Green Roofs in MENA – Prospects and Challenges

Green roofs are emerging technologies that can provide a wide range of benefits to communities interested in enhancement and protection of their environment. The major benefits of green roofs are reducing energy use as well as air pollution and greenhouse gas emissions, enhancing stormwater management and water quality, decreasing heat island effect by regulating temperature for the roof and the surrounding areas and providing aesthetic value and habitats for many species.  

According to a 2013 MENA renewable energy status report, the Total Primary Energy Supply (TPES) in Middle East and North Africa has reached about 800 million tons of oil.  This equates to a 15% increase in energy demand since 2007. Increased energy consumption in the region is due largely to population growth, with related increases in demand for liquid fuels and electricity for domestic use and devices, heating, cooling, and desalination of water.  With heating and cooling being a reason for the increasing demand on fossil fuels, there is enormous opportunity for investment in green roofs as a way to stabilize or reduce energy consumption in the MENA region.  

Enhancing Stormwater Management and Water Quality

Stormwater is rainwater and melted snow that hits impervious surfaces and runs off into streets, lawns, sidewalks, and other sites. The main concern with stormwater is it can pick up debris, chemicals, dirt, and other pollutants and flow into a storm sewer system or directly to a lake, stream, river, wetland, or coastal water. In many places around the world, including MENA region, anything that enters a storm sewer system is often later discharged untreated into a nearby waterway polluting the same waters we swim, fish, and drink from.

In addition, stormwater runoff can cause flooding and an overflowing of sewer sanitary systems causing serious water quality impairments. In developing countries like Morocco and Algeria, where countrywide stormwater management and municipal waste management systems are deficient, stormwater runoff is a big problem. Rainwater flows from roofs straight onto streets carrying things like petrol, household garbage, bacteria, fertilizers and pesticides to nearby receiving waters.

According to an EPA study, green roofs are capable of removing 50% of the annual rainfall volume from a roof through retention and evapo-transpiration. By reducing the amount of impervious surfaces within a developed zone, green roofs reduce the amount of stormwater runoff.   Also, because green roofs absorb water, they delay the time at which runoff occurs, resulting in decreased stress on sewer systems at peak flow periods.

For conventional non-living roofs with a slope of 2%, a 96% runoff rate is observed.  On the other hand, intensive green roofs may have as low as a 15% runoff rate.  The benefits green roofs have regarding stormwater runoff could be amplified by more green roofs in a close-knit area and using green roofs with a deeper substrate layer. Nevertheless, if implemented, countries in the MENA region in which stormwater management systems are not in place could greatly benefit from the use of green roofs to help reduce hazardous runoff and subsequent contamination of water supplies. 

Decreasing Urban Heat Island Effect

Since the built environment tends to be constructed from materials that are impermeable and non-reflective they tend to absorb a significant proportion of the sun’s radiation and release it as heat. Because urban areas are densely populated with buildings, they tend to be hotter than the surrounding areas, a phenomenon known as heat island effect.  Urban heat islands have many negative impacts such as an in increase energy demand for cooling, an increase in air pollutants and greenhouse gas emissions, and impaired water quality.

The heat island effect causes internal temperatures of buildings to rise which subsequently increases the demand for air-conditioning to moderate the buildings internal temperatures.  This in turn leads to higher emissions from power plants, as well as increased smog production as a result of warmer temperatures.  Additionally, hot rooftop surfaces transfer their excess heat to stormwater causing the runoff water to be much warmer than the streams, lakes, and other waterways it enters.  In many cases dealing with this rapid change in temperature causes stress to aquatic ecosystems.

Urban heat island effect is especially worrisome for areas like Middle East and North Africa, where out of a population of 300 million, 170 million people reside in urban areas. Furthermore, according to UN projections the MENA population will reach 430 million by 2020, of which 280 million are expected to be urban.  In order to combat the potential for the heat island effect in the MENA region, communities can utilize green roofs. 

