Methods for Aluminium Recycling

The demand for aluminium products is growing steadily because of their positive contribution to modern living. Aluminium is the second most widely used metal whereas the aluminum can is the most recycled consumer product in the world. Aluminium finds extensive use in air, road and sea transport; food and medicine; packaging; construction; electronics and electrical power transmission. The excellent recyclability of aluminium, together with its high scrap value and low energy needs during recycling make aluminium highly desirable to one and all. The global aluminum demand is forecasted to soar to nearly 70 million tons by 2020 from around 37 million tons currently.

Recycling of Aluminium

The contribution of recycled metal to the global output of aluminium products has increased from 17 percent in 1960 to 34 percent today, and expected to rise to almost 40 percent by 2020. Global recycling rates are high, with approximately 90 per cent of the metal used for transport and construction applications recovered, and over 60 per cent of used beverage cans are collected.

Aluminium does not degrade during the recycling process, since its atomic structure is not altered during melting. Aluminium recycling is both economically and environmentally effective, as recycled aluminium requires only 5% of the energy used to make primary aluminium, and can have the same properties as the parent metal. Infact, aluminium can be recycled endlessly without loss of material properties.

During the course of multiple recycling, more and more alloying elements are introduced into the metal cycle. This effect is put to good use in the production of casting alloys, which generally need these elements to attain the desired alloy properties.The industry has a long tradition of collecting and recycling used aluminium products.

Over the years, USA and European countries have developed robust separate collection systems for aluminium packaging with a good degree of success. Recycling aluminium reduces the need for raw materials and reduces the use of valuable energy resources. Recycled aluminium is made into aircraft, automobiles, bicycles, boats, computers, cookware, gutters, siding, wire and cans.

Recycling of Aluminium Cans

Aluminum can is the most recycled consumer product in the world. Each year, the aluminum industry pays out more than US$800 million for empty aluminum cans. Recycling aluminium cans is a closed-loop process since used beverage cans that are recycled are primarily used to make beverage cans. Recycled aluminium cans are used again for the production of new cans or for the production of other valuable aluminium products such as engine blocks, building facades or bicycles. In Europe about 50% of all semi-fabricated aluminium used for the production of new beverage cans and other aluminium packaging products comes from recycled aluminium. The major steps in aluminium can recycling are as followe:

Step 1: Aluminium cans are collected from recycling centers, community drop-off sites, curbside pick-up spots etc.

Step 2: Compressed into highly dense briquettes or bales at scrap processing facilities and shipped to aluminum companies for melting.

Step 3: Condensed cans are shredded, crushed and stripped of their inside and outside dyes. The potato chip-sized pieces are loaded into melting furnaces, where the recycled metal is blended with brand new aluminum.

Step 4: Molten aluminum is converted into ingots which are fed into rolling mills that reduce the thickness to about 1/100 of an inch.

Step 5: This metal is then coiled and shipped to can manufacturers. The cans are then delivered to beverage companies for filling.

Step 6: The new cans, filled with your favorite beverages, are then returned to store shelves in as little as 60 days … and the recycling process begins again!

 

Recycling of Aluminium Packaging

Aluminium packaging fits every desired recycling and processing route. Aluminium packaging needs to be separated from other packing material when intended for material recycling. A growing number of sorting facilities are equipped with eddy current separators which offer a comprehensive means of sorting the aluminium fraction.

Multi-material packaging systems may consist of plastics, tinplate, beverage cartons and paper packaging, apart from aluminium packaging, e.g. beverage cartons. A variety of systems have been developed to extract aluminium from complex packaging systems, such as repulping, mechanical separation and pyrolysis. In pyrolysis, the non-metallic components are removed from the aluminium by evaporation. A newer technology is the thermal plasma process where the three components – aluminium, plastic and paper – are separated into distinct fractions.

Aluminium from Urban Wastes

Aluminium exposed to fires at dumps can be a serious environmental problem in the form of poisonous gases and mosquito breeding. Recycled aluminium can be utilized for almost all applications, and can preserve raw materials and reduce toxic emissions, apart from significant energy conservation.

Aluminium can also be extracted from the bottom ashes of municipal solid waste incinerators as aluminium nodules. In many European countries, municipal solid waste is entirely or partly incinerated; in this case the contained thin gauge aluminium foil is oxidized and delivers energy while thicker gauges can be extracted from the bottom ash.

Republished by Blog Post Promoter

Water Crisis in Refugee Camps

The refugee crisis has hit record heights in recent years. According to the UNHCR, as of the end of 2014 there were approximately 60 million refugees worldwide. This is a significant increase from a decade ago, when there were 37.5 million refugees worldwide. Syria’s ongoing civil war, with 7.6 million people displaced internally, and 3.88 million people displaced into the surrounding region and beyond as refugees, has alone made the Middle East the world’s largest producer and host of forced displacement. Adding to the high totals from Syria are displacements of at least 2.6 million people in Iraq and 309,000 in Libya. This significant increase in refuges has only escalated the need for specific water quality and quantity regulations for refugee camps.

