Waste Management Outlook for Qatar

Qatar is counted among the world’s fastest growing economies as well as richest countries in the world. The rapid industrialization of the country and high population growth generates a lot of wastes in the form of municipal wastes, construction & demolition debris, industrial wastes etc. Annual solid waste generation in Qatar has crossed 2.5 million tons, which corresponds to daily waste generation of more than 7,000 tons per day. The country has one of the highest per capita waste generation worldwide which ranges from 1.6 to 1.8 kg per day.

Solid Waste Management Scenario

Solid waste is mainly comprised of organic materials while the rest of the waste is made up of recyclables like glass, paper, metals and plastics. Waste is collected from across the country and predominantly disposed off in landfills. There are three landfills in Qatar; Umm Al-Afai for bulky and domestic waste, Rawda Rashed for construction and demolition waste, and Al-Krana for sewage wastes. This method of waste disposal by landfill is not a practical solution for a country like Qatar where land availability is limited and only 8% of the waste is recycled.

One of the promising developments in solid waste management sector in recent years has been the creation of Domestic Solid Waste Management Centre (DSWMC) at Mesaieed. This centre is designed to maximize recovery of resources and energy from waste by installing state-of-the-art technologies for separation, pre-processing, mechanical and organic recycling, and waste-to-energy and composting technologies. It will treat 1550 tons of waste per day, and is expected to generate enough power for in-house requirements, and supply a surplus of 34.4 MW to the national grid. 

Government Strategy

The Qatar Government has identified the need for better waste management and has made plans to address this issue in Qatar National Development Strategy 2011-2016. According to this plan the Government proposes to contain the levels of waste generated by households, commercial sites and industry and to recycle much more of the waste generated. Accordingly, the plan prioritizes actions to reduce the pressure on the environment, with the most preferable goal being the avoidance of waste. Where waste cannot be avoided, the preferred goals would be to reduce it, reuse it and recycle it, and the least desirable action is to dispose of materials.

The plan also proposes to initiate new policies to encourage firms to export recycled items and manufacturers to use recycled material. The Government is to consider providing subsidies to encourage more firms to enter the recycling business and public awareness campaigns to encourage waste separation. It also plans to improve collection networks and to provide recycling bins.

To generate new recycling activity sponsored demonstrations and public awareness activities are planned. Citizens will be made aware of the opportunity to use recycled products, such as furniture made from recycled wood or compost produced daily in Mesaieed. Citizens are to be encouraged to see waste reduction and recycling as a duty with the welfare of future generations in mind.

The critical step in establishing a solid waste management plan will be to coordinate responsibilities, activities and planning. The plan, to be aligned with the Qatar National Master Plan, will cover households, industry and commercial establishments, and construction and demolition. The plan will also provide classifications for different types of domestic and non- domestic waste, mapping their sources.

Future Perspectives

When the Qatar National Development Strategy 2011-2016 was conceived, the plant at Mesaieed might have been seen as an ideal solution, but by the time the project was completed the capacity of the plant to handle waste has been overwhelmed. The centre in Mesaieed can treat only 1550 tons of the 7000 tons generated everyday and this is only going to increase in future. Qatar needs a handful of such centers in order to tackle the growing menace of urban wastes.

While steps are being taken to handle waste generated in future, the Government needs to focus on creating mass awareness about 4Rs of waste management viz. Reduce, Reuse, Recycle and Recovery. If this can be achieved then the public can be expected to play its part in helping to reduce the generation of waste and in recycling waste by making the process easier by segregating waste at the source. The public needs to be made aware of its responsibility and duty to the future generations. Since Qatar is predominantly a Muslim country, the government may also take help of Islamic scholars to motivate the population to reduce per capita waste generation.

Improvement in curbside collection mechanism and establishment of material recovery facilities and recycling centres may also encourage public participation in waste management initiatives. After a period of public education and demonstration, segregation-at-source needs to be implemented throughout the country. Legislation needs to be passed to ensure compliance, failure of which will attract a penalty with spot checks by the Government body entrusted with its implementation.

Republished by Blog Post Promoter

Renewable Energy in GCC: Need for a Holistic Approach

The importance of renewable energy sources in the energy portfolio of any country is well known, especially in the context of energy security and impacts on climate change. The growing quest for renewable energy and energy efficiency in the Gulf Cooperation Council (GCC) countries has been seen by many as both – a compulsion to complement the rising energy demand, and as an economic strength that helps them in carrying forward the clean energy initiatives from technology development to large scale deployment of projects from Abu Dhabi to Riyadh.

Current Scenario

The promotion of renewable energy (RE) is becoming an integral part in the policy statements of governments in GCC countries. Particular attention is being paid to the development and deployment of solar energy for various applications. Masdar is a shining example of a government’s commitment towards addressing sustainability issues through education, R&D, investment, and commercialization of RE technologies. It not only has emerged as the hub of renewable energy development and innovation but is also acting as a catalyst for many others to take up this challenge.

With the ongoing developments in the clean energy sphere in the region, the growing appetite for establishing clean energy market and addressing domestic sustainability issues arising out of the spiralling energy demand and subsidized hydrocarbon fuels is clearly visible. Saudi Arabia is also contemplating huge investments to develop its solar industry, which can meet one-third of its electricity demand by the year 2032. Other countries are also trying to reciprocate similar moves. While rationalizing subsidies quickly may be a daunting task for the governments (as for any other country, for that matter, including India as well), efforts are being made by UAE to push RE in the supply mix and create the market.