The vegetative surfaces of green roofs utilize a relatively large proportion of the absorbed radiation in the evapo-transpiration process and then release water vapor into the air which helps to cool air temperatures.  Additionally, the shade provided by trees and other shrubbery greatly helps to reduce the rooftop temperatures and the overall heat island effect. 

Roof Lifespan

Rooftop vegetation moderates the factors that accelerate a rooftops breakdown such as extreme temperatures, UV radiation, and cold winds, thus dramatically expanding the life of a roof.  According to a study in Germany, a vegetated roof on average can be expected to prolong the service life of a conventional roof by at least 20 years. The result of this is not only cost savings to the building’s owner but also a reduction of landfill wastes. 

Habitats for Species

One of the more altruistic aspects of green roofs is the creation of wildlife habitats. Green roofs can provide habitat (food, shelter, water and breeding grounds) for many different species. Because of their high density, cities severely restrict green space and threaten or destroy habitats so the creation of such green space assumes particular importance in these areas.  Urban habitats are often seen as too degraded and depauperate to support biodiversity. 

Various recent studies in Europe have indicated that green roofs in large cities have high potential as habitat for species negatively impacted by land-use changes. For example, in Basel, Switzerland, surveys of birds, spiders and beetles on green roofs found high diversity levels for all groups, including many species considered rare or threatened.

For modern Middle Eastern citiies like Dubai, Jeddah, Cairo, Beirut and Tehran, creation of habitats for species could be very valuable.  Across the MENA region natural habitats are few and far, and green roofs can provide living space for plants and animals, especially for species such as invertebrates and birds. 

Aesthetic Value

Green roofs have the ability to significantly improve the beauty of buildings, the visual and environmental diversity which can have positive impacts psychological well-being. Studies across several countries have all shown the correlation between daily contact with nature and human well-being. In fact, the results of a large survey in the Netherlands showed that the amount of green space in the residential environment was positively related to the health condition people said they experienced in their daily life.

When people have contact with green space research has indicated a positive effect in levels of stress, health levels due to green space encouraging a higher level of use of the outdoor spaces, and mental well-being due to positive psychological effects plants and nature has on humans.

Current Scenario

While green roofs in Northern Scandinavia have been around for centuries, in North America green roofs are still a relatively new technology. In Europe, these technologies have become very well established mainly due to governments and legislatives financial support.  This support has led to the creation of a vibrant, multi-million dollar market for green roof products and services in Germany, France, Austria and Switzerland among others.

Currently, implementation of green roofs is rare in the MENA region.  However, there is a definite market potential as the benefits of green roofs address many of the major environmental concerns of this area.  Furthermore, the concrete architecture in the Middle East is ideal for a green roof implementation.  The structural soundness of concrete buildings has the potential to support the weight load of both intensive and extensive roofs. The swift progress of green buildings industry in the Middle East  promises a deeper penetration of green roofs in domestic as well as commercial constructions in the years to come.

However, one issue that may surface is that roofs are often fully accessible and are often used to dry laundry or to hold social events like weddings and other celebrations.  This may pose an issue for home owners if their green roof takes up too much of their roof to perform their daily functions.  An intensive roof may be more suitable for homeowners in this region as they lend well to daily visits and offer space to hold social functions.

Conclusion

Due to their extensive range of environmental and economic benefits, particularly their insulation and cooling properties, ability to significantly reduce rainwater runoff and urban heat island effect, as well as improve air quality and their value in promoting biodiversity and habitat in urban areas, green roofs have become important elements of sustainable and green construction in many countries.  While the green roof industry is growing in popularity, the industry is still young with many areas needing advancement.

The major barriers to green roof expansion in the Middle East include a lack of governmental support, high installation costs, lack of awareness and education about green roofs, and limited data quantifying green roof benefits.  However, with proper support these barriers can be easily overcome through research and innovation in design by the green roof industry. 

