CDM Projects in MENA Region

 

The MENA region is an attractive CDM destination as it is rich in renewable energy resources and has a robust oil and gas industry. Surprisingly, countries in MENA host very few and declining number of CDM projects with only 23 CDM projects registered till date. The region accounts for only 1.5 percent of global CDM projects and only two percent of emission reduction credits. The two main challenges facing many of these projects are: weak capacity in most MENA countries for identifying, developing and implementing carbon finance projects and securing underlying finance. 

The registered CDM projects in MENA countries are primarily located in UAE, Egypt, Jordan, Morocco, Qatar, Syria and Tunisia. Other countries in the region, like Saudi Arabia, Bahrain and Oman, are also exploring opportunities for implementing projects that could be registered under the Kyoto Protocol.

Potential CDM projects that can be implemented in the region may come from varied areas like sustainable energy, energy efficiency, waste management, landfill gas capture, industrial processes, biogas technology and carbon flaring. For example, the energy efficiency projects in the oil and gas industry, can save millions of dollars and reduce tons of CO2 emissions. In addition, renewable energy, particularly solar and wind, holds great potential for the region, similar to biomass in Asia.

Let us take a look at some of the recent registered CDM projects from the MENA region.

Al-Shaheen Project (Qatar)

The Al-Shaheen project is the first of its kind in the region and third CDM project in the petroleum industry worldwide. The Al-Shaheen oilfield has flared the associated gas since the oilfield began operations in 1994. Prior to the project activity, the facilities used 125 tons per day (tpd) of associated gas for power and heat generation, and the remaining 4,100 tpd was flared. Under the current project, total gas production after the completion of the project activity is 5,000 tpd with 2,800-3,400 tpd to be exported to Qatar Petroleum (QP); 680 tpd for on-site consumption, and only 900 tpd still to be flared. The project activity will reduce GHG emissions by approximately 2.5 million tCO2 per year and approximately 17 million tCO2 during the initial seven-year crediting period.

GASCO Project (Abu Dhabi)

Located at the Asab and Bab gas processing plants in Abu Dhabi, the energy efficiency project is the fifth CDM project in the UAE to be registered under the Kyoto Protocol. The ADNOC's GASCO CDM project helps to reduce CO2 emissions through installation of a device in the flare line to considerably reduce the consumption of fuel gas, thereby ensuring lower greenhouse gas emissions. The project contributes to Abu Dhabi's and ADNOC's goals for sustainable development while improving air quality in the region. This retrofit project is expected to generate approximately 7,770 CERs per year.

Kafr El Dawar Project (Egypt)

Located at the Egypt for Spinning, Weaving and Dying Company in Kafr El Dawar near Alexandria, the fuel switching project is the latest CDM project from MENA to be registered under the Kyoto Protocol. The Kafr El Dawar CDM project helps reduce COemissions through switching from the higher carbon intensive fuel such as Heavy Fuel Oil (HFO) to natural gas, a lower carbon intensive fossil fuel, contributing to Egypt’s goals in sustainable development. It has also significantly mitigated atmospheric emissions of pollutants while improving air quality in the region. The replacement of HFO with natural gas is expected to generate approximately 45,000 Certified Emissions Reductions (CERs) per year.

 

Republished by Blog Post Promoter

أزمه المياه في مصر

تعاني مصر في السنوات الاخيرة من شح شديد في المياه و يعد توزيع المياه غير المتكافئ و اساءه استخدام موارد المياه وتقنيات الري غير الفعاله بعض العوامل الرئيسيه التي تلعب دورا مدمرا للأمن المائي فيالبلاد.

يعد نهر النيل شريان الحياة في مصر حيث  يغطي متطلبا ت الزراعة و الصناعه و هو المصدر الرئيسيلمياه الشرب للسكان. ان ارتفاع معدلات النمو السكاني و التنمية الاقتصادية السريعة  في دول حوض النيل  بالإضافة الى التلوث و التدهور  البيئي آخذُ باستنزاف الموارد المائية في مصر.

 و تواجه مصر   عجزا مائيا يقدر  بسبع بليون متر مكعب سنويا .وفي حقيقة الامر فإن الامم المتحدة قد حذرت من نفاذ المياه في مصر بحلول عام 2025.

دعونا نلقي نظره فاحصه على العوامل الرئيسيه التي تؤثر على الامن المائي في مصر.

الانفجار السكاني

ان العدد السكاني في مصر اّخذ بالتكاثر بمعدل ينذر بالخطر , ولقد زاد بنسبه 41 بالمئه منذ بداية التسعينيات. تشير التقارير الاخيرة من قبل الحكومة الى ان حوالي 4,700   حديثي الولادة تضاف الى عدد السكان كل أسبوع و تشير التوقعات المستقبليه  الى ان عدد السكان سيرتفع من 80 مليون الى 98.7 مليون بحلول عام 2025.

ان الزيادة السكانية السريعة من شأنها ان تضاعف الضغط على الامداد المائي من خلال زيادة الاحتياجات المائية  للاستهلاك المحلي و زيادة استخدام مياه الري  لتلبيه الطلب على الغذاء.

الري غير الفعال

تحصل مصر على نسبه اقل من 80 ملم من الهطول المطري سنويا,وتعد ما نسبته 6 بالمئه من اراضيها فقط صالحا للزراعة وما تبقى فهو صحراء.وهذا بدوره  يؤدي الى الافراط في الري واستخدام تقنيات الري المسرف كالري السطحي ( الري بالغمر) و هي طريقه قديمه للري حيث يتم اغراق القطعة الزراعيه بالمياه.

في الوقت الحالي,فان شبكة الري تستمد بالكامل من سد اسوان العالي و هذا بدوره ينظم اكثر من 18,000 ميل من القنوات الرئيسية و القنوات الفرعيه التي تروي الاراضي الزراعيه المجاوره للنهر. يعد هذا النظام غير فعال , حيث يقدر معدل الفاقد من مياه النيل بفعل التبخر 3 مليارات متر مكعب سنويا . ان من شأن  انخفاض الامداد المائي  ان يقود الى انخفاض الاراضي الصالحة للزراعة و حيث ان قطاع الزراعه يشكل اكبر رب عمل للشباب فان شح المياه يمكن ان يقود الى زيادة معدلات البطالة.

التلوث

 اصبحت المخلفات الزراعية والنفايات الصناعية السائلة  و مياه الصرف الصحي ُتلقى بغير اهتمام في نهر النيل مما يجعلها تدريجيا غير صالحة للاستهلاك البشري. اضف الى ذلك فإن مياه الصرف الصحي القادمة من الاحياء الفقيرة ومناطق عديدة في القاهره اضحت تفرغ في نهر النيل وذلك لنقص  المحطات المعالجة لتلك المياه.