Water Shortages in Refugee Camps

A human being can survive a week without food but cannot live more than three days without water. While the abundance of water in our daily lives means most of us take it for granted, the reality on the ground is that millions around the world suffer from lack of access to water – many of which are refugees. Refugee camps often do not have enough water to supply all refugees residing within them.

Majority of refugee camps in the world are unable to provide the recommended daily water minimum of 20 liters water per person per day. In addition, many countries holding refugees are water-scarce. Jordan, for example, is one of the top 10 water-scarce countries in the world and holds more than 1.4 million refugees (mainly from Syria). This has caused tremendous strain on the country’s very low water resources, making it extremely difficult to supply sufficient water for refugees. However the biggest reason behind lack of water at refugee camps across the globe is the lack of water infrastructure.

The lack of water infrastructure makes it very difficult to transport sufficient amounts of water, and provide proper sanitation to all residents of a refugee camp. In fact, a recent study by the Jordanian Ministry of Water and Irrigation showed that the country’s sewerage network are being overflowed and are subsequently leaking due to the increase in the number of refugees. Furthermore, studies have shown that water borne diseases are more persistently present when the minimum water requirement (20 liters per person) is not met simply because there is less water for sanitation and cleaning purposes. That is why it is absolutely vital that governments ensure that recommended daily water minimum is provided to all refugees.

Water Quality Issues

Poor quality of water in refugee camps has created a “crisis within a crisis” causing outbreaks of waterborne diseases such as cholera, typhoid and hepatitis. This is due to misuse of the water quality regulations present and the lack of time available to implement these regulations on water quality in refugee camps.

In refugee camps, surface water is usually treated in three steps:

  • Sedimentation: The water is stored for a few hours so that the biggest particles can settle to the bottom.
  • Filtration: It is then necessary to get rid of the small, invisible particles by filtering the water through sand filters.
  • Chlorination: The last stage, chlorine solution is added to the water which kills all the microorganisms.

Groundwater, on the other hand, is generally subjected to chlorination. These techniques seem to be sufficient to provide an acceptable quality of drinking water. However, according to Syed Imran Ali, an environmental engineer affiliated with UC Berkley, who worked extensively in refugee camps across Africa and the Middle East, the amount of chlorine used to purify the water is not sufficient enough to completely eliminate all the bacteria in the water used in refugee camps. The reason being that the current emergency guidelines on free residual chlorine concentrations (0.2 – 0.5 mg/L in general, 0.8 – 1.0 mg/L during outbreaks) are based on conventions from municipal piped-water systems (i.e. used in cities) rather than refugee camps.

A study conducted by Ali in South Sudan, where there was an outbreak of hepatitis E and other waterborne diseases, showed that the decay of chlorine added to drinking water is much faster in refugee camps than it is under urban conditions, and within 10-12 hours of household storage and use the chlorine all but disappears. Within a refugee camp, water is distributed from one point within the camp, carried to homes via containers and then stored and used over 24 hours or more. Therefore, due to all these different factors the guidelines used may not be sufficient enough to maintain an acceptable quality of water in all refugee camp settings.

Refugee camps must have specific guidelines created to deal with the water quality provided within the camps to prevent outbreaks and improve livelihood within the refugee camps. In his study in South Sudan, Ali recommended that guidelines for chlorination control to be revised to 1.0 mg/l in the camps there rather than 0.2 – 0.5 mg/l. This would provide protection of at least 0.2 mg/l for up to 10 hours post-distribution, which is consistent with the recommended concentration for point-of-use water chlorination in emergency and nonemergency settings and is within the WHO limits generally considered to be acceptable to users (2.0 mg/L).

Time to Act

With the refugee situation worsening and no permanent solution to this crisis in sight, the minimum that can be done is to provide an adequate amount and quality of water for these refugees. The current purification techniques are not efficient enough to protect refugees from all harmful bacteria. There are a variety of ways that water can be provided.

Wastewater treatment, rain harvesting, humidity harvesting, among others are sustainable sources of water. However, providing water is not sufficient; water quality is just as important as water quantity. There must be water quality regulations specific to refugee camps that take into account the different aspects that might affect the quality of water (transport, storage, temperature). If things are to improve, it is absolutely vital for concerned governments, aid agencies, NGOs, volunteers etc. to band together and create water quality guidelines specific to refugee camps and that are capable to withstand different aspects within these camps. Without these guidelines, the condition of refugees will continue to worsen, and the refugees will continue to flee to Western countries in search of better living conditions.