Accelerating Renewable Energy Growth

However, renewable energy initiatives are almost exclusively government-led projects. There is nothing wrong in capitalizing hydrocarbon revenue for a noble cause but unless strong policies and regulatory frameworks are put in place, the sector may not see viable actions from private players and investors. The present set of such instruments are either still weak or absent, and, therefore, are unable to provide greater comfort to market players. This situation may, in turn, limit the capacity/flexibility to reduce carbon footprints in times to come as government on its own cannot set up projects everywhere, it can only demonstrate and facilitate.

In this backdrop, it is time to soon bring in reforms that would pave way for successful RE deployment in all spheres. Some of the initiatives that need to be introduced or strengthened include:

  • Enabling policies for grid connected RE that should cover interconnection issues between RE power and utilities, incentives, facilitation and clearances for land, water, and environment (wherever relevant); and
  • Regulatory provisions relating to – setting of minimum Renewable Purchase Obligation (RPO) to be met, principles of tariff determination for different technologies, provisions for trading in RE, plant operation including scheduling (wherever relevant), and evacuation of power.
  • Creation of ancillary market for effectively meeting the grid management challenges arising from intermittent power like that from solar and wind, metering and energy accounting, protection, connectivity code, safety, etc.

For creating demand and establishing a thriving market, concerted efforts are required by all the stakeholders to address various kinds of issues pertaining to policy, technical, regulatory, and institutional mechanisms in the larger perspective. In the absence of a strong framework, even the world’s most visionary and ambitious project Desertec which  envision channeling of solar and wind power to parts of Europe by linking of renewable energy generation sites in MENA region may also face hurdles as one has to deal with pricing, interconnection, grid stability and access issues first. This also necessitates the need for harmonization in approach among all participating countries to the extent possible.

Conclusions

It is difficult to ignore the benefits of renewable energy be it social, economic, environmental, local or global. Policy statements are essential starting steps for accelerating adoption of clean energy sources including smaller size capacity, where there lies a significant potential. In GCC countries with affluent society, the biggest challenge would be to create energy consciousness and encourage smarter use of energy among common people like anywhere else, and the same calls for wider application of behavioural science in addressing a wide range of sustainability issues.

Republished by Blog Post Promoter

Green Building Rating Systems in MENA

Green buildings not only contribute towards a sustainable construction and environment but also bring lots of benefits and advantages to building owners and users. Lower development costs, lower operating costs, increased comforts, healthier indoor environment quality, and enhanced durability and less maintenance costs are hallmarks of a typical green building.

A wide range of green building rating and assessment systems are used around the world, including LEED and BREEAM. Sustainability is now a top priority in MENA region and countries like Qatar and UAE have come up with their own green building rating system to incorporate socio-economic, environmental and cultural aspects in modern architecture.

Global Sustainability Assessment System (Qatar)

The Global Sustainability Assessment System (GSAS), formerly known as the Qatar Sustainability Assessment System (QSAS), was developed in 2010 by Gulf Organization for Research and Development (GORD) in collaboration with T.C. Chan Center at the University of Pennsylvania. GSAS aims at creating a sustainable urban environment to reduce environmental impacts of buildings while satisfying local community needs. 

GSAS is billed as the world’s most comprehensive green building assessment system developed after rigorous analysis of 40 green building codes from all over the world. The most important feature of GSAS is that it takes into account the region’s social, economic, environmental and cultural aspects, which are different from other parts of the world. Several countries in the MENA region, such as Saudi Arabia, Kuwait, Jordan and Sudan, have shown keen interest in the adoption of GSAS as unified green building code for the region.

Qatar has incorporated QSAS into Qatar Construction Standards 2010 and it is now mandatory for all private and public sector projects to get GSAS certification. GSAS combines 140 building sustainability assessment mechanisms and is divided into eight categories including urban connectivity, site, energy, water, materials, indoor environment, cultural and economic value and management and operations. Each category of the system will measure a different aspect of a project’s environmental impact. Each category is broken down into specific criteria that measure and define individual issues. A score is then awarded for each category on the basis of the degree of compliance.

Pearl Rating System (Abu Dhabi)

The Pearl Rating System (PRS) is the green building rating system for the emirate of Abu Dhabi designed to support sustainable development from design to construction to operational accountability of communities, buildings and villas. It provides guidance and requirements to rate potential performance of a project with respect to Estidama (or sustainability).

The Pearl Rating System is an initiative of the part of the government to improve the life of people living in Abu Dhabi, by focusing on cultural traditions and social values. The rating system is specifically tailored to the hot and arid climate of Abu Dhabi which is characterized by high energy requirements for air-conditioning, high evaporation rates, infrequent rainfall and potable water scarcity.

The Pearl Rating System has various levels of certification. ranging from one to five pearls. A minimum certification of one pearl is required for all new development projects within Abu Dhabi. The Pearl Rating System is organized into seven categories where there are both mandatory and optional credits. To achieve a 1 Pearl rating, all the mandatory credit requirements must be met. 

ARZ Building Rating System (Lebanon)

The relatively unknown ARZ Building Rating System is the first Lebanese green building initiative of international standard with its certification process being administered by the Lebanon Green Building Council (LGBC).  It has been established to support the growth and adoption of sustainable building practices in Lebanon, with a specific focus on the environmental assessment and rating system for commercial buildings.