 تلك المخلفات الزراعية عاده ما تحتوي على ملوثات من مبيدات الحشرات و الاعشاب مما يؤثر سلبا على مياه النهر. كذلك النفايات الصناعية السائله غالبا ما تكون شديدة السميه وتحتوي على معادن ثقيلة و التي يمكن ان تتحد مع المواد الصلبه العالقة في مياه الصرف الصحي لتشكل الوحل. كل هذه العوامل مجتمعه معا من شأنها ان تلوث نهر النيل و تنذر بشؤم للأجيال القادمة.

الاضطرابات الاقليميه

تسيطر مصر على غالبيه الموارد المائية المستخرجه من نهر النيل بمقتضى معاهدة الحقبه الاستعمارية التي تضمن حصة  ما نسبته 90 بالمئه من نهر النيل و تمنع الدول المجاوره لها من الحصول ولو على قطره واحده من النيل من دون الحصول على إذنها .وعلى الرغم من ذلك فان هذا لا يمنع  البلدان الواقعه على نهر النيل  مثل بوروندي و اثيوبيا من استغلال الاضطرابات السياسيه التي تعصف بمصر وكسب المزيد من السيطرة على حقوق  النيل. ورغم ان نهر النيل يزود مصر بما نسبته 95 بالمئه من المياه العذبة   فإن فقدان بعض الامدادات المائية يمكن ان يشكل متاعب إضافيه لمصر.

الختام

إن قضيه المياه في مصر تتصاعد بنسبه مثيره للقلق. بحلول عام 2020 ,سوف تستهلك مصر بما يقدَر 20 بالمئه اكثر  من المياه مما كانت عليه. مع فقدان قبضتها على النيل  فان شح المياه في مصر  من شأنه ان يهدد استقرار البلاد و الهيمنة الاقليميه. و هذا يحتم على الحكومة المصريه و جميع السكان التحرك بسرعة وبشكل حاسم للتخفيف من شح المياه  وتطبيق اساليب و تقنيات اكثر فاعليه للمحافظة على المياه و منع تلوثها  ووضع وتطوير خطط من شأنها السيطرة على تلوث المياه وجعل تقنيات الري اكثر فاعليه و كفاءة و ذلك لتجنب وقوع كارثة.

ترجمة

سلام عبدالكريم عبابنه

مهندسه مدنية في شركة المسار المتحده للمقاولات – مهتمه في مجال البيئه و الطاقة المتجدده

Republished by Blog Post Promoter

The Menace of Single-Use Plastic Bags

Single-use plastic bags are one of the most objectionable types of litter in urban areas. The sheer volume of plastic waste generated coupled with energy and material resources required for production, as well as emissions resulting from these processes paint a grim picture of the environmental havoc created by plastic bags. Single-use plastic bags are a huge threat to the environment as an estimated 1 trillion such bags are consumed worldwide every year. In the United Arab Emirates alone, nearly 12 billion plastic bags are used annually.

Major Hazards

Single-use plastic bags are notorious for their interference in natural ecosystems and for causing the death of aquatic organisms, animals and birds. In 2006, The United Nations Environment Programme (UNEP) estimated that there are 46,000 pieces of plastic litter floating in every square mile of ocean and upto 80 percent of marine debris worldwide is plastic which are responsible for the death of a more than a million seabirds and 100,000 marine mammals each year from starvation, choking or entanglement. Infact, there is a huge floating dump in the Pacific Ocean called the "Great Pacific Garbage Patch" which is hundreds of miles wide and consists mostly of plastic debris caught  in the ocean's currents. 

Plastic bags are mistakenly ingested by animals, like cows and camels, clogging their intestines which results in death by starvation. In addition, plastic bags clog urban drainage systems and contribute to flooding, as witnessed in Mumbai, Dhaka and Manila in recent decades. Moreover, toxic chemicals from single-use bags can enter the food chain when they are ingested by animals and birds.

Unfortunately only a small percentage of these bags are recycled each year, and most float about the landscape and create a tremendous expense in clean-up costs. Several countries, regions, and cities have enacted legislation to ban or severely reduce the use of disposable plastic shopping bags. Plastic bags litter serves as a floating transportation agent that enables alien species to move to new parts of the world thus threatening biodiversity.

Plausible Solutions

The hazards of single-use plastic bag can be mitigated by raising environmental awareness among communities. Many municipalities in the Gulf region are targeting shopping malls and grocery stores to reduce dependence on single-use plastic bags. Environmental education at workplaces, schools and residential areas is a vital tool in the fight against plastic bags. Empowering people to take proactive actions and encouraging them to be a part of the solution can also be helpful in reducing the reliance on single-use plastic bags.

Municipalities can make use of 5Rs of waste management – Rethink, Reduce, Reuse, Recycle and Recover – to encourage safe disposal of plastic bags which may be facilitated by mass deployment of plastic bag collection systems and recycling facilities at strategic locations. Some of the alternatives are cloth-based bags, such as jute and cotton, which biodegradable as well as reusable. Infact, the range of durable fabric shopping bags is growing each year in the Western countries, including those that can be conveniently folded up into a pocket.

The introduction of ‘plastic bags tax’ can also be a handy weapon in restricting use of single-use plastic bags in the Middle East. For example, Ireland introduced a plastic bag charge called PlasTax ten years ago which has virtually eliminated plastic bags in the country. 

Regional Initiatives

The Middle East region has been slow in gearing up to the challenges posed by single-use plastic bags, though governments have been trying to raise public awareness aimed at behavioral change. The Ministry of Environment and Water in UAE launched an initiative called “UAE free of plastic bags” in 2009 to maintain the health of the natural habitat and enhance the environmental standards of the state. The Dubai Municipality has also launched an ambitious “No to Plastic Bags” campaign to slash 500 million plastic bags. There are similar efforts, but small-scale, efforts in Saudi Arabia, Qatar and Kuwait to encourage clean-up campaigns in seas, deserts and citites. In Egypt, the Red Sea (Hurghada) is the first plastic bag free governorate having introduced a ban in 2009 which generated employment opportunities for women who have been charged with creating cloth bags in the place of plastic bags.

 

About the Authors

Eaman Abdullah Aman is MRLS graduate in Environmental and Natural Resources Law and Policy with a specialization certificate in Energy Law and Policy from Denver University, USA. Her expertise encompasses international petroleum transactions, petroleum contracts and agreements, international petroleum investment operations, energy policy and economics of natural resources law and policy. She has rich knowledge on issues related to climate change mitigation, environmental law and policy, environmental ethics, energy security, sustainable development etc.