 

References

  1. After the Storm". (2013). 2013, from http://water.epa.gov/action/weatherchannel/stormwater.cfm#what
  2. Akbari, H. (2005). Energy Saving Potentials and Air Quality Benefits of Urban Heat Island Mitigation. 1-19. http://www.osti.gov/scitech/servlets/purl/860475
  3. Beattie, D., Berghage, R., Jarrett, A., O’Connor, T., Razaei, F., & Thuring, C. (2009). Green Roofs for Stormwater Runoff Control (pp. 81). National Risk Management Research Laboratory Office Of Research And Development: EPA.
  4. Bryden, J., Riahi, L., & Zissler, R. (2013). MENA Renewables Status Report. In L. Mastny (Ed.), (pp. 21). REN21 Secretariat, Paris, France.
  5. Colla, S. R., Packer, L., & Willis, E. (2009). Can green roofs provide habitat for urban bees (Hymenoptera: Apidae)? . Cities and the Environment 2(1), 1-12. http://digitalcommons.lmu.edu/cgi/viewcontent.cgi?article=1017&context=cate
  6. Dinsdale, S., Pearen, B., & Wilson, C. (2006). Feasibility Study for Green Roof Application on Queen’s University Campus: Queens University.
  7. Dunnett, N. (2006). Green Roofs For Biodiversity: Reconciling Aesthetics With Ecology. Paper presented at the Fourth Annual Greening Rooftops for Sustainable Communities Conference, Boston.
  8. Green Roof Benefits. (2013).   Retrieved 12/9/2013, from http://www.greenroofs.org/index.php/about/greenroofbenefits
  9. Hermy, M., Mentens, J., & Raes, D. (2006). Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landscape and Urban Planning, 77, 217–226. Retrieved from www.sciencedirect.com website: http://www.floradak.be/downloads/eng.pdf
  10. The Future of Green Roofs.   Retrieved 12/18/2013, from http://www.hrt.msu.edu/greenroof/future/index.html
  11. The social role of green space – health, education and enjoyment of life. (2005).   Retrieved 12/18/2013, from http://www.thesteelvalleyproject.info/green/intro/people-2.htm#well
  12. Urban Challenges in the MENA Region. (2013).   Retrieved 12/14/2013, from http://goo.gl/IT8rWo 
  13. What Is an Urban Heat Island? (2013).   Retrieved 12/14/2013, from http://www.epa.gov/hiri/about/index.htm

Green Buildings and the Middle East

The Middle East region faces a unique set of challenges in terms of sustainable buildings and cities. For example, water shortage is mitigated by costly desalination and we are faced with high water consumption which leads to a higher carbon footprint and ultimately impacts climate change. Middle Eastern countries are at the top of the list of largest per capita ecological footprints. Qatar has the highest per capita level of carbon dioxide emissions, at 44 metric tons per person annually. Kuwait is second with 30.3 tons, followed by the UAE with 22.6. Therefore, integrating energy efficiency is a critical need.

Benefits of Green Buildings for Middle East

The benefits of green buildings for the Middle East are not only environmental, but also economic and social. Long-term operating costs are lowered via reduced energy consumption, reduced emissions, improved water conservation and management, temperature moderation, and reduced waste. Avoiding scarce natural resources, like water, opting instead to recycle, can cut down building costs by an estimated 10 percent.

With a third of the world's energy being utilised in construction and building operation, the concept of green buildings is becoming more and more popular worldwide. General construction work uses excessive amounts of energy, water and raw materials and tends to generate large amounts of waste and potentially harmful atmospheric emissions. As a result, companies are facing demands to build environmentally friendly and eco-efficient buildings, while minimising their actual impact on the environment.

Green buildings do not require complex processes and costly mechanisms. Affordable green technologies include tankers to store and harvest rainwater to cut water consumption, intelligent lighting systems to cut electricity use, natural ventilation and a ground source heat pump that reduces heating and cooling costs. Energy efficiency is another cornerstone of green building. Careful window selection, building envelope air sealing, duct sealing, proper placement of air and vapour barriers, use of clean energy-powered heating/cooling systems all contribute towards an energy efficient building.

Use of renewable energy, such as solar, wind or biomass energy, to meet energy requirements can significantly reduce carbon footprints of such buildings. Other green trends that are currently being advocated include carbon neutral communities, public transport and no-car cities, self-sustaining urban planning, on-site water treatment plants, and cultural sensitivity incorporating traditional design elements.