The ARZ Green Building Rating System was developed by Lebanese expertise of LGBC in partnership with the International Finance Corp. Its aim is to maximize the operational efficiency and minimize environmental impacts. The ARZ rating system is evidence-based approach to assessing how green a building is. The system includes a list of technologies, techniques, procedures and energy consumption levels that LGBC expects to see in green buildings.

An assessor accredited by LGBC will take an inventory of the energy and water consumption, technologies, techniques and procedures that are used in the building and then LGBC will score the building according to how well the inventory matches the list of technologies, techniques and procedures that make up the ARZ rating system requirements. 

Republished by Blog Post Promoter

Methods for Aluminium Recycling

The demand for aluminium products is growing steadily because of their positive contribution to modern living. Aluminium is the second most widely used metal whereas the aluminum can is the most recycled consumer product in the world. Aluminium finds extensive use in air, road and sea transport; food and medicine; packaging; construction; electronics and electrical power transmission. The excellent recyclability of aluminium, together with its high scrap value and low energy needs during recycling make aluminium highly desirable to one and all. The global aluminum demand is forecasted to soar to nearly 70 million tons by 2020 from around 37 million tons currently.

Recycling of Aluminium

The contribution of recycled metal to the global output of aluminium products has increased from 17 percent in 1960 to 34 percent today, and expected to rise to almost 40 percent by 2020. Global recycling rates are high, with approximately 90 per cent of the metal used for transport and construction applications recovered, and over 60 per cent of used beverage cans are collected.

Aluminium does not degrade during the recycling process, since its atomic structure is not altered during melting. Aluminium recycling is both economically and environmentally effective, as recycled aluminium requires only 5% of the energy used to make primary aluminium, and can have the same properties as the parent metal. Infact, aluminium can be recycled endlessly without loss of material properties.

During the course of multiple recycling, more and more alloying elements are introduced into the metal cycle. This effect is put to good use in the production of casting alloys, which generally need these elements to attain the desired alloy properties.The industry has a long tradition of collecting and recycling used aluminium products.

Over the years, USA and European countries have developed robust separate collection systems for aluminium packaging with a good degree of success. Recycling aluminium reduces the need for raw materials and reduces the use of valuable energy resources. Recycled aluminium is made into aircraft, automobiles, bicycles, boats, computers, cookware, gutters, siding, wire and cans.

Recycling of Aluminium Cans

Aluminum can is the most recycled consumer product in the world. Each year, the aluminum industry pays out more than US$800 million for empty aluminum cans. Recycling aluminium cans is a closed-loop process since used beverage cans that are recycled are primarily used to make beverage cans. Recycled aluminium cans are used again for the production of new cans or for the production of other valuable aluminium products such as engine blocks, building facades or bicycles. In Europe about 50% of all semi-fabricated aluminium used for the production of new beverage cans and other aluminium packaging products comes from recycled aluminium. The major steps in aluminium can recycling are as followe:

Step 1: Aluminium cans are collected from recycling centers, community drop-off sites, curbside pick-up spots etc.

Step 2: Compressed into highly dense briquettes or bales at scrap processing facilities and shipped to aluminum companies for melting.

Step 3: Condensed cans are shredded, crushed and stripped of their inside and outside dyes. The potato chip-sized pieces are loaded into melting furnaces, where the recycled metal is blended with brand new aluminum.

Step 4: Molten aluminum is converted into ingots which are fed into rolling mills that reduce the thickness to about 1/100 of an inch.

Step 5: This metal is then coiled and shipped to can manufacturers. The cans are then delivered to beverage companies for filling.

Step 6: The new cans, filled with your favorite beverages, are then returned to store shelves in as little as 60 days … and the recycling process begins again!

 

Recycling of Aluminium Packaging

Aluminium packaging fits every desired recycling and processing route. Aluminium packaging needs to be separated from other packing material when intended for material recycling. A growing number of sorting facilities are equipped with eddy current separators which offer a comprehensive means of sorting the aluminium fraction.

Multi-material packaging systems may consist of plastics, tinplate, beverage cartons and paper packaging, apart from aluminium packaging, e.g. beverage cartons. A variety of systems have been developed to extract aluminium from complex packaging systems, such as repulping, mechanical separation and pyrolysis. In pyrolysis, the non-metallic components are removed from the aluminium by evaporation. A newer technology is the thermal plasma process where the three components – aluminium, plastic and paper – are separated into distinct fractions.

Aluminium from Urban Wastes

Aluminium exposed to fires at dumps can be a serious environmental problem in the form of poisonous gases and mosquito breeding. Recycled aluminium can be utilized for almost all applications, and can preserve raw materials and reduce toxic emissions, apart from significant energy conservation.

Aluminium can also be extracted from the bottom ashes of municipal solid waste incinerators as aluminium nodules. In many European countries, municipal solid waste is entirely or partly incinerated; in this case the contained thin gauge aluminium foil is oxidized and delivers energy while thicker gauges can be extracted from the bottom ash.

Republished by Blog Post Promoter

Education for Sustainable Development: Key Challenges

education-for-sustainable-developmentThe basic aim of 'Education for Sustainable Development' is to nurture an individual who is capable to solve environmental challenges facing the world and to promote the formation of a sustainable society. The first challenge is to have an ethos in schools that openly and enthusiastically supports the development of ESD (Education for Sustainable Development). This is partly down to the curriculum the school follows, but is mainly as a result of the interest and effort shown by senior management in promoting integration and whole school engagement; a critical element being teacher training. It is also down to the expectations that are put upon schools by education authorities when it comes to ESD.