Republished by Blog Post Promoter

Towards Effective Environmental Education

green-hope-uaeChildren are the "Future Generation" and their engagement in environmental conservation is an absolute must. Education is the key to fostering this engagement and hence , all efforts must be made in this regard. One of the main reasons for the current state of environmental degradation is the general apathy of civil society and the only way to address this issue is through intrinsic involvement of all stakeholders, in particular, children,  since it is their future that is at stake.

Involvement of children in environmental conservation initiatives will also ensure that the movement becomes "bottom-up" rather than something that is mandated by legislation — this "bottom-up" approach has always been seen to be more effective in terms of implementation.

Towards Effective Environmental Education

In order to be effective, environmental education needs to be both formally and informally imparted. Otherwise it ceases to be attractive and loses its effect. It becomes just another textbook one has to read and answer questions on. Children are inherently creative and the environmental education curriculum must try to build on this creativity. Rather than prescribing solutions, it must seek to obtain the answers from the children. After all, it is their future that is being decided upon.

Once this fundamental truth is understood, children will come forward with their views and actions to mitigate the environmental challenges. To be effective, environmental education needs to be imparted outside the four walls of the classroom. However, the weather in the Middle East, for most part of the year, is hardly conducive to outdoor activities and this should to be taken into account.

A beach cleanup campaign by Green Hope

A beach cleanup campaign by Green Hope

Green Hope – A Shining Example

My youth organisation, Green Hope, engages and educates young people through our "Environment Academies" which are tailor-made workshops on environmental issues. Till date, we have interacted with several hundred school and university students following all curriculum — our attendees are from all nationalities including native students. I have found them to be immensely concerned and motivated on environmental issues. Being from the region, they also have a lot of traditional knowledge about adapting to the natural environment which is a learning for those who have recently moved here. 

Asbestos Waste Management in MENA

Each year countries from the Middle East and North Africa import large amount of asbestos for use in the construction industry. As per the last known statistics, the Middle East and Africa accounted for 20% of world demand for the material. Iran and the United Arab Emirates are among the biggest consumers of the material. Infact, the entire Middle East has been steadily increasing their asbestos imports, except for Egypt and Saudi Arabia, which are the only two countries that have placed bans on asbestos but with questionable effectiveness. Iran alone has been reported to order 30,000 tons of asbestos each year. More than 17,000 tonnes of asbestos was imported and consumed in the United Arab Emirates in 2007. 

Fallouts from Wars and Revolutions

Asbestos is at its most dangerous when exposed to people who are not protected with masks and other clothing. In times past, such considerations were not thought about. At the moment, most people think of asbestos exposure as part of the construction industry. This means demolition, refurbishment and construction are the prime times that people can be exposed to the fibres.

In the Middle East and North Africa, however, turbulent times have increased the danger of exposure for people across the region. Since 2003, there has been the Iraq War, revolutions in Egypt, Libya and Tunisia, plus the uprising in Syria. Not to mention a raft of conflicts in Lebanon, Palestine and Israel. The upshot of this is that a building hit by an explosive, which contains asbestos, is likely to put the material in the local atmosphere, further endangering the lives of nearby.

Asbestos Waste Management

In many countries around the world companies, institutions and organizations have a legal responsibility to manage their waste. They are banned from using substances that are deemed hazardous to the general public. This includes a blanket ban on the use of asbestos. Where discovered it must be removed and dealt with by trained individuals wearing protective clothing. In the Middle East and North Africa, it is vitally important for there to be the development of anti-asbestos policies at government and business levels to further protect the citizens of those countries.

Not a single Middle East country has ratified International Labour Organization Law Number 162, which was instituted at the 1986 Asbestos Convention. The ILO No. 162 outlines health and safety procedures related to asbestos, including regulations for employers put forth in an effort to protect the safety of all workers. Asbestos waste management in the MENA region needs to take in several distinct action phases. Education and legislation are the first two important steps followed by actual waste management of asbestos. 

Largely speaking, the MENA region has little or no framework systems in place to deal with this kind of problem. Each year more than 100,000 people die worldwide due to asbestos-related diseases and keeping in view the continuous use of asbestos use in the region, it is necessary to devise a strong strategy for phasing out of asbestos from the construction industry.

Future Strategy

Many may argue that there is still a philosophical hurdle to overcome. This is why education must go in tandem with legislation. As of 2006, only Egypt and Saudi Arabia had signed up to a ban on asbestos. Even then, there is evidence of its continued use. Whether as part of official pronouncements or in the papers, on the TVs or in schools, it is vitally important that bans are backed up with information so the general public understand why asbestos should not only be banned, but removed. It is important that other countries consider banning the material and promoting awareness of it too.

Governments have the resources to open up pathways for local or international companies to begin an asbestos removal programme. In many places education will be required to help companies become prepared for these acts. Industrial asbestos removal begins with a management survey to identify what asbestos materials are in a building and where. This is followed up by a refurbishment and pre-demolition survey to best see how to remove the asbestos and replace it with better materials. These come in tandem with risk assessments and fully detailed plans.