Salman Zafar is the Founder of EcoMENA and a renowned expert in waste management, renewable energy, environment protection and sustainability. He is widely acknowledged as an authority on environment and sustainability sector in the Middle East and proactively engaged in creating mass awareness on clean energy, environment and sustainability through his websites, blogs, articles and projects. Salman can be contacted on salman@ecomena.org.

Republished by Blog Post Promoter

Medical Waste Management in MENA

Healthcare sector in MENA region is growing at a very rapid pace, which in turn has led to tremendous increase in the quantity of medical waste generation by hospitals, clinics and other establishments. According to a recent Ministry of State for Environmental Affairs report, Egypt generated 28,300 tons of hazardous medical wastes in 2010. In the GCC region, more than 150 tons of medical waste is generated in GCC countries every day. Saudi Arabia leads the pack with daily healthcare waste generation of more than 80 tons. These figures are indicative of the magnitude of the problem faced by municipal authorities in dealing with medical waste disposal problem across the MENA region. 

Multitude of Problems

The growing amount of medical wastes is posing significant public health and environmental challenges in major cities of the region. The situation is worsened by improper disposal methods, insufficient physical resources, and lack of research on medical waste management. Improper management of medical wastes from hospitals, clinics and other facilities in MENA pose occupational and public health risks to patients, health workers, waste handlers, haulers and general public. It may also lead to contamination of air, water and soil which may affect all forms of life. In addition, if waste is not disposed of properly, ragpickers may collect disposable medical equipment (particularly syringes) and to resell these materials which may cause dangerous diseases.

Improper management of medical wastes from hospitals, clinics and other facilities in MENA pose occupational and public health risks to patients, health workers, waste handlers, haulers and general public. It may also lead to contamination of air, water and soil which may affect all forms of life. In addition, if waste is not disposed of properly, ragpickers may collect disposable medical equipment (particularly syringes) and to resell these materials which may cause dangerous diseases.

Medical waste management method in MENA is limited to either small-scale incineration or landfilling. The practice of landfilling of medical wastes is a matter of serious concern as it poses grave risks to public health, water resources, soil fertility as well as air quality. In many Middle East and North Africa countries, medical wastes is mixed with municipal solid wastes and/or industrial wastes which transforms medical wastes into a cocktail of dangerous substances. 

The WHO policy paper of 2004 and the Stockholm Convention, has stressed the need to consider the risks associated with the incineration of healthcare waste as a typical medical waste incinerator releases a wide variety of pollutants which may include particulate matter, heavy metals, acid gases, carbon monoxide and organic compounds. Sometimes pathogens may also be found in the solid residues and in the exhaust of poorly designed and badly operated incinerators. In addition, leachable organic compounds, like dioxins and heavy metals, are usually present in bottom ash residues. Due to these factors, many industrialized countries are phasing out healthcare incinerators and exploring technologies that do not produce any dioxins. Countries like United States, Ireland, Portugal, Canada and Germany have completely shut down or put a moratorium on medical waste incinerators. 

Promising Treatment Options

The alternative technologies for healthcare waste treatment are steam sterilization, advanced steam sterilization, microwave treatment, dry heat sterilization, alkaline hydrolysis, and biological treatment. Nowadays, steam sterilization (or autoclaving) is the most common alternative treatment method. Advanced autoclaves or advanced steam treatment technologies combine steam treatment with vacuuming, internal mixing or fragmentation, internal shredding, drying, and compaction thus leading to as much as 90% volume reduction. 

Microwave treatment is a promising technology in which treatment occurs through the introduction of moist heat and steam generated by microwave energy. Alkaline digestion is a unique type of chemical process that uses heated alkali to digest tissues, pathological waste, anatomical parts, or animal carcasses in heated stainless steel tanks. Biological processes, like composting and vermicomposting, can also be used to degrade organic matter in healthcare waste such as kitchen waste and placenta.

Republished by Blog Post Promoter

CSP-Powered Desalination Prospects in MENA

Conventional large-scale desalination is cost-prohibitive and energy-intensive, and not viable for poor countries in the MENA region due to increasing costs of fossil fuels. In addition, the environmental impacts of desalination are considered critical on account of GHG emissions from energy consumption and discharge of brine into the sea. The negative effects of desalination can be minimized, to some extent, by using renewable energy to power the plants.

What is Concentrated Solar Power

The core element of Concentrated Solar Power Plant is a field of large mirrors reflecting captured rays of sun to a small receiver element, thus concentrating the solar radiation intensity by several 100 times and generating very high temperature (more than 1000 °C). This resultant heat can be either used directly in a thermal power cycle based on steam turbines, gas turbines or Stirling engines, or stored in molten salt, concrete or phase-change material to be delivered later to the power cycle for night-time operation. CSP plants also have the capability alternative hybrid operation with fossil fuels, allowing them to provide firm power capacity on demand. The capacity of CSP plants can range from 5 MW to several hundred MW.

Three types of solar collectors are utilized for large-scale CSP power generation – Parabolic Trough, Fresnel and Central Receiver Systems. Parabolic trough systems use parabolic mirrors to concentrate solar radiation on linear receivers which moves with the parabolic mirror to track the sun from east to west. In a Fresnel system, the parabolic shape of the trough is split into several smaller, relatively flat mirror segments which are connected at different angles to a rod-bar that moves them simultaneously to track the sun. Central Receiver Systems consists of two-axis tracking mirrors, or heliostats, which reflect direct solar radiation onto a receiver located at the top of a tower.

Theoretically, all CSP systems can be used to generate electricity and heat.  All are suited to be combined with membrane and thermal desalination systems. However, the only commercially available CSP plants today are linear concentrating parabolic trough systems because of lower cost, simple construction, and high efficiency

CSP-Powered Desalination Prospects in MENA

A recent study by International Energy Agency found that the six biggest users of desalination in MENA––Algeria, Kuwait, Libya, Qatar, Saudi Arabia, and United Arab Emirates––use approximately 10 percent of the primary energy for desalination. Infact, desalination accounted for more than 4 percent of the total electricity generated in the MENA region in 2010. With growing desalination demand, the major impact will be on those countries that currently use only a small proportion of their energy for desalination, such as Jordan and Algeria.

The MENA region has tremendous wind and solar energy potential which can be effectively utilized in desalination processes. Concentrating solar power (CSP) offers an attractive option to power industrial-scale desalination plants that require both high temperature fluids and electricity.  CSP can provide stable energy supply for continuous operation of desalination plants based on thermal or membrane processes. Infact, several countries in the region, such as Jordan, Egypt, Tunisia and Morocco are already developing large CSP solar power projects.