With trained and motivated teachers, it is far easier to inspire and motivate students. Teachers can often use the environment as a vehicle for teaching certain concepts in their own specific subject. Once teachers have decided that this is something they feel is worthwhile, they will increasingly find ways to do so.

Using environmental issues in student learning shows students the bigger picture, which can significantly improve motivation. By letting pupils know why the work they are completing is important, and showing them where it fits in on a local and global scale, you’re enabling them to see its value.

Another challenge is being able to bridge the gap between what happens at home and what is taught in schools. For example, if a child is learning about recycling at school, but parents are not open to supporting their learning by adopting recycling practices at home, then the child, especially at a young age, receives very conflicting messages.

Schools are busy places and there are increasing pressures on teachers within the workplace. These can create additional challenges such as gaps between awareness and understanding; motivation to and knowledge of how to become more sustainable; individual to collective empowerment; finding time; budget restraints; linking infrastructure change to mind set change and whole community engagement.

However, with a more directed focus and commitment towards ESD in schools, children generally need very little motivation to care for their environment. You just have to give them a voice and they are away! The problem often comes from adults not understanding the bigger picture about caring for the long term future of the planet.

Strategy for GCC Countries

When it comes to educating locals and expats in the GCC, it can be categorized into three parts:

The physical change: looking at how schools, households and businesses can reduce their waste, water and energy and focus on more sustainable resources in general.

The mind set change: this is all about raising environmental understanding, awareness and action programmes throughout the school and business communities through workshops, cross-curricular activities and presentations, so that everybody is on the 'same page', as well as giving students and employees a voice. This leads to a fundamental change in attitudes and the choices people make.

Learning to respect others and appreciate the environment, as well as giving back to society: this is focused around the opportunities to learn beyond the workplace and home, and connect back to nature, as well as help communities in need. In a nutshell, it about being more caring.

Partnerships and action orientated behaviour within all 3 parts are crucially important to their success. Environmental awareness in itself is not enough, simply because awareness without leading to meaningful action and behaviour change goes nowhere.

Using environmental issues in student learning shows children the bigger picture

Using environmental issues in student learning shows children the bigger picture

This approach can be illustrated in the Beyond COP21 Symposium series that I am currently running globally with the support of Eco-Schools. The event consists of themed high impact presentations from, and discussions with, guest speakers on the SDGs Agenda 2030 and climate negotiations in and beyond Paris; individual & community action; pledge- making and practical activities/workshops.

Local sustainable companies and organisations are invited to showcase their initiatives and engage with students from a variety of schools, both local and expat, in each city or region. Successfully run in Dubai twice and with an upcoming event in Jordan, the Middle East region has certainly embraced the partnership approach when it comes to supporting environmental education initiatives that benefit all those involved.

Role of Technology and Social Media

The greatest role it can play is through the spread of information and ideas, as well as the sharing of good practice within the GCC. Sometimes the hardest thing is to know where to start and how to become motivated, and certainly both can help. Also technology can help to source important resources for teachers. Bee’ah’s School of Environment, which I have been recently developing new online resources for, is a very good example of how well this can work.

Please visit my website http://www.target4green.com for more information about my organization and its activities.

Community Engagement in Recycling Initiatives in Qatar

The current state of environmental custodianship in Qatar leaves much to be desired from the national government and other institutions that publicly endorse initiatives with much fan-fare but do not commit to sustained action. My previous piece titled “Environmental Initiatives in Middle East – Challenges and Remedies” illuminated some of these gaps, but did not provide a detailed description of what underpins this trend and possible solutions might look like. Thus, this article seeks to delve deeper into how state institutions and civil society in Qatar may be able to work cooperatively in staving off further environmental degradation, especially with regards to waste management and recycling.

I believe that real success will be achieved through popular buy-in and a paradigm shift towards recognizing the interconnectedness of humans with their surroundings, which can be encouraged through education. Perhaps more importantly, there needs to be a public acknowledgement that all individuals residing in Qatar have a vested interest in pushing for greater environmental protection enforcement and accountability. In a region that is already faced with a lack of potable water and arable land, allowing the existing course to be maintained is not only risky, it is flat-out dangerous to the nation’s survival.

An Uphill Battle, But a Necessary One

Individuals that either live in or visited a Gulf Cooperation Council (GCC) nation, especially a hydrocarbon-rich rentier state like Qatar, are probably quite familiar with the inadequacies of current recycling initiatives. As someone who has visited the country on three different occasions I can tell you that I have searched high and low for something resembling a recycling bin, can, or other receptacle but to no avail, save for a few located in Education City. One might imagine this to be exceptionally jarring coming from the hyper-attentive, green-obsessed Washington, DC where trash and recycling cans typically are placed together on streets and in buildings.

Further adding to my chagrin is the apparent disconnect between high level, widely publicized recycling improvements and the realities (and consequences) manifesting among general society. For example, last year there was much excitement surrounding the announcement of upcoming environmental reforms in July 2014, but it appears nothing further came to fruition.

The article touches upon some of the apparent hindrances for recycling programs and other environmental initiatives: bureaucracy; paperwork; budgetary constraints. I would add to this list based upon personal experiences: general apathy towards recycling; inaccessibility of bins; perception of additional costs to conducting business.