Asbestos management cannot be completed without such a survey. This may prove to be the most difficult part of implementing widespread asbestos waste management in the Middle East and North Africa. Doing so will be expensive and time consuming, but the alternative is unthinkable – to rip out the asbestos without taking human safety into account. First, therefore, the infrastructure and training needs to be put into place to begin the long work of removing asbestos from the MENA region.

Republished by Blog Post Promoter

Agricultural Scenario in MENA

Agriculture plays an important role in the economies of most of the countries in the Middle East and North Africa.  The contribution of the agricultural sector to the overall economy varies significantly among countries in the region, ranging from about 3.2 percent in Saudi Arabia to 13.4 percent in Egypt.  Large scale irrigation is expanding, enabling intensive production of high value cash and export crops, including fruits, vegetables, cereals, and sugar.

Egypt is the 14th biggest rice producer in the world and the 8th biggest cotton producer in the world. Egypt produced about 5.67 million tons of rice and 635,000 tons of cotton in 2011. The area of cotton crop cultivation accounts for about 5% of the cultivated area in Egypt. The total amount of crop residues is about 16 million tons of dry matter per year. Cotton residues represent about 9% of the total amount of residues. These are materials comprising mainly cotton stalks, which present a disposal problem.

Although the Kingdom of Saudi Arabia is widely thought of as a desert, it has regions where the climate has favored agriculture. By implementing major irrigations projects and adopting large scale mechanization, Saudi Arabia has made great progress in developing agricultural sector. The Kingdom has achieved self-sufficiency in the production of wheat, eggs, and milk, among other commodities, though it still imports the bulk of its food needs. Wheat is the primary cultivated grain, followed by sorghum and barley. Dates, melons, tomatoes, potatoes, cucumbers, pumpkins, and squash are also important crops.

Despite the fact that MENA is the most water-scarce and dry region worldwide, many countries across the region, especially those around the Mediterranean Sea, are highly dependent on agriculture.  For example, the Oum Er Rbia River basin contains half of Morocco’s public irrigated agriculture and produces 60 percent of its sugar beets, 40 percent of its olives, and 40 percent of its milk.

Agricultural output is central to the Tunisian economy. Major crops are cereals and olive oil, with almost half of all the cultivated land sown with cereals and another third planted. Tunisia is one of the world's biggest producers and exporters of olive oil, and it exports dates and citrus fruits that are grown mostly in the northern parts of the country.

Agriculture in Lebanon is the third most important sector in the country after the tertiary and industrial sectors. It contributes nearly 7% to GDP and employs around 15% of the active population. Main crops include cereals (mainly wheat and barley), fruits and vegetables, olives, grapes, and tobacco, along with sheep and goat herding.

Republished by Blog Post Promoter

Agricultural Biomass in MENA

 

Agriculture plays an important role in the economies of most of the countries in the Middle East and North Africa region.  Despite the fact that MENA is the most water-scarce and dry region in the world, many countries in the region, especially those around the Mediterranean Sea, are highly dependent on agriculture.  The contribution of the agricultural sector to the overall economy varies significantly among countries in the region, ranging, for example, from about 3.2 percent in Saudi Arabia to 13.4 percent in Egypt.  Large scale irrigation coupled with mechanization has enabled entensive production of high-value cash crops, including fruits, vegetables, cereals, and sugar in the Middle East.

The term ‘crop residues’ covers the whole range of biomass produced as by-products from growing and processing crops. Crop residues encompasses all agricultural wastes such as bagasse, straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. Wheat and barley are the major staple crops grown in the Middle East region. In addition, significant quantities of rice, maize, lentils, chickpeas, vegetables and fruits are produced throughout the region, mainly in Egypt, Tunisia, Saudi Arabia, Morocco and Jordan. 

Egypt is the one of world's biggest producer of rice and cotton and produced about 5.67 million tons of rice and 635,000 tons of cotton in 2011. Infact, crop residues are considered to be the most important and traditional source of domestic fuel in rural Egypt. The total amount of crop wastes in Egypt is estimated at about 16 million tons of dry matter per year. Cotton residues represent about 9% of the total amount of residues. These are materials comprising mainly cotton stalks, which present a disposal problem. The area of cotton crop cultivation accounts for about 5% of the cultivated area in Egypt.

Agricultural output is central to the Tunisian economy. Major crops are cereals and olive oil, with almost half of all the cultivated land sown with cereals and another third planted. Tunisia is one of the world's biggest producers and exporters of olive oil, and it exports dates and citrus fruits that are grown mostly in the northern parts of the country.

To sum up, large quantities of crop residues are produced annually in the region, and are vastly underutilised. Current farming practice is usually to plough these residues back into the soil, or they are burnt, left to decompose, or grazed by cattle. These residues could be processed into liquid fuels or thermochemically processed to produce electricity and heat in rural areas. Energy crops, such as Jatropha, can be successfully grown in arid regions for biodiesel production. Infact, Jatropha is already grown at limited scale in some Middle East countries and tremendous potential exists for its commercial exploitation.

