non-potable water source, water from baths, showers, washbasins and washing machines has to be collected separately from black water, treated and eventually disinfected for reuse. Garden irrigation is the predominant reuse method for situations where greywater can be bucketed or diverted to the garden for immediate use. Advanced greywater recycling systems collect, filter and treat greywater for indoor applications like toilet flushing or laundry washing. Greywater from laundry is easy to capture and the treated greywater can be reused for garden watering, irrigation, toiler flushing or laundry washing.

Water-efficient plumbing fixtures are vital when designing a household greywater reuse system. Some examples are low-flow shower heads, faucet flow restrictors, and low-flow toilets. Greywater systems are relatively easier to install in new building constructions as house or offices already constructed on concrete slabs or crawlspaces are difficult to retrofit.

Protection of public health is of paramount importance while devising any greywater reuse program. Although health risks of greywater reuse have proven to be negligible, yet greywater may contain pathogens which may cause diseases. Therefore, proper treatment, operation and maintenance of greywater recycling systems are essential if any infectious pathways should be intercepted.

Republished by Blog Post Promoter

Water Crisis in Refugee Camps

The refugee crisis has hit record heights in recent years. According to the UNHCR, as of the end of 2014 there were approximately 60 million refugees worldwide. This is a significant increase from a decade ago, when there were 37.5 million refugees worldwide. Syria’s ongoing civil war, with 7.6 million people displaced internally, and 3.88 million people displaced into the surrounding region and beyond as refugees, has alone made the Middle East the world’s largest producer and host of forced displacement. Adding to the high totals from Syria are displacements of at least 2.6 million people in Iraq and 309,000 in Libya. This significant increase in refuges has only escalated the need for specific water quality and quantity regulations for refugee camps.

Water Shortages in Refugee Camps

A human being can survive a week without food but cannot live more than three days without water. While the abundance of water in our daily lives means most of us take it for granted, the reality on the ground is that millions around the world suffer from lack of access to water – many of which are refugees. Refugee camps often do not have enough water to supply all refugees residing within them.

Majority of refugee camps in the world are unable to provide the recommended daily water minimum of 20 liters water per person per day. In addition, many countries holding refugees are water-scarce. Jordan, for example, is one of the top 10 water-scarce countries in the world and holds more than 1.4 million refugees (mainly from Syria). This has caused tremendous strain on the country’s very low water resources, making it extremely difficult to supply sufficient water for refugees. However the biggest reason behind lack of water at refugee camps across the globe is the lack of water infrastructure.

The lack of water infrastructure makes it very difficult to transport sufficient amounts of water, and provide proper sanitation to all residents of a refugee camp. In fact, a recent study by the Jordanian Ministry of Water and Irrigation showed that the country’s sewerage network are being overflowed and are subsequently leaking due to the increase in the number of refugees. Furthermore, studies have shown that water borne diseases are more persistently present when the minimum water requirement (20 liters per person) is not met simply because there is less water for sanitation and cleaning purposes. That is why it is absolutely vital that governments ensure that recommended daily water minimum is provided to all refugees.

Water Quality Issues

Poor quality of water in refugee camps has created a “crisis within a crisis” causing outbreaks of waterborne diseases such as cholera, typhoid and hepatitis. This is due to misuse of the water quality regulations present and the lack of time available to implement these regulations on water quality in refugee camps.

In refugee camps, surface water is usually treated in three steps:

  • Sedimentation: The water is stored for a few hours so that the biggest particles can settle to the bottom.
  • Filtration: It is then necessary to get rid of the small, invisible particles by filtering the water through sand filters.
  • Chlorination: The last stage, chlorine solution is added to the water which kills all the microorganisms.