Concentrating solar power offers an attractive option to run industrial-scale desalination plants that require both high temperature fluids and electricity.  Such plants can provide stable energy supply for continuous operation of desalination plants based on thermal or membrane processes. The MENA region has tremendous solar energy potential that can facilitate generation of energy required to offset the alarming freshwater deficit. The virtually unlimited solar irradiance in the region will ensure large-scale deployment of eco-friendly desalination systems, thereby saving energy and reducing greenhouse gas emissions.  

Several countries in the MENA region – Algeria, Egypt, Jordan, Morocco and Tunisia – have joined together to expedite the deployment of concentrated solar power (CSP) and exploit the region's vast solar energy resources. One of those projects is a series of massive solar farms spanning the Middle East and North Africa. Two projects under this Desertec umbrella are Morocco’s Ouarzazate Concentrated Solar Power plant, which was approved in late 2011, and Tunisia’s TuNur Concentrated Solar Power Plant, which was approved in January 2012. The Moroccan plant will have a 500-MW capacity, while the Tunisia plant will have a 2 GW capacity. Jordan is also making rapid strides with several mega CSP projects under development in Maa’n Development Area. 

Conclusions

Seawater desalination powered by concentrated solar power offers an attractive opportunity for MENA countries to ensure affordable, sustainable and secure freshwater supply. The growing water deficit in the MENA region is fuelling regional conflicts, political instability and environmental degradation. It is expected that the energy demand for seawater desalination for urban centres and mega-cities will be met by ensuring mass deployment of CSP-powered systems across the region. Considering the severe consequence of looming water crisis in the MENA region it is responsibility of all regional governments to devise a forward-looking regional water policy to facilitate rapid deployment and expansion of CSP and other clean energy resources for seawater desalination.

Republished by Blog Post Promoter

Plastic Upcycling Initiative in Egypt

The sheer volume of plastic waste generated coupled with energy and material resources required for production, as well as emissions resulting from these processes paint a grim picture of the environmental havoc created by plastic bags. Single-use plastic bags are a huge threat to the environment as an estimated 1 trillion such bags are consumed worldwide every year.

Plastic bags are notorious for their interference in natural ecosystems and for causing the death of aquatic organisms, animals and birds. In 2006, The United Nations Environment Programme estimated that there are 46,000 pieces of plastic litter floating in every square mile of ocean and upto 80 percent of marine debris worldwide is plastic which are responsible for the death of a more than a million seabirds and 100,000 marine mammals each year from starvation, choking or entanglement.

Re: Genuine Plastic Bags

The problems associated with single-use plastic bags forced two Egyptian youngsters – Yara Yassin and Rania Rafie – to think of a way of reusing plastic bags. Their upcycling venture, Re: Genuine Plastic Bags, makes innovative handbags sewn from throwaway plastic.  Re: Genuine plastic bag is a start up business that aims to recollect existing plastic bags and re-design them in a form of fashionable bags that can be used in day-to-day life, in order to prolong the life of plastic bags, thus producing lesser amount of wastes. They endeavor to create bags that are self-designed and meant for various kinds of stores, brand names, graphical elements and different lifestyles of consumers

The models are produced through a new technique of fusing plastic bags together. The new fused material becomes dryer and more firm, when left to dry, which takes maximum 40 seconds. The outcome is based on the thickness and type of plastic bags fused; if the plastic bag is too thin (LDPE), then it needs several layers to be fused without completely melting. The outcome is also imprecise, as it may shrink from the heat, and maintaining a straight line is almost impossible.

Yara and Rania feel that the eco-friendly bags are a great way to motivate people towards behavioral change, especially in the Middle East. More information about Re: Genuine Plastic Bags can be found at this link

Republished by Blog Post Promoter

Asbestos Waste Management in MENA

Each year countries from the Middle East and North Africa import large amount of asbestos for use in the construction industry. As per the last known statistics, the Middle East and Africa accounted for 20% of world demand for the material. Iran and the United Arab Emirates are among the biggest consumers of the material. Infact, the entire Middle East has been steadily increasing their asbestos imports, except for Egypt and Saudi Arabia, which are the only two countries that have placed bans on asbestos but with questionable effectiveness. Iran alone has been reported to order 30,000 tons of asbestos each year. More than 17,000 tonnes of asbestos was imported and consumed in the United Arab Emirates in 2007. 

Fallouts from Wars and Revolutions

Asbestos is at its most dangerous when exposed to people who are not protected with masks and other clothing. In times past, such considerations were not thought about. At the moment, most people think of asbestos exposure as part of the construction industry. This means demolition, refurbishment and construction are the prime times that people can be exposed to the fibres.

In the Middle East and North Africa, however, turbulent times have increased the danger of exposure for people across the region. Since 2003, there has been the Iraq War, revolutions in Egypt, Libya and Tunisia, plus the uprising in Syria. Not to mention a raft of conflicts in Lebanon, Palestine and Israel. The upshot of this is that a building hit by an explosive, which contains asbestos, is likely to put the material in the local atmosphere, further endangering the lives of nearby.

Asbestos Waste Management

In many countries around the world companies, institutions and organizations have a legal responsibility to manage their waste. They are banned from using substances that are deemed hazardous to the general public. This includes a blanket ban on the use of asbestos. Where discovered it must be removed and dealt with by trained individuals wearing protective clothing. In the Middle East and North Africa, it is vitally important for there to be the development of anti-asbestos policies at government and business levels to further protect the citizens of those countries.

Not a single Middle East country has ratified International Labour Organization Law Number 162, which was instituted at the 1986 Asbestos Convention. The ILO No. 162 outlines health and safety procedures related to asbestos, including regulations for employers put forth in an effort to protect the safety of all workers. Asbestos waste management in the MENA region needs to take in several distinct action phases. Education and legislation are the first two important steps followed by actual waste management of asbestos. 

Largely speaking, the MENA region has little or no framework systems in place to deal with this kind of problem. Each year more than 100,000 people die worldwide due to asbestos-related diseases and keeping in view the continuous use of asbestos use in the region, it is necessary to devise a strong strategy for phasing out of asbestos from the construction industry.

Future Strategy

Many may argue that there is still a philosophical hurdle to overcome. This is why education must go in tandem with legislation. As of 2006, only Egypt and Saudi Arabia had signed up to a ban on asbestos. Even then, there is evidence of its continued use. Whether as part of official pronouncements or in the papers, on the TVs or in schools, it is vitally important that bans are backed up with information so the general public understand why asbestos should not only be banned, but removed. It is important that other countries consider banning the material and promoting awareness of it too.