Republished by Blog Post Promoter

Earth Day 2015 – It’s Our Turn to Lead

Like Earth Days of the past, Earth Day 2015 will focus on the unique environmental challenges of our time. As the world’s population migrates to cities, and as the bleak reality of climate change becomes increasingly clear, the need to create sustainable communities is more important than ever. Earth Day 2015 will seek to do just that through its global theme: It’s Our Turn to Lead. With smart investments in sustainable technology, forward-thinking public policy, and an educated and active public, we can transform our cities and forge a sustainable future. Nothing is more powerful than the collective action of a billion people.

Due to rising population, more migration is taking place from rural to urban areas. Today, more than half of the world’s population lives in cities with urbanisation rates rising and impacts of climate change have prompted the need to create sustainable communities. The Earth day is observed believing that nothing is more powerful than the collective action of a billion people.

It is a fact that people are crowding cities and with the increase in population density, pollution of all sorts is increasing as well. Many cities are finding it difficult to cope with this fast urbanisation and to provide basic facilities like shelter, infrastructures, water, sanitation, sewerage, garbage, electricity, transportation etc. to its inhabitants.

People who live in high-density air pollution area, have 20 per cent higher risk of dying from lung cancer, than people living in less polluted areas. Children contribute to only 10 per cent of the world’s population but are prone to 40 per cent of global diseases. More than 3 million children under the age of 5 years die every year due to environmental factors like pollution.

Earth Day 2015 will seek to create awareness amongst people to act in an environmental friendly manner, promote and do smart investments in sustainable urban system transforming our polluted cities into a healthier place and forge a sustainable future. It’s exceptionally challenging for our communities and cities to be green.

Time for Action

It’s time for us to invest in efficiency and renewable energy, rebuild our cities and towns, and begin to solve the climate crisis. Most of the Middle East nations have limited land area and are particularly vulnerable to the impacts of climate change which is affecting the social and environmental determinants of health, clean air, safe drinking water, sufficient food and secure shelter. We need to audit our actions and see what are we contributing towards your environment and community? Earth Day is a day for action; a chance to show how important the environment is to us. Earth Day is about uniting voices around the globe in support of a healthy planet. The earth is what we all have in common.

Let us be a part of this green revolution, plan and participate in Earth Day activities moving from single-day actions, such as park cleanups and tree-planting parties to long-term actions and commitments and make our city a healthier place to live as the message of the Earth Day is to “Actively participate and adopt environmental friendly habits”.

Republished by Blog Post Promoter

Fuel Pellets from Solid Wastes

MSW is a poor-quality fuel and its pre-processing is necessary to prepare fuel pellets to improve its consistency, storage and handling characteristics, combustion behaviour and calorific value. Technological improvements are taking place in the realms of advanced source separation, resource recovery and production/utilisation of recovered fuel in both existing and new plants for this purpose. There has been an increase in global interest in the preparation of Refuse Derived Fuel (or RDF) containing a blend of pre-processed MSW with coal suitable for combustion in pulverised coal and fluidised bed boilers.

Pelletization of Urban Wastes

Pelletization of municipal solid waste involves the processes of segregating, crushing, mixing high and low heat value organic waste material and solidifying it to produce fuel pellets or briquettes, also referred to as Refuse Derived Fuel (RDF) or Process Engineered Fuel (PEF) or Solid Recovered Fuel (SRF). The process is essentially a method that condenses the waste or changes its physical form and enriches its organic content through removal of inorganic materials and moisture. The calorific value of RDF pellets can be around 4000 kcal/ kg depending upon the percentage of organic matter in the waste, additives and binder materials used in the process.

The calorific value of raw MSW is around 1000 kcal/kg while that of fuel pellets is 4000 kcal/kg. On an average, about 15–20 tons of fuel pellets can be produced after treatment of 100 tons of raw garbage. Since pelletization enriches the organic content of the waste through removal of inorganic materials and moisture, it can be very effective method for preparing an enriched fuel feed for other thermo-chemical processes like pyrolysis/ gasification, apart from incineration.

Pellets can be used for heating plant boilers and for the generation of electricity. They can also act as a good substitute for coal and wood for domestic and industrial purposes. The important applications of RDF in the Middle East are found in the following spheres:

  • Cement kilns
  • RDF power plants
  • Coal-fired power plants
  • Industrial steam/heat boilers
  • Pellet stoves

The conversion of solid waste into briquettes provides an alternative means for environmentally safe disposal of garbage which is currently disposed off in non-sanitary landfills. In addition, the pelletization technology provides yet another source of renewable energy, similar to that of biomass, wind, solar and geothermal energy. The emission characteristics of RDF are superior compared to that of coal with fewer emissions of pollutants like NOx, SOx, CO and CO2.