Green Building Trends in Middle East

The Middle East region has made great progress in the field of green buildings in recent years. Sustainable building design is gaining popularity in the Middle East with designers and construction firms finding the most eco-friendly ways to get buildings made. Sustainability is now a top priority in the region and countries like Qatar, UAE and Lebanon have come up with their own green building rating system to incorporate socio-economic, environmental and cultural aspects in modern architecture. Qatar's Global Sustainability Assessment System (GSAS) is billed as the world's most comprehensive green building rating system while Abu Dhabi's Pearl Rating System (PRS) has carved a niche of its own in global green buildings sector.

United Arab Emirates and Qatar are spearheading the sustainability trend in the region, having the highest share of green buildings in the Middle East and North Africa. There are about 1,200 green buildings in MENA that have a Leadership in Energy and Environmental Design (LEED) accreditation. Of these buildings, 65 per cent (802) are located in the UAE. Qatar is ranked second on the list, with 173 green buildings, followed by Saudi Arabia (145), Lebanon (25) and Egypt (22).

The number of LEED-registered buildings has increased rapidly across the region, especially in GCC, in the past few years. Some of the notable examples of green buildings in the Middle East are Masdar City in Abu Dhabi, KAUST in Saudi Arabia and Msheireb Downtown Doha in Qatar. Masdar City promises to be a model for green cities all over the world. The King Abdullah University of Science in Saudi Arabia employs many forward-reaching green features while Msheireb Downtown Doha promises to be the world's largest sustainable community with 100 buildings using an average of a third less energy.

If Middle Eastern industries embrace 'green building' technologies instead of conventional ones, they could significantly help in tackling environment problems in addition to long-term financial returns. Although the MENA region still lags behind other markets in terms of overall sustainability, 29% of firms in this region have over 2 million square feet of green projects planned in the next 3 years, by far the highest of any region. Green building systems technologies can serve as catalysts for smartly shaping urbanization, ensuring energy security, combating climate change, and opening new diplomatic and economic opportunities. 

District Cooling Perspectives for the Middle East

District cooling produces chilled water in a centralized location for distribution to buildings like offices and factories through a network of insulated underground pipes. The chilled water travels to different buildings, where the water circulates through refrigeration coils or uses absorption technology to enter the air-conditioning system. During winter, the source for the cooling can often be sea water, so it is a cheaper resource than using electricity to run compressors for cooling.

What is District Cooling

District cooling provides effective control over internal temperature of a building, requires less maintenance than a standalone air-conditioning system, consumes lesser space and reduces noise pollution. The effect of district cooling systems on the environment is minimal because of the reduction in carbon dioxide emissions, use of eco-friendly refrigerants and implementation of rigorous health and safety standards.

The Helsinki district cooling system in Finland uses waste heat from CHP power generation units to run absorption refrigerators for cooling during summer time, greatly reducing electricity usage. In winter time, cooling is achieved more directly using sea water. The adoption of district cooling is estimated to reduce the consumption of electricity for cooling purposes by as much as 90 percent. The idea is now being adopted in other Finnish cities.

The use of district cooling is also growing rapidly in Sweden and in a similar way. District cooling is very widespread in Stockholm, the capital of Sweden. In fact, approx. 7 million square meters of commercial space in Stockholm is connected to the district cooling grid. The Stockholm district cooling grid currently consists of different systems with capacities ranging from 3 MW to 228 MW. The district cooling network in Stockholm is currently 76 kilometers long.

District Cooling Prospects in the Middle East

There is tremendous potential for the utilization of district cooling systems in the Middle East. The constant year-round heat coupled with expensive glass exteriors for hotel, airports and offices etc result in very high indoor temperatures. The combination of distributed generation of power and utilization of waste heat can provide a sustainable solution to meet the high demand for refrigeration in the region. District cooling systems can provide cooling solutions to commercial buildings, hotels, apartment blocks, shopping malls etc.