Groundwater, on the other hand, is generally subjected to chlorination. These techniques seem to be sufficient to provide an acceptable quality of drinking water. However, according to Syed Imran Ali, an environmental engineer affiliated with UC Berkley, who worked extensively in refugee camps across Africa and the Middle East, the amount of chlorine used to purify the water is not sufficient enough to completely eliminate all the bacteria in the water used in refugee camps. The reason being that the current emergency guidelines on free residual chlorine concentrations (0.2 – 0.5 mg/L in general, 0.8 – 1.0 mg/L during outbreaks) are based on conventions from municipal piped-water systems (i.e. used in cities) rather than refugee camps.

A study conducted by Ali in South Sudan, where there was an outbreak of hepatitis E and other waterborne diseases, showed that the decay of chlorine added to drinking water is much faster in refugee camps than it is under urban conditions, and within 10-12 hours of household storage and use the chlorine all but disappears. Within a refugee camp, water is distributed from one point within the camp, carried to homes via containers and then stored and used over 24 hours or more. Therefore, due to all these different factors the guidelines used may not be sufficient enough to maintain an acceptable quality of water in all refugee camp settings.

Refugee camps must have specific guidelines created to deal with the water quality provided within the camps to prevent outbreaks and improve livelihood within the refugee camps. In his study in South Sudan, Ali recommended that guidelines for chlorination control to be revised to 1.0 mg/l in the camps there rather than 0.2 – 0.5 mg/l. This would provide protection of at least 0.2 mg/l for up to 10 hours post-distribution, which is consistent with the recommended concentration for point-of-use water chlorination in emergency and nonemergency settings and is within the WHO limits generally considered to be acceptable to users (2.0 mg/L).

Time to Act

With the refugee situation worsening and no permanent solution to this crisis in sight, the minimum that can be done is to provide an adequate amount and quality of water for these refugees. The current purification techniques are not efficient enough to protect refugees from all harmful bacteria. There are a variety of ways that water can be provided.

Wastewater treatment, rain harvesting, humidity harvesting, among others are sustainable sources of water. However, providing water is not sufficient; water quality is just as important as water quantity. There must be water quality regulations specific to refugee camps that take into account the different aspects that might affect the quality of water (transport, storage, temperature). If things are to improve, it is absolutely vital for concerned governments, aid agencies, NGOs, volunteers etc. to band together and create water quality guidelines specific to refugee camps and that are capable to withstand different aspects within these camps. Without these guidelines, the condition of refugees will continue to worsen, and the refugees will continue to flee to Western countries in search of better living conditions.

Republished by Blog Post Promoter

Water Conservation in Islamic Teachings

water-conservation-islamWater occupies a pivotal role in Islam, and is recognized by Muslims as a blessing that “gives and sustains life, and purifies humankind and the earth”. The Arabic word for water, ma’a, is referenced exactly 63 times throughout the Holy Qur’an and is a recurring topic in many of the sayings of the Prophet Mohammed (peace be upon him).

Water is not only praised for its life providing and sustaining properties, but it is essential in the daily life of a Muslim. A follower is required to complete ablution prior to the performance of the prayer, five times a day. This ritual cleansing before the prayer signifies the attainment of cleanliness and purification of the body and soul. According to a Hadith narrated by Hazrat Abu Huraira, no prayer is accepted without ablution (Sahih al Bukhari, Vol. 1, Book 4).

The Holy Quran and the Hadith teach its followers principles of social justice and equity which extends into the practice of preserving earth’s natural resources, particularly water conservation. According to Islam, water is community resource and is a right for all humankind. Prophet Muhammad (SAW) highlights this in the following hadith:

“Muslims have common share in three things: grass [pasture], water, and fire [fuel]” ( Musnad Vol. 2, Book 22 ).

The Holy Qur’an has set down the foundations of water conservation and demand management by making it known to humankind that earth’s water resources are finite in verse 23:18 of Surah Al Mu’minun (The Believers):

 “And We sent down from the sky water (rain) in (due) measure, and We gave it lodging in the earth, and verily, We are Able to take it away.”

Furthermore, God has instructed humankind not to be wasteful in the following verse: “O Children of Adam! Eat and drink but waste not by excess, for God loveth not the wasters” ( Surah al Araaf, The Heights 7:31 ).