RDF production line consists of several unit operations in series in order to separate unwanted components and condition the combustible matter to obtain the required characteristics. The main unit operations are screening, shredding, size reduction, classification, separation either metal, glass or wet organic materials, drying and densification. These unit operations can be arranged in different sequences depending on raw MSW composition and the required RDF quality.

Various qualities of fuel pellets can be produced, depending on the needs of the user or market. A high quality of RDF would possess a higher value for the heating value, and lower values for moisture and ash contents. The quality of RDF is sufficient to warrant its consideration as a preferred type of fuel when solid waste is being considered for co-firing with coal or for firing alone in a boiler designed originally for firing coal.

Republished by Blog Post Promoter

Environmental Education: Key to a Better Future

environmental-educationTomorrow's leaders need to be equipped for tomorrow's challenges, and we must adequately prepare our children for the future they will inherit. As climate change is being felt across the globe and its long term catastrophic impacts have never been so scientifically clear, environmental education is the key to a better future. In an era where more and more children are disconnected from nature, we should recognize the importance of making a real investment in environmental education and outdoor learning. Studies have shown environmental education engages students in learning, raising test scores, and encouraging youth to pursue career in environmental and natural resources. And not only that: environmental education can help children perform better in social studies, science, language, arts, and mathematics.

Engagement at Different Levels

The secret to environmental education is to act at different levels, engaging the entire school and addressing students, teachers, parents, administrators and all members of the schools community. Eventually, it will link up all the participants within the community. The components of this initiative depend on interaction and participation, with teachers undertaking a guiding role by encouraging students to discover solutions on their own.

At first students should determine and check the extent of their use of natural resources in the school. Through this, they evaluate their efforts in the field of environmental management. 

As a second step, children should set up and run Eco Clubs. Eco Clubs provide an opportunity to students to participate in environmental projects and activities. They also serve as a forum through which the students share environmental problems, along with the school staff, parents and the community surrounding the school, in order to work on finding solutions, and promote a positive environmental behavior. In this component the schools can implement internal and external projects, such as introducing efficient methods of irrigation, lowering the volume of waste, reducing the consumption of electricity and water and trying to reduce air pollution.

The third step focuses on organizing training courses for teachers and releasing educational resources in different themes and curricula, helping them to teach environmental concepts in innovative ways and through various educational materials. This will help teachers to adapt and to provide students with information about different habitats, biodiversity, climate change and other issues faced at the local level, as well as faced by the planet on a global level.

The final step should be to connect students to environmental causes and issues, and identify solutions through the provision of field trips. Additionally, such trips can be associated with the educational curriculum as they offer direct learning method. This helps boosting the understanding of various concepts by the students, and increasing the chance of using multiple senses such as eyesight, hearing, etc., which helps to raise their capacity to understand what they have learned. The success and engagement of schools to take on the environment field trips is great and extensive and it represents a set full of amazing adventures of exploration and knowledge.

Undoubtedly, the final and greatest outcome is to educate our children on the importance of becoming good environmental citizens.

Challenges in the Middle East

The Middle East region faces difficult natural conditions, and it is clear that steep population growth, poverty and the consequent degradation of natural ecosystems make it a priority when it comes to Environmental awareness and sustainability goals. One of the biggest challenges is certainly the lack of awareness. 

Most countries are blessed with high levels of education, with a large portion of the population pursuing secondary and higher education. Unfortunately however, human development and wealth are not always synonym with high environmental awareness and interest in sustainability issues… Jordan and Lebanon, for example, have their primary focus in tourism, which mostly contributes to their GDPs.

An interesting survey conducted in the Sultanate of Oman revealed that the environmental awareness of the Omani public was related to education level but also to gender and age. Males were found to have a higher level of knowledge about environmental issues than females. Males were also more environmentally concerned and tended to engage in more environmental behaviors than females. Younger and more educated respondents tended to be more knowledgeable and concerned about the environment than older and less educated respondents.

Eco Clubs provide an opportunity to students to participate in environmental projects and activities.

Eco Clubs provide an opportunity to students to participate in environmental projects and activities.

Another challenge that countries such as the Kingdom of Saudi Arabia (KSA), the United Arab Emirates (UAE) and Qatar are faced with, is trying to reduce their consumption patterns. Even though awareness levels seem to be higher than in other countries, these nations are notorious for their unsustainable consumption rates. For instance, KSA and the UAE’s water consumption have reached 265 and 550 liters per capita per day respectively, which significantly exceeds the world’s average. 

Participation of Emirati Youth

Educating the UAE youth and preparing them to lead the country’s sustainable future is the first goal in the UAE national environmental awareness strategy and the Ministry of Climate Change and Environment encourages the youth to innovate and be part of global environmental efforts.

