Combined Heat and Power Systems

Combined Heat and Power (CHP), or Cogeneration, is the sequential or simultaneous generation of multiple forms of useful energy (usually mechanical and thermal) in a single, integrated system. In conventional electricity generation systems, about 35% of the energy potential contained in the fuel is converted on average into electricity, whilst the rest is lost as waste heat. CHP systems uses both electricity and heat and therefore can achieve an efficiency of up to 90%, giving energy savings between 15-40% when compared with the separate production of electricity from conventional power stations and of heat from boilers. CHP systems consist of … Continue reading

Introduction to Trigeneration

Trigeneration refers to the simultaneous generation of electricity and useful heating and cooling from the combustion of a biomass fuel or a solar heat collector. Conventional coal or nuclear-powered power stations convert only about 33% of their input heat to electricity. The remaining 67% emerges from the turbines as low-grade waste heat with no significant local uses so it is usually rejected to the environment. What is Trigeneration In a trigeneration system, the supply of high-temperature heat first drives a gas or steam turbine powered generator and the resulting low-temperature waste heat is then used for water or space heating. Such systems can attain higher … Continue reading