Prophet Mohammed (peace be upon him) exemplifies the “logical approach to sustainable water use” through the manner in which he performed the ritual ablution. The principle of water conservation is beautifully illustrated by the rule which says that while making ablutions (wudu) we should be abstemious in the use of water even if we have a river at our disposal. : “Do not waste even if performing ablution on the bank of a fast flowing large river” (Al Thirmidhi). The Prophet himself would perform ablution with just one mudd of water (equivalent to 2/3 of a liter), and take bath with one saa’ of water (equivalent to around 3 liters in modern volume measurements).

As per Islamic law (shariah), there is a responsibility placed on upstream farms to be considerate of downstream users. A farm beside a stream is forbidden to monopolize its water. After withholding a reasonable amount of water for his crops, the farmer must release the rest to those downstream. Furthermore, if the water is insufficient for all of the farms along the stream, the needs of the older farms are to be satisfied before the newer farm is permitted to irrigate. This reflects the emphasis placed by Islam on sustainable utilization of water.

References:

  1. Naser I. Faruqui, Asit K. Biswas, and Murad J. Bino. (2001) Water Management in Islam, UN University Press <available on http://www.idrc.ca/EN/Resources/Publications/openebooks/924-0/index.html>
  2.  Abumoghli, I. (2015), Islamic Principles on Sustainable Development, EcoMENA <available on http://www.ecomena.org/islam-sustainable-development/>
  3. Zafar, S. (2016) Environment in Islamic Teachings, Cleantech Solutions <available on http://www.cleantechloops.com/islam-environment/>

Republished by Blog Post Promoter

Litani River: A Sorry State of the Affairs

litani-river-pollutionThe Litani River, the largest river in Lebanon, faces a multitude of environmental problems. Due to decades of neglect and mismanagement, the river has become heavily polluted. The main contributors to the degradation of Litani River are industrial pollution from factories and slaughterhouse, untreated sewage, chemicals from agriculture runoffs and disposal of municipal waste. The pollution has reached such a level where it is obvious to the human eye.

The Litani River is a source of income for many families who use it in summer for many recreational activities; moreover, it is used for irrigation. On the banks of the Litani River, many hydroelectric and electric projects have been set up. The Lebanese government had made a dam that is linked to a hydroelectric power plant of 185MW capacity. The dam had been responsible for the formation of Qaraoun Lake; a polluted man-made lake.

In 2016, the World Bank approved a loan of $55 million to address the wastewater and agricultural runoff along the lake and the river.  The problem of the fund is that they did not give a bigger investment to agricultural runoff. The Litani provides irrigation to 80% of agriculture lands in Bekaa and 20% in south Lebanon. Many agricultural projects were implemented on the basin as Joun project and Al-Qasmieh project. Farmers are using the fertilizers and pesticides that are polluting the river with chemicals. On the other hand, farmers are impacted by the water they are using to irrigate their crops since it is polluted with chemicals and full of soil, gravel and sand.

Serious and concerted efforts are urgently required to restore Litani River to its lost glory

Serious and concerted efforts are urgently required to restore Litani River to its lost glory

Two years ago, the Lebanese government announced $730 million project to clean up the pollution of Qaraoun Lake and Litani river. The seven years ambitious plan is divided into four components: $14 million will go to solid waste treatment, $2.6 million for agricultural pollution, $2.6 million for industrial pollution and $712 million for sewage treatment.

The Way Forward

In order to save the Litani River, here are few steps that must be taken urgently:

  • Establish a sewage system especially for the new refugee camps near the river basin.
  • Promote measures to tackle the industrial pollution.
  • Stop industrial effluents from polluting the River.
  • Establish waste treatment plants in the area.
  • Hire staff to operate existing wastewater treatment plants. For example Zahle plant that lacks staff to operate.
  • Build water treatment facilities for the local communities.