Recently the UAE has taken a major step including environmental education in all schools: back in November Thani Ahmad Al Zeyoudi, Minister of Climate Change and Environment, announced that awareness of climate change and how to help save the environment will be taught in classrooms across the country.

Under plans to tweak schools' curriculum to include learning on sustainability, schoolchildren will also be shown how to take energy-saving measures. These include schoolchildren of all ages, including in private sector schools, learning the importance of turning off lights and air-conditioning when not in use, and how to use less water. Each pupil will also be encouraged to spread the message to their family and friends. One of these initiatives, called Sustainable Schools, is an extension of a program that started in Abu Dhabi in 2009.

As a consequence to all these efforts taken by the government, I observed an increase in the numbers of UAE nationals volunteers participating in our programs: we've usually had a majority of Indians and Europeans taking part in our tree planting events or in the anti-pollution awareness drives, but lately large groups of young Emiratis have come forward to participate actively in all our programs and we continue to receive many emails asking to become long term volunteers. This is one of the biggest achievements we could wish for the UAE.

Note: For more information about the author of this article, please click here

Composting Guidelines for Beginners

It seems everyone is concerned about the environment and trying to reduce their “carbon footprint”.  Let us hope that this trend will continue and grow as a worldwide phenomenon.  Composting has been around for many years and is a great way to keep biodegradables out of the landfill and to reap the reward of some fabulous “black gold”.  That’s what master gardeners call compost and it’s great for improving your soil.  Plants love it. 
Check out few Rules to Remember About Composting.
  1. Layer your compost bin with dry and fresh ingredients: The best way to start a compost pile is to make yourself a bin either with wood or chicken wire.  Layering fresh grass clippings and dried leaves is a great start.
  2. Remember to turn your compost pile: As the ingredients in your compost pile start to biodegrade they will start to get hot.  To avoid your compost pile rotting and stinking you need to turn the pile to aerate it.  This addition of air into the pile will speed up the decomposition.
  3. Add water to your compost pile: Adding water will also speed up the process of scraps turning into compost.  Don’t add too much water, but if you haven’t gotten any rain in a while it’s a good idea to add some water to the pile just to encourage it along.
  4. Don’t add meat scraps to your pile: Vegetable scraps are okay to add to your compost pile, but don’t add meat scraps.  Not only do they stink as they rot, but they will attract unwanted guests like raccoons that will get into your compost bin and make a mess of it.
  5. If possible have more than one pile going: Since it takes time for raw materials to turn into compost you may want to have multiple piles going at the same time.  Once you fill up the first bin start a second one and so on.  That way you can allow the ingredient in the first pile to completely transform into compost and still have a place to keep putting your new scraps and clippings.  This also allows you to always keep a supply of compost coming for different planting seasons.
  6. Never put trash in your compost pile: Just because something says that it is recyclable it doesn’t mean that it should necessarily go into the compost bin.  For example, newspapers will compost and can be put into a compost pile, but you will want to shred the newspapers and not just toss them in the bin in a stack.  Things like plastic and tin should not be put into a compost pile, but can be recycled in other ways.
  7. Allow your compost to complete the composting process before using: It might be tempting to use your new compost in your beds as soon as it starts looking like black soil, but you need to make sure that it’s completely done composting otherwise you could be adding weed seeds into your beds and you will not be happy with the extra weeds that will pop up.
  8. Straw can be added if dried leaves are not available: Dried materials as well as green materials need to be added to a compost bin.  In the Fall you will have a huge supply of dried leaves, but what do you do if you don’t have any dried leaves?  Add straw or hay to the compost bin, but again these will often contain weed seeds so be careful to make sure they are completely composted before using them.
  9. Egg Shells and Coffee grounds are a great addition: Not only potato skins are considered kitchen scraps.  Eggshells and coffee grounds are great additions to compost piles because they add nutrients that will enhance the quality of the end product.
  10. Never put pet droppings in your compost pile: I’m sure you’ve heard that manure is great for your garden, but cow manure is cured for quite a while before used in a garden.  Pet droppings are far to hot and acidic for a home compost pile and will just make it stink.

Republished by Blog Post Promoter

Saudi Arabia Biorefinery from Algae (SABA) Project

The King Abdulaziz City for Science & Technology (KACST) is funding an innovative project called Saudi Arabia Biorefinery from Algae (SABA Project) to screen for lipid hyper-producers species in Saudi Arabia coastal waters. These species will be the basis for next-generation algal biofuel production. The goal of this project is to increase research and training in microalgae-based biofuel production as well algal biomass with an additional goal of using a biorefinery approach that could strongly enhance Saudi Arabia economy, society and environment within the next 10 years.

The primary mission of the SABA project is to develop the Algae Based Biorefinery – ABB biotechnology putting into operation innovative, sustainable, and commercially viable solutions for green chemistry, energy, bio-products, water conservation, and CO2 abatement. Microalgae are known sources of high-value biochemicals such as vitamins, carotenoids, pigments and anti-oxidants. Moreover, they can be feedstocks of bulk biochemicals like protein and carbohydrates that can be used in the manufacture of feed and food.