The world’s largest district cooling plant, Integrated District Cooling Plant (IDCP), was installed in The Pearl-Qatar in 2010. IDCP will service more than 80 apartment towers, beachfront villas, townhouses, shopping complexes, offices, schools and hotels throughout the Island, ultimately supplying more than 130,000 tons of refrigeration to the Island’s estimated 50,000 residents.

Despite paramount importance of air conditioning in Middle East countries, regional governments have failed to incorporate it in policy and planning which has lead to the evolution of an unregulated market for cooling systems.  Most of the cooling methods employed nowadays are based on traditional window units or central air cooling systems where consume copious amount of power and also damage the environment.

District cooling has the potential to provide a viable solution to meet air conditioning requirements in the Middle East. Low energy requirement, peak saving potential, eco-friendliness and cost-effectiveness are major hallmarks of district cooling networks. District cooling can play a vital role in fostering sustainable development in Middle East nations. Apart from providing cooling needs, district cooling can reduce the need for new power plants, slash fossil fuel requirements and substantially reduce greenhouse gas emissions from the region.   

خواص الأبنية الخضراء

المبني الأخضر هو المبنى الذي يراعي الاعتبارات البيئية في كل مرحلة من مراحل البناء، وهي التصميم، التنفيذ، التشغيل والصيانة، والاعتبارات الرئيسية التي تراعى هي تصميم الفراغات وكفاءة الطاقة والمياه، وكفاءة استخدام الموارد، وجودة البيئة الداخلية للمبنى، وأثر المبنى ككل على البيئة.الفرق الرئيسي بين المباني الخضراء والمباني التقليدية هو مفهوم التكامل، حيث يقوم فريق متعدد التخصصات من المتخصصين في البناء بالعمل معا منذ مرحلة ما قبل التصميم الي مرحلة ما بعد السكن لتحسين خواص الاستدامة البيئية للمبنى وتحسين الأداء والتوفير في التكاليف.

المباني الخضراء توفر العديد من المزايا للعديد من الجهات المعنية بصناعة البناء، بما في ذلك سكان المباني والمجتمع ككل.المباني الخضراء تشمل في العادة جودة هواء أفضل، اضاءة طبيعيه وفيرة، توافر اطلالات، ومكافحة الضوضاء والتي تفيد شاغلي المبنى، مما يجعل هذه المباني مكان أفضل للعمل أو المعيشه.

من السمات الاساسية في المباني الخضراء التشديد على حماية التوازن البيئي الموجود، وتحسين البيئات التي قد تكون قد تضررت في الماضي. عادة ما تشيد المباني الخضراء في الأراضي الحساسة بيئيا، مع أخذ التدابير اللازمه لاستعادة الحياة النباتية. والمباني الخضراء أيضا تستفيد من أقل قدر ممكن من المواد، من خلال تصميم جيد واهتمام بإزالة المواد غير الضرورية في التشطيبات. وبالإضافة إلى ذلك، بناء تلك المباني يرشد في استخدام المواد وكذلك إعادة تدوير المياه.

كفاءة استخدام الطاقة هي واحدة من أهم العوامل في تصميم المباني الخضراء. من الاختيارالدقيق للنوافذ، والعزل جيد للحفاظ على درجة حرارة الهواء، عزل مواسير التكييف، والوضع الصحيح لعوازل البخار والهواء، واستخدام الطاقة النظيفة في التدفئة والتبريد، تجعل المبنى كفء في استخدام الطاقة. استعمال الطاقة المتجددة، مثل طاقة الرياح، والطاقة الشمسية أو الطاقة الحيوية، لتلبية الاحتياجات من الطاقة تقلل إلى حد كبير من البصمه الكربونيه لهذه المباني.

البيوت الخضراء تشدد على الحفاظ على الماء باستخدام أنظمة أكثر كفاءة لضخ المياه واعادة استعمالها، ترشيد المياه يعد خاصية أخرى مميزة للمباني الخضراء والتي تساعد في تخفيض الاثار الضارة لاستعمال المياه على البيئة المحيطة كالبيئات البحرية مثلا.