Fair enough – I acknowledge that some of these issues are out of citizens’ and expats’ hands, but that is no excuse for giving up. The predicted 6.8% GDP growth spurred by the upcoming 2022 FIFA World Cup and hydrocarbon exports will surely put further pressure on an already fragile ecosystem and lead to an uptick in waste production. This is not meant to stoke unnecessary fear, but the equation here is straightforward; more people present in Qatar, more trash will be created from residential and commercial zones. As noted by fellow EcoMENA contributor, Surya Suresh, the nation presently possesses one solid waste facility at Mesaieed and three landfills devoted to particular items, which now seem to be overwhelmed by growing waste inputs.

Possible Solutions: Personal and Community Action

Given this lag in state responses to the existing recycling crisis and future issues stemming from it, readers may be asking what they can do to help. At the personal level, I would encourage Qatari residents, as well as others in neighboring nations, to begin with educating themselves about the current state of recycling initiatives and conducting an inventory of their daily waste generation. EcoMENA website offers a variety of informative pieces and external resources useful to individuals seeking more information.

My latter point about doing a personal inventory is about consciousness-raising about how we each contribute to a wider problem and identifying means of reducing our impact on the environment. Examples from my own life that I believe are applicable in Qatar include counting the number of plastic bags I used to transport groceries and replacing them with a backpack and reusable bags. I also frequently re-appropriate glass jars for storing items, such as rice, spices, and coffee – make sure to wash them well before reuse! It has taken me several years to get to past the social stigmas surrounding reusing containers and to cultivate the future planning to bring my reusable bags with me, but knowing my actions, aggregated with those of my friends and family, positively affect the environment is quite rewarding and reinforces good behavior. Give it a shot and see what happens.

Furthermore, it may be beneficial for the community at large to begin discussing the topic of recycling and what they would like to see, rather than solely wait on state agencies to address issues. Doing so could initially be formulated on a level that many Qatari residents are probably most familiar with: their place of employment, apartment, or neighborhood. After all, if individuals, specifically employers, are expected to bear the increased costs associated with improved recycling then an understanding of what people want is necessary in hopefully resolving issues effectively and with greater community enthusiasm.

Because of the nature of nation-states’ institutions typically being reactive entities and incapable of being aware of every societal problem, it is up to community-level groups to voice their concerns and be committed to change. Organizations such as the Qatar Green Building Council and the Qatar Green Leaders, offer a variety of informative pieces and training services that may help in establishing dialogues between groups and the government. Perhaps this is too idealistic right now, but Qatari residents have organized popular support for other initiatives, notably in the initial pilot recycling program in 2012. Now let us make that a sustained commitment to recycling!

 

References

  1. Andrew Clark, “Environmental Initiatives in Middle East – Challenges and Remedies,” on EcoMENA.org, http://www.ecomena.org/environment-middle-east/.
  2. Doha News Staff, “Official: New, Sorely Needed Recycling Policies in Qatar Afoot,” on Dohanews.co, http://dohanews.co/official-new-sorely-needed-recycling-policies-in/.
  3. Qatar National Bank, “Qatar Economic Insight 2013,” on www.qnb.com.qa  
  4. Surya Suresh, “Waste Management Outlook for Qatar,” http://www.ecomena.org/waste-qatar/
  5. Doha News Staff, “Responding to Community Calls, Qatar Rolls Out Pilot Recycling Program,” http://dohanews.co/responding-to-community-calls-qatar-rolls-out-pilot/.

Republished by Blog Post Promoter

The Paper Bag Boy of Abu Dhabi

Abdul Muqeet, also known as the Paper Bag Boy, has risen from being just another ordinary student to an extra-ordinary environmentalist. At just ten years old, Abdul Muqeet has demonstrated his commitment to saving the environment in United Arab Emirates and elsewhere. 

Inspired by the 2010 campaign “UAE Free of Plastic Bags”, Abdul Muqeet, a student of Standard V at Abu Dhabi Indian School, applied his own initiative and imagination to create 100% recycled carry bags using discarded newspapers. He then set out to distribute these bags in Abu Dhabi, replacing plastic bags that take hundreds of years to degrade biologically. The bags were lovingly named ‘Mukku bags' and Abdul Muqeet became famous as the Paper Bag Boy.

Abdul Muqeet’s environmental initiative has catalyzed a much larger community campaign. During the first year, Abdul Muqeet created and donated more than 4,000 paper bags in Abu Dhabi. In addition, he has led workshops at schools, private companies and government entities, demonstrating how to create paper bags using old newspapers. His school along with a number of companies in Abu Dhabi adopted his idea by exchanging their plastic bags for paper bags.

Abdul Muqeet was one of the youngest recipients of Abu Dhabi Awards 2011, for his remarkable contribution to conserve environment. The awards were presented by General Sheikh Mohammad Bin Zayed Al Nahyan, Crown Prince of Abu Dhabi and Deputy Commander of the UAE Armed Forces. In 2011, Abdul Muqeet was selected to attend the United Nation’s Tunza conference in Indonesia where he demonstrated his commitment for a cleaner environment through his paper bag initiative. He is actively involved in spreading environmental awareness worldwide, especially UAE, India, USA and Indonesia.

 

Abdul Muqeet continues to make headlines for his concerted efforts towards a plastic-free environment, and has been widely covered by leading newspapers in UAE and other countries. He tirelessly campaigned for the Rio+20 summit, urging world leaders to commit to the Green Economy. “Plant more trees; use less water; reuse and recycle; always remember that everything in this world can be recycled but not time,” offers Abdul.