Governments have the resources to open up pathways for local or international companies to begin an asbestos removal programme. In many places education will be required to help companies become prepared for these acts. Industrial asbestos removal begins with a management survey to identify what asbestos materials are in a building and where. This is followed up by a refurbishment and pre-demolition survey to best see how to remove the asbestos and replace it with better materials. These come in tandem with risk assessments and fully detailed plans.

Asbestos management cannot be completed without such a survey. This may prove to be the most difficult part of implementing widespread asbestos waste management in the Middle East and North Africa. Doing so will be expensive and time consuming, but the alternative is unthinkable – to rip out the asbestos without taking human safety into account. First, therefore, the infrastructure and training needs to be put into place to begin the long work of removing asbestos from the MENA region.

Republished by Blog Post Promoter

Agricultural Scenario in MENA

Agriculture plays an important role in the economies of most of the countries in the Middle East and North Africa.  The contribution of the agricultural sector to the overall economy varies significantly among countries in the region, ranging from about 3.2 percent in Saudi Arabia to 13.4 percent in Egypt.  Large scale irrigation is expanding, enabling intensive production of high value cash and export crops, including fruits, vegetables, cereals, and sugar.

Egypt is the 14th biggest rice producer in the world and the 8th biggest cotton producer in the world. Egypt produced about 5.67 million tons of rice and 635,000 tons of cotton in 2011. The area of cotton crop cultivation accounts for about 5% of the cultivated area in Egypt. The total amount of crop residues is about 16 million tons of dry matter per year. Cotton residues represent about 9% of the total amount of residues. These are materials comprising mainly cotton stalks, which present a disposal problem.

Although the Kingdom of Saudi Arabia is widely thought of as a desert, it has regions where the climate has favored agriculture. By implementing major irrigations projects and adopting large scale mechanization, Saudi Arabia has made great progress in developing agricultural sector. The Kingdom has achieved self-sufficiency in the production of wheat, eggs, and milk, among other commodities, though it still imports the bulk of its food needs. Wheat is the primary cultivated grain, followed by sorghum and barley. Dates, melons, tomatoes, potatoes, cucumbers, pumpkins, and squash are also important crops.

Despite the fact that MENA is the most water-scarce and dry region worldwide, many countries across the region, especially those around the Mediterranean Sea, are highly dependent on agriculture.  For example, the Oum Er Rbia River basin contains half of Morocco’s public irrigated agriculture and produces 60 percent of its sugar beets, 40 percent of its olives, and 40 percent of its milk.

Agricultural output is central to the Tunisian economy. Major crops are cereals and olive oil, with almost half of all the cultivated land sown with cereals and another third planted. Tunisia is one of the world's biggest producers and exporters of olive oil, and it exports dates and citrus fruits that are grown mostly in the northern parts of the country.

Agriculture in Lebanon is the third most important sector in the country after the tertiary and industrial sectors. It contributes nearly 7% to GDP and employs around 15% of the active population. Main crops include cereals (mainly wheat and barley), fruits and vegetables, olives, grapes, and tobacco, along with sheep and goat herding.

Republished by Blog Post Promoter

Agricultural Biomass in MENA

 

Agriculture plays an important role in the economies of most of the countries in the Middle East and North Africa region.  Despite the fact that MENA is the most water-scarce and dry region in the world, many countries in the region, especially those around the Mediterranean Sea, are highly dependent on agriculture.  The contribution of the agricultural sector to the overall economy varies significantly among countries in the region, ranging, for example, from about 3.2 percent in Saudi Arabia to 13.4 percent in Egypt.  Large scale irrigation coupled with mechanization has enabled entensive production of high-value cash crops, including fruits, vegetables, cereals, and sugar in the Middle East.

The term ‘crop residues’ covers the whole range of biomass produced as by-products from growing and processing crops. Crop residues encompasses all agricultural wastes such as bagasse, straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. Wheat and barley are the major staple crops grown in the Middle East region. In addition, significant quantities of rice, maize, lentils, chickpeas, vegetables and fruits are produced throughout the region, mainly in Egypt, Tunisia, Saudi Arabia, Morocco and Jordan. 

Egypt is the one of world's biggest producer of rice and cotton and produced about 5.67 million tons of rice and 635,000 tons of cotton in 2011. Infact, crop residues are considered to be the most important and traditional source of domestic fuel in rural Egypt. The total amount of crop wastes in Egypt is estimated at about 16 million tons of dry matter per year. Cotton residues represent about 9% of the total amount of residues. These are materials comprising mainly cotton stalks, which present a disposal problem. The area of cotton crop cultivation accounts for about 5% of the cultivated area in Egypt.

Agricultural output is central to the Tunisian economy. Major crops are cereals and olive oil, with almost half of all the cultivated land sown with cereals and another third planted. Tunisia is one of the world's biggest producers and exporters of olive oil, and it exports dates and citrus fruits that are grown mostly in the northern parts of the country.

To sum up, large quantities of crop residues are produced annually in the region, and are vastly underutilised. Current farming practice is usually to plough these residues back into the soil, or they are burnt, left to decompose, or grazed by cattle. These residues could be processed into liquid fuels or thermochemically processed to produce electricity and heat in rural areas. Energy crops, such as Jatropha, can be successfully grown in arid regions for biodiesel production. Infact, Jatropha is already grown at limited scale in some Middle East countries and tremendous potential exists for its commercial exploitation.

Republished by Blog Post Promoter

Sustainability in MENA Cement Industry

The population in the MENA countries has doubled during the last 30 years (from ca. 110m in 1980 to almost 220m in 2010). As per conservative estimates, the rate of urbanisation in the MENA countries will exceed 70% five years from today (average for all developing countries: 54%). The proceeding urbanisation and the population increase involve several problems and challenges for the national governments and also for the cement industry. The cement production of countries in the MENA region has almost tripled during the last 15 years up to approximately 500m tons  Since the start of national revolts and demonstrations in MENA countries in 2011 the problems of especially young Arabs have attracted the attention worldwide.

Environmental problems that accompany a fast growing population and increasing urbanisation are, among others, increasing consumption of energy and raw materials, increasing land use in order to satisfy the increasing food demand, infrastructure development, disposal of increasing amounts of waste and development of sewage systems. Solving these generation spanning problems is a challenging task for the national governments.