وقد أسهمت الزيادة في الأمراض التنفسية والحساسية والمواد الكيميائة التي تطلق الغازات في الهواء، في زيادة الوعي على أهمية الهواء داخل المنازل. المباني الخضراء تركز ايضا على تقليل الأمراض التنفسيه والحساسية عن طريق تحسين الهواء داخل المنازل عن طريق التحكم في مصادر التلوث وتقليلها والقضاء عليها من خلال التنقية والترشيح.

تعد منظمات LEED (Leadership in Energy and Environmental Design), BREEAM (BRE Environmental Assessment Method) وايضا Green Globes أشهر منظمات التقييم والتقدير في العالم. الاستدامة اصبحت من أهم الاهداف في منطقة الشرق الأوسط، فدول مثل قطر والأمارات العربية المتحدة ولبنان اصدرت نظم خاصة بهم لتقييم المباني الخضراء، تشتمل على الخصائص الاجتماعية والاقتصادية والبيئية والثقافية في العمارة. النظام الشامل لتقييم الاستدامة القطري GSAS يعد من أشمل النظم العالمية للتقييم، بينما النظام التقييم الخاص بأبوظبي  PRSحصل على مكانة خاصة في قطاع المباني الخضراء العالمي.

الخلاصة

لتلخيص ما سبق، المباني الخضراء ليست تقدم فقط استدامة انشائية وبيئية، ولكن ايضا تقدم الكثير من المنافع والفوائد لمالكي المباني ومستخدميها. فتكاليف البناء المنخفضه وتكاليف التشغيل المنخفضه والراحه المتوفرة والبيئة الداخلية الأفضل صحيا، بالاضافة لتكاليف صيانة أقل وعمر افتراضي أطول، كل هذا يعد من خصائص المبنى الأخضر

 

ترجمة: طه واكد – مهندس مدني مهتم بشؤون البيئة – مصر

شريك مؤسس في مشروع دقيقة خضراء  –  معد وكاتب حلقات دقيقة خضراء عاليوتيوب

للتواصل عبر taha.waked@gmail.com   أو admin@green-min.com

نظم تقييم المباني الخضراء في الشرق الأوسط

الأبنية الخضراء لا تساهم فقط في بيئة أفضل وطرق بناء مستدامه، ولكنها تجلب ايضا الكثير من المنافع والفوائد لمالكي المباني ومستخدميها. فتكلفة الانشاء أقل، وتكلفة التشغيل أقل، وسبل الراحه أكثر، والبيئة الداخلية أكثر صحة، والعمر الأفتراضي أطول وتكاليف الصيانة أقل في المبنى الأخضر.

توجد العديد من النظم لتقدير وتقييم المباني الخضراء حول العالم، مثل LEED  و BREEAM . فالاستدامة الان تعد هامة جدا في منطقة الشرق الأوسط ودول مثل قطر والامارات لديهم انظمتهم الخاصة بهم لتقييم المباني لتشمل السمات الاجتماعية والبيئية والاقتصادية والثقافية في العمارة الحديثة

نظام تقييم الاستدامة الشامل (قطر)

ان نظام تقييم الاستدامة الشامل (GSAS) المعروف رسميا باسم نظام تقييم الاستدامة القطري (QSAS) تم تطويره في عام 2010 بواسطة منظمة الابحاث والتطوير الخليجيه (GORD) بالتعاون مع مركز T.C. Chan  في جامعة بنسيلفنيا ويهدف الي انشاء بيئة حضرية مستدامة لتقليل التأثيرات البيئية للمباني وفي نفس الوقت تحقق احتياجات المجتمع.

توصف GSAS  كأكثر نظام تقييم شامل للمباني الخضراء في العالم بعد تحليل دقيق لأربعين كود للمباني الخضراء من حول العالم. أهم مميزات نظام GSAS  انها تأخذ في الحسبان السمات الاجتماعيه والاقتصادية والبيئية والثقافية للمجتمع، والتي تختلف في مناطق العالم. الكثير من بلدان الشرق الأوسط مثل السعودية والكويت والأردن والسودان، أبدو اهتمام شديد في اتخاذ GSAS  ككود موحد للمباني الخضراء في المنطقة.