He has been remarkably supported by his parents and siblings throughout his truly inspiring environmental sojourn. Abdul Muqeet’s monumental achievements at such a tender age make him a torch-bearer of the global environmental movement, and should also inspire the young generation to protect the environment by implementing the concept of ‘Zero Waste’.

Republished by Blog Post Promoter

Saudi Arabia Biorefinery from Algae (SABA) Project

The King Abdulaziz City for Science & Technology (KACST) is funding an innovative project called Saudi Arabia Biorefinery from Algae (SABA Project) to screen for lipid hyper-producers species in Saudi Arabia coastal waters. These species will be the basis for next-generation algal biofuel production. The goal of this project is to increase research and training in microalgae-based biofuel production as well algal biomass with an additional goal of using a biorefinery approach that could strongly enhance Saudi Arabia economy, society and environment within the next 10 years.

The primary mission of the SABA project is to develop the Algae Based Biorefinery – ABB biotechnology putting into operation innovative, sustainable, and commercially viable solutions for green chemistry, energy, bio-products, water conservation, and CO2 abatement. Microalgae are known sources of high-value biochemicals such as vitamins, carotenoids, pigments and anti-oxidants. Moreover, they can be feedstocks of bulk biochemicals like protein and carbohydrates that can be used in the manufacture of feed and food.

The strategic plan for SABA project is based on the achievement of the already ongoing applied Research, Technology Development & Demonstration (RTD&D) to the effective use of microalgae biomass production and downstream extraction in a diversified way, e.g. coupling the biomass production with wastewater bioremediation or extracting sequentially different metabolites form the produced biomass (numerous fatty acids, proteins, bioactive compounds etc.). This interdisciplinary approach including algal biology, genetic engineering and technologies for algae cultivation, harvesting, and intermediate and final products extraction is crucial for the successful conversion of the developed technologies into viable industries.

The first phase of this project entitled “Screening for lipid hyper-producers species in Saudi Arabia coastal waters for Biofuel production from micro-Algae” will build the basis for large scale system to produce diesel fuel and other products from algae grown in the ocean with a strong emphasis on building know-how and training. It will ultimately produce competitively priced biofuel, scaling up carbon capture for a range of major environmental, economic, social and climate benefits in the Kingdom and elsewhere. The project lends itself to an entrepreneurial new venture, working in partnership with existing firms in the oil and gas industry, in energy generation, in water supply and sanitation, in shipping and in food and pharmaceutical production.

The project is gaining from cross-disciplinary cutting edge Research, Technology Development & Demonstration for the industrial implementation of the fourth generation algae-based Biorefinery. The technology development is supported by a consortium of engineers, researchers in cooperation with industry players (to ensure technology transfer), international collaborators (to ensure knowledge transfer) and the Riyadh Techno Valley (to promote spin-off and commercialization of results). 

Since the research topic is innovative in the Kingdom research circles, a strong research partnership was promptly developed by the King Saud University / King Abdulah Institute for Nanotechnology with international distinguished research centers with proved successful experience in this technology development. The Centre of Marine Science (CCMAR) and the Institute of Biotechnology and Bioengineering (IBB) both from Portugal are a guarantee to the successful research-based technology development in the SABA project development and the effective capacity-building for Saudi young researchers and technicians.

Republished by Blog Post Promoter

Energy Conservation in Bahrain

bahrain-energyBahrain has one of the highest energy consumption rates in the world. The country uses almost three times more energy per person than the world average. Based on 2014 statistics, the country consumes 11,500 kWh of energy per capita compared with the global average of 3,030 kWh. The country is witnessing high population growth rate, rapid urbanization, industrialization and commercialization with more visitors coming in, causing fast growing domestic energy demand and is posing a major challenge for energy security.

The Government is aware of this challenging task and is continuously planning and implementing projects to enhance the energy production to meet with the growing demand. The issue of efficient use of energy, its conservation and sustainability, use of renewable and non-renewable resources is becoming more important to us. The increasing temperatures and warming on the other hand are also causing more need of air-conditioning and use of electrical appliances along with water usage for domestic and industrial purposes. This phenomenon is continuing in Bahrain and other GCC countries since past two decades with high annual electricity and water consumption rates compared with the rest of the world.

Bahrain’s energy requirement is forecast to more than double from the current energy use. The peak system demand will rise from 3,441 MW to around 8,000 MW. While the concerned authorities are planning for induction of more sustainable renewable energy initiatives, we need to understand the energy consumption scenario in terms of costs. With the prices of electricity and water going up again from March 2017 again, it is imperative that we as consumers need to think and adopt small actions and utilize practices that can conserve energy and ultimately cost.

The country has already embarked on the Energy Efficiency Implementation Program to address the challenge of curbing energy demand in the country over the next years. The National Energy Efficiency Action Plan and the National Renewable Energy Action Plan (NREAP) have already been endorsed. The NREAP aims to achieve long-term sustainability for the energy sector by proposing to increase the share of renewable energy to 5 percent by 2020 and 10 percent by 2030.

Per capita energy consumption in Bahrain is among the highest worldwide

Per capita energy conservation in Bahrain is among the highest worldwide

As individuals, we need to audit how much energy we are using and how we can minimize our usage and conserve it. Whenever we save energy, we not only save money, but also reduce the demand for such fossil fuels as coal, oil, and natural gas. Less burning of fossil fuels also means lower emissions of carbon dioxide (CO2), the primary contributor to global warming, and other pollutants. Energy needs to be conserved not only to cut costs but also to preserve the resources for longer use.