Naturally, such high growth rates also affect the cement industry. In the MENA countries it consists of various companies, part of them listed on the stock exchange. A number of cement companies has, partly for cost aspects, responded to the negative consequences of the rapid population growth. The following paragraphs describe the cement industry’s approaches to push a sustainable development in certain sectors. They are partly driven by own responsibility and partly by regulations of the national governments. In this context it should be mentioned that the growth of the cement industry is already partly limited by factors that are directly connected with sustainability and raw material supply.

Although the factors differ from country to country and cannot be generalised, there are a few major concerns, for example:

  • Fuel shortage
  • Dependence on oil
  • Lack of investment in innovations

Let’s have a closer look on the limiting factors and innovation potential based on practical examples.

Saudi Arabia

In many industrialised countries the continuous and tailored supply of the industry with fossil fuels is only a question of price.  But the fact that of all countries, it was cement plants in the own country that repeatedly reported shortages of fossil fuel supply (heavy fuel oil), was certainly an important reason for the government to get closely involved in this matter.

Cement producers in the Kingdom of Saudi Arabia obtain state-subsidised natural gas at a price of US$ 0.75/mmbtu from the state-owned oil company “Saudi Aramco”. Formerly, the cement production costs resulting thereof were on average US$ 28.8/ton of cement (costs in neighbouring countries: Kuwait US$ 59.2/ton, UAE US$ 47.8/ton, Oman US$ 37.0/ton) which made it redundant to deal with the topic of energy. In India, a country with one of the highest energy costs in the world, the production of one ton of cement costs US$ 70.0/ton in 2010.

Due to such low energy prices and a steadily growing demand the production capacities grew constantly. Currently, the industry accounts for approximately 40% of the overall energy demand of the country. Analysts estimate that this demand will even double within the next 15 years. However, it is planned to reduce this disproportionate energy demand of the industry.

Under the patronage of HRH Prince Abdulaziz bin Salman, the state-owned oil company “Saudi Aramco” is developing a so-called “Mandatory Energy Efficiancy Program” (MEEP) for the entire Saudi-Arabian industry. The plan of MEEP is to “establish mandatory policies and regulations with the objective of reducing existing and future energy consumption levels in the industrial sector”.

For the national cement industry this approach implies investments in energy-saving measures. Key points for an energy-efficient industry are identified as

  • Use of alternative raw materials
  • Use of alternative fuels
  • Training and education in energy efficiency

As the use of alternative fuels and raw materials is not yet common in the Kingdom of Saudi Arabia, guidelines and a regulatory framework have to be defined which set standards for the use of alternative or waste-derived fuels like municipal solid wastes, dried sewage sludge, drilling wastes and others. It has to include:

  • Types of wastes and alternative fuels that may be used by the cement industry
  • Standards for the production of waste-derived fuels
  • Emission standards and control mechanisms while using alternative fuels
  • Standards for permitting procedures

Appropriate standards also need to be established for alternative raw materials that are to be used for clinker and cement production. In order to achieve an energy-efficient production special education, further training and workshops for the involved staff have to be carried out.

Egypt

The current political developments in Egypt influence the local cement industry significantly. The government expects additional sources of revenue on the one hand from selling licences for the construction of new cement plants and on the other hand from a reduction of subsidies for fossil fuels. Since these news are not a surprise for the local cement plants, they started to invest in the implementation of alternative – mostly biomass-derived fuels. One of them is CemexAssiut that not only started using different kinds of biomass, but also, most notably and exemplary, established plantations for the production of biomass (here: “Casuarina”) that are irrigated with pretreated sewage water from the city Assiut.

Egypt is the 14th biggest rice producer in the world and the 8th biggest cotton producer in the world. Egypt produced about 5.67 million tons of rice and 635,000 tons of cotton in 2011. The area of cotton crop cultivation accounts for about 5% of the cultivated area in Egypt. The total amount of crop residues is about 16 million tons of dry matter per year. Cotton residues represent about 9% of the total amount of residues. Such high production rates should be welcomed by the cement industry since these materials comprise cotton stalks, rice husks and rice straw which serve ideally as alternative fuels.

The use of waste-derived alternative fuels is, however, more complicated. Although for example Cairo produces some 15,000 tons of waste each day, it is not easy for the cement plants to obtain this waste since they are in direct competition with the informal sector that controls approx. 60% of the local waste total. So-called Zabbaleen or scavengers – mostly young people who do not have other options – make their living by collecting and selling waste-derived recyclables.

Tunisia

Some years ago, Tunisia already invested in the establishment of an organised waste management system in form of a state-owned agency named “ANGED”. Funded by the national German KfW development bank, numerous waste collection points as well as organised landfills have been built. Additionally, a special collection centre for hazardous waste was erected in Jradou. This centre was operated by MVW Lechtenberg’s Partner Nehlsen AG, the German Waste Management Group, collecting and processing wastes like used oils and solvents. Such wastes are ideal alternative fuels. A fact that is also known to the local cement companies that planned to use them in their plants. Unfortunately, due to public opposition the centre was closed and the projects for the processing of alternative fuels have been suspended since then.

Tunisia is one of the biggest producers and exporters of olive oil in the world. It also exports dates and citrus fruits that are grown mostly in the northern parts of the country. It seems paradox that for example olive kernels – the waste from Tunisian olive production – is exported to European power plants in order to save fossil fuel-derived CO2 emissions there, while Tunisia imports approximately 90% of its energy demand, consisting of fossil fuel.

Morocco

The Moroccan cement industry has already achieved a greater success regarding the use of alternative fuels. Cement plants, mostly owned by the international companies Lafarge, Cimpor, Holcim and Italcimenti, already invested years ago in the environmentally friendly use of alternative fuels and alternative raw materials due to the development of world market prices. Also the only local competitor, CIMAT, has started preparing for the implementation of alternative fuels immediately after completion of its new plant (a 5-stage double string calciner from Polysius) in Ben Ahmed, near Casablanca.

In the year 2003 an agreement on the use and import of alternative fuels (used tyres at the time) was made between the Association Professionelle de Ciment and Moroccan government. Since last year attempts are being made to agree on an industry regulation that sets standards for the use of all appropriate special waste available in Morocco.

United Arab Emirates

The United Arab Emirates, represented by Dr. Rashid Ahmad Bin Fahd, Minister of Environment and Water, recently issued a decision streamlining the activities of cement plants all over the country. The resolution will affect all existing and new cement factories across the country. Its provisions obligate the industry to prepare a report assessing the impact of cement plants on the environment.

According to the decision, this report has to be prepared by a consulting firm having expert knowledge regarding environmental protection in the cement industry. This is certainly the first step to evaluate the current situation which will be followed by an investigation of alternatives towards a sustainable development. Interest in the implementation of alternative fuels already exists among the national cement industry which is proven not least by the numerous planned investment projects.