The strategic plan for SABA project is based on the achievement of the already ongoing applied Research, Technology Development & Demonstration (RTD&D) to the effective use of microalgae biomass production and downstream extraction in a diversified way, e.g. coupling the biomass production with wastewater bioremediation or extracting sequentially different metabolites form the produced biomass (numerous fatty acids, proteins, bioactive compounds etc.). This interdisciplinary approach including algal biology, genetic engineering and technologies for algae cultivation, harvesting, and intermediate and final products extraction is crucial for the successful conversion of the developed technologies into viable industries.

The first phase of this project entitled “Screening for lipid hyper-producers species in Saudi Arabia coastal waters for Biofuel production from micro-Algae” will build the basis for large scale system to produce diesel fuel and other products from algae grown in the ocean with a strong emphasis on building know-how and training. It will ultimately produce competitively priced biofuel, scaling up carbon capture for a range of major environmental, economic, social and climate benefits in the Kingdom and elsewhere. The project lends itself to an entrepreneurial new venture, working in partnership with existing firms in the oil and gas industry, in energy generation, in water supply and sanitation, in shipping and in food and pharmaceutical production.

The project is gaining from cross-disciplinary cutting edge Research, Technology Development & Demonstration for the industrial implementation of the fourth generation algae-based Biorefinery. The technology development is supported by a consortium of engineers, researchers in cooperation with industry players (to ensure technology transfer), international collaborators (to ensure knowledge transfer) and the Riyadh Techno Valley (to promote spin-off and commercialization of results). 

Since the research topic is innovative in the Kingdom research circles, a strong research partnership was promptly developed by the King Saud University / King Abdulah Institute for Nanotechnology with international distinguished research centers with proved successful experience in this technology development. The Centre of Marine Science (CCMAR) and the Institute of Biotechnology and Bioengineering (IBB) both from Portugal are a guarantee to the successful research-based technology development in the SABA project development and the effective capacity-building for Saudi young researchers and technicians.

Republished by Blog Post Promoter

A Message on World Water Day

Water is the major driving force of sustainable development. World Water Day aims to increase people’s awareness of the water’s importance in all aspects of life and focus on its judicious use and sustainable management. In 1993, the United Nations General Assembly designated 22 March as the first World Water Day (WWD). Since then the WWD is celebrated to draw wider public attention to the importance of water for mankind. Globally the day is celebrated to focus attention on water conservation, carrying out appropriate concrete measures and implementing the UN recommendations at individual, local and national level. WWD is a global day creating awareness on the subject and urging people to take appropriate actions for its conservation and avoiding its misuse.

The World Water Day 2016 theme is ‘Better water, better jobs’ which aims to highlight how water can create paid and decent work whiile contributing to a greener economy and sustainable development. Water is essential to our survival, it is essential to human health. The human body can last weeks without food, but only days without water. Water is at the core of sustainable development. From food and energy security to human and environmental health, water contributes to improvements in social well-being and growth, affecting the livelihoods of billions.

Globally, 768 million people lack access to improved water sources and 2.5 billion people have no improved sanitation. The World Health Organization (WHO) recommends 7.5 liters per capita per day to meet domestic demands. Around 20 liters per capita per day will take care of basic hygiene needs and basic food hygiene. Poor water quality and absence of appropriate sanitation facilities are detrimental to public health and more than 5 million people die each year due to polluted drinking water. The WHO estimates that providing safe water could prevent 1.4 million child deaths from diarrhea each year.

This year, the UN is collectively bringing its focus to the water-sustainability development nexus, particularly addressing non access to safe drinking water, adequate sanitation, sufficient food and energy services. It is ironical that a large number of people in the Middle East are still consuming excess water and are ignorant or careless about the looming water shortages. With the threat of dwindling water and energy resources becoming increasingly real and with each passing day, it is important for every person in the Arab world to contribute to the conservation of water.

Celebrating World Water Day means that we need to conserve and reduce our water use as excessive water use will generate more waste water which is also to be collected, transported, treated and disposed. We need to understand that 60% of total household water supply is used inside the home in three main areas: the kitchen, the bathroom and the laundry room.

Saving water is easy for everyone to do. Let us try to implement the following basic water conservation tips at home:

  • Turn off the water tap while tooth brushing, shaving and face washing.
  • Clean vegetables, fruits, dishes and utensils with minimum water. Don’t let the water run while rinsing.
  • Run washing machine and dishwasher only when they are full.
  • Using water-efficient showerheads and taking shorter showers.
  • Learning to turn off faucets tightly after each use.
  • Repair and fix any water leaks.

The World Water Day implores us to respect our water resources. Act Now and Do Your Part.

Republished by Blog Post Promoter