Here are few energy conservation tips we need to follow and adopt:

  • Turning off the lights, electrical and electronic gadgets when not in use.
  • Utilizing energy efficient appliances like LED lights, air conditioners, freezers and washing machines.
  • Service, clean or replace AC filters as recommended.
  • Utilizing normal water for washing machine. Use washing machine and dish washer only when the load is full. Avoid using the dryer with long cycles.
  • Select the most energy-efficient models when replacing your old appliances.
  • Buy the product that is sized to your actual needs and not the largest one available.
  • Turn off AC in unoccupied rooms and try to keep the room cool by keeping the curtains.
  • Make maximum use of sunlight during the day.
  • Water heaters/ Geysers consume a lot of energy. Use them to heat only the amount of water that is required.
  • Unplug electronic devices and chargers when they are not in use. Most new electronics use electricity even when switched off.
  • Allow hot food to cool off before putting it in the refrigerator

Food Waste, Ramadan and the Middle East

With the holy month of Ramadan only a few days away, huge food wastage in the Middle East is again hogging limelight. It is a widely acccepted fact that almost half of the municipal solid waste stream in the Middle East is comprised of food wastes and associated matter. The increasing amount of food waste in the Middle East urgently demands a strong food waste management strategy to ensure its minimization and eco-friendly disposal. 

Food Waste in Ramadan

Middle East nations are acknowleded as being the world’s top food wasters, and during Ramadan the situation takes a turn for the worse. In 2012, the Dubai Municipality estimated that in Ramadan, around 55% of household waste (or approximately 1,850 tons is thrown away every day. In Bahrain, food waste generation in Bahrain exceeds 400 tons per day during the holy month, according to Rehan Ahmad, Head of Waste Disposal Unit (Bahrain). As far as Qatar is concerned, it is expected that almost half of the food prepared during Ramadan will find its way into garbage bins.

The amount of food waste generated in Ramadan is significantly higher than other months. There is a chronic inclination of Muslims towards over-indulgence and lavishness in the holy month, even though the Prophet Muhammad (PBUH), asked Muslims to adopt moderation in all walks of life. Socio-cultural attitudes and lavish lifestyles also play a major role in more food waste generation in Ramadan in almost all Muslim countries.

Economic Implications

The greater the economic prosperity and the higher percentage of urban population, the greater the amount of waste produced. A good example is the case of oil‐rich GCC which figures among the world’s most prolific per capita waste generators. High-income groups usually generate more food waste per capita when compared to less-affluent groups. Hotels, cafeterias, restaurants etc are also a big contributor of food wastes in the Middle East.

Food waste generation is expected to steadily with the rapid growth of regional economies boom. The per capita production of solid waste in Arab cities such as Riyadh, Doha and Abu Dhabi is more than 1.5 kg per day, placing them among the highest per capita waste producers in the world. These statistics point to loss of billions of dollars each year in the form of food waste throughout the Arab world.

Parting Shot

The foremost steps to reduce food wastage are behavioral change, increased public awareness, strong legislations, recycling facilities (composting and biogas plants) and community participation. Effective laws and mass sensitation campaigns are required to compel the people to adopt waste mimization practices and implement sustainable lifestyles. During Ramadan, religious scholars and prayer-leaders can play a vital role in motivating Muslims to follow Islamic principles of sustainability, as mentioned in the Holy Quran and Ahadith The best way to reduce food waste is to feel solidarity towards millions and millions of people around the world who face enormous hardships in having a single meal each day.

 

Republished by Blog Post Promoter

Carbon Capture and Storage: Prospects in GCC

Gulf Cooperation Council countries are burgeoning economies which are highly dependent on hydrocarbons to fuel their needs for economic growth. GCC nations are fully aware of the mounting consequences of increasing levels of CO­2 on the environment, mainly attributed to soaring energy demand of domestic and industrial sector. Regional countries are undertaking concrete steps and measures to reduce their carbon footprint through the introduction of renewable energy and energy efficiency measures. Among other options, Carbon Capture and Storage, popularly known as CCS, can be an attractive proposition for GCC nations.

What is CCS

Carbon capture and storage (or carbon capture and sequestration) is the process of capturing waste carbon dioxide from large point sources, such as fossil fuel power plants, transporting it to a storage site, and depositing it where it will not enter the atmosphere, normally an underground geological formation. CCS is a potential means of mitigating the contribution of fossil fuel emissions to global warming and ocean acidification. As at September 2012, the Global CCS Institute identified 75 large-scale integrated projects in its 2012 Global Status of CCS report. 16 of these projects are in operation or in construction capturing around 36 million tonnes of CO2 per annum.

Among notable CCS projects world, In Salah project in Algeria is a fully operational onshore gas field with CO2 injection. CO2 is separated from produced gas and reinjected in the producing hydrocarbon reservoir zones. Since 2004, about 1 Mt/a of CO2 has been captured during natural gas extraction and injected into the Krechba geologic formation at a depth of 1,800m. The Krechba formation is expected to store 17Mt CO2 over the life of the project.