Conclusions

The cement industry in the MENA region will change significantly within the next years. This change will focus on the improvement of energy efficiency and on the increased use of alternative raw materials and alternative fuels. This will include high investments in technology and in the human resources sector where the creation of new jobs, especially in the field of environmentally friendly and sustainable development, provides a perspective for the growing, young population of the MENA countries.

Republished by Blog Post Promoter

Egypt’s Water Crisis and Degeneration of Nile

pollution-nileEgypt is struggling to cope with water shortages and food production. It is expected that Egypt’s per capita annual water supply will drop from 600 cubic meters today to 500 cubic meters by 2025, which is the UN threshold for absolute water scarcity. Egypt has only 20 cubic meters per person of internal renewable freshwater resources, and as a result the country relies heavily on the Nile for its main source of water. Water scarcity has become so severe that it has been recorded that certain areas in the country could go days without water, with pressure sometimes returning only for a few hours a week. The country can no longer delay action and must act now.

Agriculture

Agriculture contributes roughly 15% of Egypt’s GDP, and employs 32% of Egypt’s workforce with rice being the biggest produce in the country. Rice is an important part of an Egyptian family’s diet. However, the cultivation of rice is very water intensive. On average about 3000 liters of water is used to produce 1 kilo of rice. This number can vary depending on climate, soil type and water management practices.

The government has restricted cultivation of rice to an area of 1 million acres (farmers were previously able to use most of the Nile Delta for cultivation) in specified areas of the Nile Delta. The government has even resorted to taking drastic measures as spreading incendiary compounds on rice fields cultivated outside the area allocated by the government. This has caused outrage and demonstrations by farmers who insist that the area allocated is not enough for them to be able to make ends meet. This type of tension caused by the lack of water was one of the catalysts of the Arab Spring in 2011/2012.

To alleviate population tension and unrest the government has been trying to increase water supply by exploring with reusing treated agricultural and municipal wastewater for agriculture. However implementation of such initiatives is not being applied fast enough to cope with the rising demand. Government must enforce new irrigation methods in the country (Egyptian farmers still rely heavily on flood and canal irrigation in the Nile Delta) as well as smart agricultural practices such as using less water intensive crops. Resorting less water intensive water crops could drastically cut water used in agriculture and help increase water supply.

Pollution of the Nile

The Nile has been a lifeline for Egypt at least since the time of the pharaohs. Yet, despite the world’s largest river’s importance to the country, its water is being polluted by various sources, and pollution levels increasing exponentially in recent years.

The degeneration of the Nile is an issue that is regularly underestimated in Egypt. With so many people relying on the Nile for drinking, agricultural, and municipal use, the quality of that water should be of most importance. The waters are mainly being polluted by municipal and industrial waste, with many recorded incidents of leakage of wastewater, the dumping of dead animal carcasses, and the release of chemical and hazardous industrial waste into the Nile River.

Industrial waste has led to the presence of metals (especially heavy metals) in the water which pose a significant risk not only on human health, but also on animal health and agricultural production. Fish die in large numbers from poisoning because of the high levels of ammonia and lead. Agricultural production quality and quantity has been affected by using untreated water for irrigation as the bacteria and the metals in the water affect the growth of the plant produce, especially in the Nile Delta where pollution is highest.

Industrial pollution is wrecking havoc in Nile

Industrial pollution is wrecking havoc in Nile

Of course the pollution of Nile is a complex problem that has been continuing for more than 30 years and the government is trying to implement stricter rules on the quality and type of waste/wastewater dumped into the river to reduce the pollution of the Nile. However, swift and decisive action must be taken towards cleaning the Nile, such as treating the wastewater prior to disposal, and placing stricter restrictions on industries to dispose of their waste safely and responsibly. This issue cannot be ignored any further as the continual increase in population will cause an increase in demand on Egypt’s dwindling water resources. Every drop of water counts.

The Blue Nile Dam

Another challenge at hand is tackling the issue of Ethiopia building a dam and hydroelectric plant upstream that may cut into Egypt’s share of the Nile. For some time a major concern for Egypt was Ethiopia’s construction of the Grand Ethiopian Renaissance Dam (GERD) in the Blue Nile watershed, which is a main source of water for the Nile River. Construction of the Renaissance Dam started in December 2010, and has the capacity to store 74 to 79 billion cubic meters of water and generate 6,000 megawatts of electricity for Ethiopia a year. This creates major concern for Egypt, who is worried that this damn would decrease the amount of water it receives (55.5 billion cubic meters) from the Nile River. Egypt is concerned that during dry months, not enough water will be released from the GERD thus decreasing the water received downstream. This will greatly hinder Egypt’s attempts to alleviate the water shortages during those months.

Earlier this year, Egypt, Ethiopia and Sudan assigned two French companies to prepare a report on the impact of the dam on the three countries. This report will clarify the affects the Dam will have on downstream countries. The results of this report are yet to be released. 

Conclusion

In case of business-as-usual scenario, Egypt runs the risk of becoming an absolute water scarce country in less than a decade. Therefore Egypt has a battle on its hands to ensure adequate conditions for its population. Like many other water scarce countries around the world, it needs to mitigate water scarcity by implementing smart conservation techniques, adopting water saving technologies, and control water pollution. With climate conditions expected to get drier and heat waves expected to become more frequent in the MENA region, Egypt cannot afford to neglect its water conservation policies and must act immediately to meet the population’s water demand.

 

Sources of Information

http://www.ecomena.org/egypt-water/

http://www.mfa.gov.eg/SiteCollectionDocuments/Egypt%20Water%20Resources%20Paper_2014.pdf

http://www.waterhistory.org/histories/nile/nile.pdf

http://planetearthherald.com/egypt-faces-water-crisis-the-end-of-the-nile-as-we-knew-it/

https://www.theguardian.com/world/2015/aug/04/egypt-water-crisis-intensifies-scarcity

http://english.alarabiya.net/en/views/news/middle-east/2016/04/30/Egypt-must-preserve-its-lifeline-by-tackling-the-water-crisis-now.html

http://bigstory.ap.org/article/476db2e5769344c48997d41eb319bf64/egypt-looks-avert-water-crisis-driven-demand-waste

http://www.presstv.com/Detail/2016/06/14/470358/Egypt-water-crisis-street-protests-Dakahlia-North-Sinai

http://phys.org/news/2016-04-egypt-avert-crisis-driven-demand.html

http://www.al-monitor.com/pulse/originals/2016/06/egypt-crops-water-crisis-state-emergency.html