Small steps can effectively reduce the pollution and restore the lost glory of the Litani River.  Thousands of people volunteered to clean up the Litani River on the national day of the Litani River. This took place after there was a huge online campaign titled “together to save the Litani River” initiated by activists. Thousands of people engaged online and then onsite to fish out rubbish; bulldozers removed accumulated sands and mud in the river from nearby sand quarries.

أثار التغير المناخي على مصادر المياه

النقص الحاصل في كمية المياه العذبة في الشرق الأوسط و شمال إفريقيا يمثل خطرا حقيقيا في النمو الإقتصادي , التلاصق الإجتماعي , السلام و الإستقرار السياسي . علاوة على ذلك , إستهلاك المياه العذبة في هذه الأيام لم يعد يقتصر على توافرها الحالي و المستقبلي و إنما تعتمد على إحتياجات الإستهلاكية التنافسية قطاعياً و جغرافياً .

و ما يزيد الأمر سوءا , أن هذا الوضع الرهيب بدأ بالتفاقم بسبب التغيرالمناخي السريع . التغير المناخي يؤثر على مصادر المياه من خلال تأثيره العميق على كل من كمية المياه , التوقيت  , التغير , الشكل و شدة الترسيب .

منطقة الشرق الأوسط و شمال أفريقيا تحديداً هي الأكثر عرضة لأثار التغير المناخي التخريبية و ذلك بسبب أن دول هذه المنطقة بلا شك هي من الدول التي تعاني  شدة في النقص للمياه عالمياً , حيث أن نصيب الفرد للمياه أقل من المعدل الطبيعي .

بالإضافة إلى أن دول الشرق الأوسط و شمال إفريقيا تعاني من وضع حرج بالنسبة لإنخفاض تساقط الأمطار و تفاوت شديد في هطولها مكانيا و زمانيا , غير أن لبنان هي الأفضل حالا من ناحية الهطول , و قطر هي الأسوء في تغير نسب هطولها .

كيف يؤثر التغير المناخي على مصادر المياه

درجات الحرارة المرتفعة تزيد من نسبة تبخر للمياه الموجودة في الجو , مما يؤدي إلى زيادة قدرة الجو على حمل المياه .هذا يسبب حدوث مواسم جريان مبكرة و قصيرة و زيادة في المواسم الجافة . كما أن زيادة التبخر يقلل من مستويات الرطوبة في التربة , والتي بدورها تزيد من نسبة تكرار الجفاف الحاصل في المنطقة , و زيادة أرجحية حدوث التصحر . بالإضافة إلى نقصان نسبة الرطوبة في التربة أيضا و حدوث إنخفاض في نسب الترشيح مما يؤدي إلى إنخفاض معدل التغذية في المياه الجوفية .

التغير المناخي أيضا يؤثر على مستويات البحر . إن إرتفاع مستويات سطح البحر قد يؤدي إلى إنخفاض في طبيعة و وفرة المياه في المناطق الساحلية . إرتفاع مستويات سطح البحر قد يؤثر سلبا على نوعية المياه الجوفية من خلال تسرب المياه المالحة إليها . بالإضافة إلى ذلك إرتفاع مستوى سطح البحر يؤثر على دورة المياه تحت سطح المناطق الساحلية  مما يؤدي إلى إنخفاض تدفق المياه العذبة و قلة نسبة المساحات المائية العذبة . و من ناحية أخرى فإن إرتفاع مستويات سطح البحر يزيد من مستوى المياه في خزانات المياه الجوفية , مما قد يزيد نسبة الجريان السطحي لكن على حساب تغذية الخزانات الجوفية . إنه من المتوقع أن يرتفع مستوى سطح البحر ما يقارب 19 إلى 58 سنتيمترا في نهاية القرن الواحد و العشرين . و الذي بدوره سيؤثر على 12 دولة من أصل 19 دولة من دول الشرق الأوسط و شمال أفريقيا . إرتفاع سطح البحر على هذا النحو من المحتمل أن يكلف جمهورية مصر , حيث أنها من الدول الرئيسية التي ستتأثر بهكذا إرتفاع , 10 % من سكان دلتا نهر النيل مشمولين مع الأراضي الزراعية و الأنتاج .

