MSW Generation in the Middle East

The high rate of population growth, urbanization and economic expansion in the Middle East is not only accelerating consumption rates but also increasing the generation rate of all  sorts of waste. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita solid waste generation. The gross urban waste generation quantity from Middle East countries has crossed 150 million tons per annum.The world’s dependence on Middle East energy resources has caused the region to have some of the largest carbon footprints per capita worldwide. The region is now gearing up to meet the challenge of global warming, as with the rapid growth of the waste management sector. During the last few years, UAE, Qatar and Saudi Arabia have unveiled multi-billion dollar investment plans to Improve waste management scenario in their respective countries. 

Solid Waste Generation Statistics

Saudi Arabia produce more than 15 million tons of garbage each year. With an approximate population of about 28 million, the country produces approximately 1.3 kilograms of waste per person every day. More than 5,000 tons of urban waste is generated in the city of Jeddah alone. 

The per capita MSW generation rate  in the United Arab Emirates ranges from 1.76 to 2.3 kg/day. According to a recent study, the amount of solid waste in UAE totaled 4.892 million tons, with a daily average of 6935 tons in the city of Abu Dhabi, 4118 tons in Al Ain and 2349 tons in the western region.

Qatar's annual waste generation stands at 2.5 million tons while Kuwait produces 2 million tons MSW per annum. Bahrain generates more than 1.5 million tons of municipal waste every year. Countries like Kuwait, Bahrain and Qatar have astonishingly high per capita waste generation rate, primarily because of high standard of living and lack of awarness about sustainable waste management practices.


MSW Generation

(million tons per annum)

Saudi Arabia










In addition, huge quantity of sewage sludge is produced on daily basis which presents a serious problem due to its high treatment costs and risk to environment, human health and marine life. On an average, the rate of municipal wastewater generation in the Middle East is 80-200 litres per person per day. Cities in the region are facing increasing difficulties in treating sewage, as has been the case in Jeddah where 500,000 cubic metre of raw sewage is discarded in Buraiman Lake daily. Sewage generation across the region is rising by an astonishing rate of 25 percent every year which is bound to create major headaches for urban planners. 

Waste-to-Energy for the Middle East

Municipal solid waste in the Middle East is comprised of organic fraction, paper, glass, plastics, metals, wood etc which can be managed by making use of recycling, composting and/or waste-to-energy technologies. The composting process is a complex interaction between the waste and the microorganisms within the waste. Central composting plants are capable of handling more than 100,000 tons of biodegradable waste per year, but typically the plant size is about 10,000 to 30,000 tons per year.

Municipal solid waste can be converted into energy by conventional technologies (such as incineration, mass-burn and landfill gas capture) or by modern conversion systems (such as anaerobic digestion, gasification and pyrolysis). The three principal methods of thermochemical conversion are combustion (in excess air), gasification (in reduced air), and pyrolysis (in absence of air). The most common technique for producing both heat and electrical energy from urban wastes is direct combustion. Combined heat and power (CHP) or cogeneration systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity. 

At the landfill sites, the gas produced by the natural decomposition of MSW can be collected from the stored material and scrubbed and cleaned before feeding into internal combustion engines or gas turbines to generate heat and power. In addition, the organic fraction of MSW can be anaerobically stabilized in a high-rate digester to obtain biogas for electricity or steam generation. 

Anaerobic digestion is the most preferred option to extract energy from sewage, which leads to production of biogas and organic fertilizer. The sewage sludge that remains can be incinerated or gasified/pyrolyzed to produce more energy. In addition, sewage-to-energy processes also facilitate water recycling. Infact, energy recovery from MSW is rapidly gaining worldwide recognition as the 4th R in sustainable waste management system – Reuse, Reduce, Recycle and Recover.

You May Also Like

About Salman Zafar

Salman Zafar is a renowned consultant, advisor, entrepreneur and writer with expertise in waste management, waste-to-energy, renewable energy, environment protection and sustainable development. He is the Founder of EcoMENA, in addition to being the CEO of consultancy firm BioEnergy Consult. Salman has successfully accomplished a wide range of projects in the areas of biomass energy, biogas, waste-to-energy and waste management. He has participated in numerous conferences and workshops as chairman, session chair, keynote speaker and panelist. Salman is a professional writer and is proactively engaged in creating mass awareness on renewable energy, waste management and environmental sustainability. He can be reached at or
Tagged , , , , , , , , , , , , , , , , , , . Bookmark the permalink.

4 Responses to MSW Generation in the Middle East

  1. Pingback: Ravtul's Blog – THE CONCEPTUAL PROJECT

  2. Pingback: MSW Generation in the Middle East | Solid waste in the Gulf countries

  3. Pratima Pandey says:

    Informative article on the urgent need of MSW management in Middle East and the processes that can be employed to manage waste in a remunerative way.

  4. Hakki Surel says:

    Dear Salman
    Very nice informative article. We have the similar problems and solutions too in our country.
    Hakk Surel

Share your Views