https://tcf.org/content/report/egyptian-national-security-told-nile/

http://www.al-monitor.com/pulse/originals/2016/04/egypt-water-minister-interview-nile-drought-ethiopia-sudan.html

http://ecesr.org/wp-content/uploads/2015/01/ECESR-Water-Polllution-En.pdf

http://www.al-monitor.com/pulse/originals/2015/05/egypt-nile-water-pollution-phosphate-ammonia-fish-drinking.html

http://www.aqua-waterfilter.com/index.php/en/articles/water-pollution/61-water-pollution-in-egypt.html

https://www.ukessays.com/essays/environmental-studies/water-pollution-in-egypt.php

https://usarice.com/blogs/usa-rice-daily/2015/08/28/egypt-bans-rice-exports-as-of-september-1

http://www.knowledgebank.irri.org/ericeproduction/III.1_Water_usage_in_rice.htm

http://www.al-monitor.com/pulse/en/originals/2016/04/egypt-ethiopia-drought-renaissance-dam-conflict.html

http://phys.org/news/2010-11-rice-production-withers-egypt.html

http://www.al-monitor.com/pulse/originals/2016/06/egypt-crops-water-crisis-state-emergency.html

http://www.salini-impregilo.com/en/projects/in-progress/dams-hydroelectric-plants-hydraulic-works/grand-ethiopian-renaissance-dam-project.html

http://www.juancole.com/2016/06/conflict-ethiopias-renaissance.html

Waste Management Perspectives for Egypt

Egypt occupies 7th position in the list of countries with the most mismanaged plastic waste, according to a recent report published in Science magazine. The report was based on data collected in 2010 and one must wonder whether the results of the report would have been different if the zabbaleen had been allowed to continue their work unhindered.

A History of the Zabbaleen

The zabbaleen, or garbage collectors, are the descendants of farmers from Upper Egypt who moved to Cairo in the 1940s. Together with another migrant group, they have made a living in Cairo collecting, sorting, salvaging, and recycling the waste of the city's nearly 20 million residents. With the help of NGOs, the zabbaleen recycled up to 80% of the waste they collected, more than three times the amount of waste recycled by garbage collectors in major cities in developed nations. The zabbaleen collected the garbage free of charge; they were part of Cairo's informal public sector. Their work was not supported by the government. Their income came from selling the recyclable material and from the pigs they raised on the organic waste. Many residents also gave monetary tips to the garbage collectors. This meager income barely supported the zabbaleen, who live together in different settlements around the city, all of them extremely poor.

Believing the zabbaleen's system to be backwards and unhygienic, in 2003, the government sold contracts to three multinational companies (and one local company) to collect Cairo's waste, pushing the zabbaleen out of the system. These companies were required to recycle only 20% of the waste collected, the other 80% making its way to landfills. It did not take long for residents to complain about this new service. They now had to pay for their garbage collection and that did not include door-to-door pick-up. There were not enough bins in the streets to hold all the waste and streets quickly filled with the overflowing garbage. The new companies simply could not keep up with the waste being produced. Not only did this have a devastating effect on the waste management situation in Cairo, it destroyed the zabbaleen's way of life as they lost access to the garbage that was the foundation of their economic activities. At one point, the private companies realized they needed the zabbaleen and tried to subcontract them, but the zabbaleen were highly underpaid and the system failed. Some residents, though, continued to hire the zabbaleen on their own.

Adding to both the city's garbage woes and the plight of the zabbaleen, in 2009, in response to the H1Ni influenza outbreak, the government ordered the culling of all the zabbaleen's pigs. These pigs were an essential part of the zabbaleen's recycling program. The pigs consumed all of the organic waste that was sorted from the garbage. When they lost their pig herds, the zabbaleen stopped collecting organic waste and the effect was felt almost immediately. Again, residents complained about the trash piling up on the streets. The trash piles became home to rats and disease. And once again, the zabbaleen suffered as they were no longer able to earn enough money to support themselves and had lost an important food source.

Change is in the Air

Since the 2011 revolution, many changes have taken place in Egypt, spurred on by environmentally-minded individuals, small businesses, and new government ministers. One of the more hopeful changes involves the collection of garbage. The government has finally implemented a proposal for officially employing the zabbaleen, replacing the international companies with smaller zabbaleen-run companies. Once registered, the local companies are given uniforms, government vehicles and business training from an NGO. The system had a test-run and debuted in a few areas late last year. If successful, there are plans to expand over the next two years. This is good news for Cairo's waste management and even better news for the zabbaleen.

Other private-sector initiatives are tackling recycling as well.  Recyclobekia is a new company that offers electronic waste recycling services. The company collects, sorts, and dismantles e-waste – old laptops, computers, cameras, phones, and more – and in return companies and individuals are given credit for an online shop or even cash if they recycle more than 500 kg of waste. GreenTec is an exciting recycling initiative that offers Automated Recycling Machines. With these machines, individuals can deposit their plastic water bottles and receive credit for their mobile phones. Another new venture coming out of Cairo is Refuse, a company that upcycles plastic bags and creates backpacks, tote bags, laptop covers, and other accessories with this waste. They also offer workshops to teach others how to upcycle.  Gamayit El-Misbah El-Mudii, started in 2005, provides free collection and recycling of paper, plastic, glass, and other items. They collect from individuals, schools, and businesses. Resala, a charity organization, also offers recycling services. As these initiatives and companies continue to grow, so will the awareness and action of individuals in terms of waste management and recycling.

Individual Action

While our local and national authorities attempt to improve the collection and recyling of our waste at the city level, it is important to remember that we as individuals can do a lot as well. The first and simplest action we can take it to sort our trash into organic and non-organic waste. Our garbage collectors, whoever they may be, will appreciate this effort and it will keep any paper or board waste clean so that it can be recycled. Once you've sorted your trash, make sure it's getting recycled. If the zabbaleen do not collect in your area, contact one of the organizations listed above. The most important action we can take is to reduce the amount of waste we are creating in the first place. Less waste produced means less waste needing to be managed. We can start by refusing to use or purchase disposable plastic. Bring your own reusable bags to the supermarket so that you don't need the plastic ones. Invest in a water filter and a reusable bottle so you can drink your tap water and skip the plastic water bottles. Avoid buying food packaged with polystyrene; it's not recyclable. Read this guide to a plastic-free life and search other websites for tips and ideas on reducing plastic waste. You'll find that most of the suggestions will be better for your health and the health of our environment, and at the same time, save you money. If we all do our part by taking these steps, perhaps Egypt won't make the top ten list of worst plastic offenders again.

Republished by Blog Post Promoter