CCS Prospects in GCC

GCC accounts for 0.6% of the global population but ironically contributes 2.4% of the global GHG emissions per capita.  GCC countries are among the top-14 per capita emitters of carbon dioxide in the world. The GCC region is witnessing rapid economic growth and massive industrialization which has led to almost 8% growth in power consumption each year. The region is heavily dependent on hydrocarbons combustion for power generation and operation of energy-intensive industries.

There is an urgent need for carbon abatement measures for the industrial sector in Middle East nations as increasing carbon dioxide emissions will have serious repercussions for GCC and adjoining regions. Some of the potential impacts can be rise in sea level, droughts, heat waves, sandstorms, damage to ecosystem, water scarcity and loss of biodiversity. Carbon dioxide emissions reductions can be achieved from point sources such as refineries, power plants, manufacturing industries etc.

At the regional level, GCC nations have both the drivers and environmental gains to adopt the CCS technologies. Some of the GCC countries are already engaged in R&D initiatives, for example, Saudi Arabia has KACST- Technology Innovation Center on Carbon Capture and Sequestration while Saudi Aramco have their own CCS R&D program for CCS. In Qatar there is the Qatar Carbonate and Carbon Storage Research Center while Bahrain has Sitra Carbon Capture System. Recently, Masdar and ADNOC launched Middle East first Joint Venture for carbon capture usage and storage. On a multilateral level, back to 2007, King Abdullah pledged $300 million to finance a research program on the future of energy, environment and climate change. In addition, a sum of $150 million from Qatar, Kuwait and UAE has been allocated to support CCS research.

To sum up, CCS is a viable option to help GCC countries maintain their hydrocarbons-driven economies while enabling low-carbon electricity generation from existing hydrocarbons powerplants.

Republished by Blog Post Promoter

Water-Energy Nexus in Arab Countries

Amongst the most important inter-dependencies in the Arab countries is the water-energy nexus, where all the socio-economic development sectors rely on the sustainable provision of these two resources. In addition to their central and strategic importance to the region, these two resources are strongly interrelated and becoming increasingly inextricably linked as the water scarcity in the region increases.  In the water value chain, energy is required in all segments; energy is used in almost every stage of the water cycle: extracting groundwater, feeding desalination plants with its raw sea/brackish waters and producing freshwater, pumping, conveying, and distributing freshwater, collecting wastewater and treatment and reuse.  In other words, without energy, mainly in the form of electricity, water availability, delivery systems, and human welfare will not function.

It is estimated that in most of the Arab countries, the water cycle demands at least 15% of national electricity consumption and it is continuously on the rise. On the other hand, though less in intensity, water is also needed for energy production through hydroelectric schemes (hydropower) and through desalination (Co-generation Power Desalting Plants (CPDP)), for electricity generation and for cooling purposes, and for energy exploration, production, refining and enhanced oil recovery processes, in addition to many other applications.

The scarcity of fresh water in the region promoted and intensified the technology of desalination and combined co-production of electricity and water, especially in the GCC countries. Desalination, particularly CPDPs, is an energy-intensive process. Given the large market size and the strategic role of desalination in the Arab region, the installation of new capacities will increase the overall energy consumption. As energy production is mainly based on fossil-fuels and this source is limited, it is clear that development of renewable energies to power desalination plants is needed. Meanwhile, to address concerns about carbon emissions, Arab governments should link any future expansion in desalination capacity to investments in abundantly available renewable sources of energy.

There is an urgent need for cooperation among the Arab Countries to enhance coordination and investment in R&D in desalination and treatment technologies.  Acquiring and localizing these technologies will help in reducing their cost, increasing their reliability as a water source, increasing their added value to the countries’ economies, and in reducing their environmental impacts. Special attention should be paid to renewable and environmentally safe energy sources, of which the most important is solar, which can have enormous potential as most of the Arab region is located within the “sun belt” of the world.

Despite the strong relation, the water-energy nexus and their interrelation has not been fully addressed or considered in the planning and management of both resources in many Arab countries. However, with increasing water scarcity, many Arab countries have started to realize the growing importance of the nexus and it has now become a focal point of interest, both in terms of problem definition and in searching for trans-disciplinary and trans-sectoral solutions.

There is an obvious scarcity of scientific research and studies in the field of water-energy nexus and the interdependencies between these two resources and their mutual values, which is leading to a knowledge gap on the nexus in the region.  Moreover, with climate change deeply embedded within the water energy nexus issue, scientific research on the nexus needs to be associated with the future impacts of climate change.  Research institutes and universities need to be encouraged to direct their academic and research programs towards understanding the nexus and their interdependencies and inter-linkages. Without the availability of such researches and studies, the nexus challenges cannot be faced and solved effectively, nor can these challenges be converted into opportunities in issues such as increasing water and energy use efficiency, informing technology choices, increasing water and energy policy coherence, and examining the water-energy security nexus.

References
1. Siddiqi, A., and Anadon, L. D. 2011. The water-energy nexus in Middle East and North Afirca. Energy policy (2011) doi:10.1016/j.enpol.2011.04.023. 
2. Khatib, H. 2010. The Water and Energy Nexus in the Arab Region. League of Arab States, Cairo.
3. Haering, M., and Hamhaber, J. 2011. A double burden? Reflections on the Water-energy-nexus in the MENA region. In: Proceedings of the of the First Amman-Cologne Symposium 2011, The Water and Energy Nexus. Institute of Technology and resources Management in the Tropics and Subtropics, 2011, p. 7-9. Available online: http://iwrm-master.web.fh-koeln.de/?page_id=594.

Republished by Blog Post Promoter