هذه الأنخفاضات في مصادر المياه ستؤدي إلى عواقب اجتماعية واقتصادية مكلفة . المياه المستعملة في تصنيع الأغذية , إنتاج الطاقة , الصناعات التحويلية , الملاحة , استخدام الأراضي , و إعادة التصنيع . و بناءا على ذلك فإنه من الصعب أبقاء توازن بين جميع إحتياجات الإنسان بإستمرار حصول نقص في مصادر المياه . على سبيل المثال , إنه لمن المتوقع في حال زيادة درجات الحرارة حدوث زيادة في إحتياج المحاصيل للمياه  بحدود من 5 إلى 8 % بحلول عام 2070 , و الذي يجب أن يعوض عن طريق إستخدام المياه المستعملة في تصنيع الطاقة , و بالتالي يهدد أمكانية إنتاج الطاقة . كما أن النقص في مصادر المياه يشارك في زيادة أسعار المياه , من خلال فواتير المياه الشهرية أو خدمات توصيل المياه مرة واحدة شهريا للمنازل و الشركات .

و أخيرا , إن النقص المتزايد في مصادر المياه سيؤدي إلى لجوء الحكومات لإتباع مشاريع إقتصادية شديدة مثل محطات تحلية المياه , الأنابيب ( مشروع نقل مياه البحر الأحمر – البحر الميت ) و السدود . هذه المشاريع ليست الوحيدة الشديدة إقتصاديا بل أيضا غير مستادمة بيئا و سوف تساهم بالنهاية إلى إحتباس حراري و تغير مناخي ( انبعاثات غاز ثاني أكسيد الكربون من محطات التحلية ) .

نقاط مفتاحية سريعة

الإحترار العالمي لا ينكر , و الزيادة في إنبعاثات الغازات الدفيئة سيكون له أثر عميق مناخيا , بيئيا , و إجتماعيا بشكل عالمي , خصوصا في مجال مصادر المياه . هذا من أكبر إهتمامات دول الشرق الأوسط و شمال إفريقيا , حيث أن هناك تزايد في تسجيلات الجفاف المتكررة , كما أن توافر المياه من المتوقع أن ينقص بنسبة 30-50% بحلول عام 2050 .

و من الواجب على دول المنطقة أن تقلل من إنبعاثات غازاتها الدفيئة و تحويل مصادر طاقتها إلى الطاقة النظيفة . و ينبغي على هذه المناطق عمل جهود عاجلة و طويلة الأمد للحفاظ على الماء عن طريق تقليل  المتطلبات و الإستهلاك , من خلال تحسين البنى التحتية للمياه بهدف التقليل من التسريب , تحسين تقنيات إدارة المياه ,  و إزالة دعم المياه .

كل فرد يعتمد على شيئ موثوق, دعم نظيف للمياه العذبة للحفاظ على حياته . المياه شيء أساسي لكل جزء في الحياة من الطاقة لإنتاج الغذاء و حتى الحفاظ على النظام البيئي . الإجراءات يجب أن لا تكون فقط لإيقاف النقص , لكن أيضا لتحسين الوضع , لأنه بدون ماء , ليس هناك حياة .  

ترجمة

علا محمود المشاقبة , حاصلة على درجة البكالوريوس تخصص " إدارة الأراضي و المياه " من الجامعة الهاشمية – الأردن بتقدير جيد جدا , عملت تطوعيا كعضو إداري مع مجموعة " مخضّرو الأردن  JO Greeners – الجيل الأخضر حاليا -"   منذ ثلاثة سنوات, و متطوعة أيضا مع منظمة  EcoMENA  . موهبة الكتابة شيء أساسي في حياتي و قمت بتوظيفها في  خدمة القضايا البيئية

 

Republished by Blog Post Promoter