 

المعاير الخاصة بشهادة GSAS  تنقسم الي 8 أقسام:

قامت قطر بادراج QSAS في كود البناء القطري 2010 والان يجب على كل مشاريع القطاع العام والخاص الحصول على شهادة GSAS. تضم GSAS 140 آليه تقييم للاستدامة، وتنقسم إلى 8 أقسام تشمل الاتصال الحضري والموقع والطاقة والماء والمواد والبيئة الداخلية والقيمة الاقتصادية والثقافية والإدارة والتشغيل. كل قسم من النظام سوف يقيس خاصية معينه في التأثير البيئي للمشروع. كل قسم ينقسم إلى معايير محدده تقيس وتحدد موضوع بعينه. ثم يعطى درجة لكل قسم حسب درجة التوافق.

نظام التقييم اللؤلؤي (أبو ظبي)

ان نظام التقييم اللؤلؤي PRS  هو نظام تقييم المباني الخضراء لإمارة أبو ظبي، صمم ليدعم الاستدامة من التصميم للتنفيذ إلى التشغيل يشمل المجتمعات والمباني والفيلات، ويعطي ارشادات ومتطلبات لتقييم الاداء المتوقع للمشروع من منظور الاستدامه.

ان نظام التقييم اللؤلؤي هو مبادرة من الحكومة لتحسين الحياة لمن يسكن في أبو ظبي من خلال التركيز على العادات الثقافية والقيم الاجتماعية، نظام التقييم مفصل بدقه على مناخ أبو ظبي الحار والذي يتميز باحتياج الطاقه العالي لتكييف الهواء، معدل البخر العالي، سقوط المطر القليل، وندرة المياه الصالحة للشرب.

الأقسام المتنوعة في نظام التقييم اللؤلؤي

يوجد في نظام التقييم اللؤلؤي العديد من مستويات الشهادات، بدءا من واحد الي خمس لؤلؤات. مطلوب على أقل تقدير شهادة بلؤلؤه واحده لتطوير أي مشروع داخل أبو ظبي. يقسم النظام اللؤلؤي الي سبعة أقسام منها اعتمادات اجبارية واعتمادات اختيارية. للحصول على دجة لؤلؤه واحدة يجب على الأقل ان تتحقق جميع الاعتمادات الاجبارية.

نظام الأرز لتقييم المباني (لبنان)

نظام الأرز هو نظام أقل شهرة لتقييم المباني، وهو أول نظام مباني خضراء لبناني كمبادرة لكود دولي مع نظام اعتماد تديره جمعية المباني الخضراء اللبنانية (LGBC). انشأ هذا النظام ليدعم نمو وتبني استخدام المباني المستدامة في لبنان، مع تركيز على التقييم والتقدير البيئي للمباني التجارية

نظام الأرز لتقييم المباني تم تطويره بواسطة خبراء لبنانيين من LGBC بالشراكة مع مؤسسة التمويل الدولية، ويهدف الي تحقيق أقصى قدر من الكفاءة في التشغيل وتقليل الأثر البيئي. نظام الأرز هو منهج قائم على الأدلة لتقييم المباني ومدى استدمتها. النظام يحتوي على مجموعة من التقنيات والاجراءات ومستويات استهلاك الطاقة التي تتوقع LGBC   رؤيتها في المباني الخضراء

يقوم مقيم معتمد من قبل LGBC بأخذ جرد لاستهلاك الطاقة والمياه، التقنيات والاجراءات المستخدمة في المبنى، ثم تقوم LGBC بعطاء درجة للمبنى بناءا على مدى جودة استهلاكه وموافقته للتقنيات والاجراءات الخاصة بنظام تقييم الأرز.

ترجمة: طه واكد – مهندس مدني مهتم بشؤون البيئة – مصر

شريك مؤسس في مشروع دقيقة خضراء  –  معد وكاتب حلقات دقيقة خضراء عاليوتيوب

للتواصل عبر taha.waked@gmail.com   أو admin@green-min.com