District Cooling Perspectives for the Middle East

District cooling produces chilled water in a centralized location for distribution to buildings like offices and factories through a network of insulated underground pipes. The chilled water travels to different buildings, where the water circulates through refrigeration coils or uses absorption technology to enter the air-conditioning system. During winter, the source for the cooling can often be sea water, so it is a cheaper resource than using electricity to run compressors for cooling.

What is District Cooling

District cooling provides effective control over internal temperature of a building, requires less maintenance than a standalone air-conditioning system, consumes lesser space and reduces noise pollution. The effect of district cooling systems on the environment is minimal because of the reduction in carbon dioxide emissions, use of eco-friendly refrigerants and implementation of rigorous health and safety standards.

The Helsinki district cooling system in Finland uses waste heat from CHP power generation units to run absorption refrigerators for cooling during summer time, greatly reducing electricity usage. In winter time, cooling is achieved more directly using sea water. The adoption of district cooling is estimated to reduce the consumption of electricity for cooling purposes by as much as 90 percent. The idea is now being adopted in other Finnish cities.

The use of district cooling is also growing rapidly in Sweden and in a similar way. District cooling is very widespread in Stockholm, the capital of Sweden. In fact, approx. 7 million square meters of commercial space in Stockholm is connected to the district cooling grid. The Stockholm district cooling grid currently consists of different systems with capacities ranging from 3 MW to 228 MW. The district cooling network in Stockholm is currently 76 kilometers long.

District Cooling Prospects in the Middle East

There is tremendous potential for the utilization of district cooling systems in the Middle East. The constant year-round heat coupled with expensive glass exteriors for hotel, airports and offices etc result in very high indoor temperatures. The combination of distributed generation of power and utilization of waste heat can provide a sustainable solution to meet the high demand for refrigeration in the region. District cooling systems can provide cooling solutions to commercial buildings, hotels, apartment blocks, shopping malls etc.

The world’s largest district cooling plant, Integrated District Cooling Plant (IDCP), was installed in The Pearl-Qatar in 2010. IDCP will service more than 80 apartment towers, beachfront villas, townhouses, shopping complexes, offices, schools and hotels throughout the Island, ultimately supplying more than 130,000 tons of refrigeration to the Island’s estimated 50,000 residents.

Despite paramount importance of air conditioning in Middle East countries, regional governments have failed to incorporate it in policy and planning which has lead to the evolution of an unregulated market for cooling systems.  Most of the cooling methods employed nowadays are based on traditional window units or central air cooling systems where consume copious amount of power and also damage the environment.

District cooling has the potential to provide a viable solution to meet air conditioning requirements in the Middle East. Low energy requirement, peak saving potential, eco-friendliness and cost-effectiveness are major hallmarks of district cooling networks. District cooling can play a vital role in fostering sustainable development in Middle East nations. Apart from providing cooling needs, district cooling can reduce the need for new power plants, slash fossil fuel requirements and substantially reduce greenhouse gas emissions from the region.   

Republished by Blog Post Promoter

Dealing with Polystyrene Wastes

Polystyrene (also known as EPS Foam or Styrofoam) is a highly popular plastic packaging material which finds wide application in packaging of food items, electronic goods, electrical appliances, furniture etc due to its excellent insulating and protective properties. Polystyrene is also used to make useful products such as disposable cups, trays, cutlery, cartons, cases etc.

Despite the attractiveness of polystyrene, municipalities and organisations are facing a growing problem in disposal of polystyrene packaging and products. Being large and bulky, polystyrene take up significant space in rubbish bins which means that bins becomes full more quickly and therefore needs to be emptied more often. Polystyrene is lightweight compared to its volume so it occupies lots of precious landfill space and can be blown around and cause a nuisance in the surrounding areas. 

Although some companies have a recycling policy, most of the polystyrene still find its way into landfill sites around the world. As per conservative estimates, hundreds of thousands of tons of waste polystyrene is produced in the Middle East and sent to landfills each year.  

Environmental Impacts

While it is estimated that EPS foam (or polystyrene)  products accounts for less than 1% of the total weight of landfill materials, the fraction of landfill space it takes up is much higher considering that it is very lightweight.  Furthermore, it is essentially non-biodegradable, taking hundreds perhaps thousands of years to decompose.  Even when already disposed of in landfills, EPS can easily be carried by the wind and litter the streets or end up polluting water bodies.  When EPS foam breaks apart, the small polystyrene components can be eaten by animals which can cause choking or intestinal blockage. 

Polystyrene can also be consumed by fishes once it breaks down in the ocean.  Marine animals higher up the food chain could eat the fishes that have consumed EPS, thus concentrating the contaminant.  It could be a potential health hazard for us humans who are on top of the food chain considering that styrene, the plastic monomer used in manufacturing EPS has been classified by the US National Institutes of Health (NIH) and the International Agency for Research on Cancer (IARC) as a possible human carcinogen.  Styrene is derived from either petroleum or natural gas, both of which are non renewable and are rapidly being depleted, creating environmental sustainability problems for EPS.

Recycling Trends

There seems to be a common misconception that polystyrene is non-recyclable.  Being a thermoplastic, it can actually be melted and molded into many different plastic items.  At present, the recycling of polystyrene (or EPS foam) basically follows the following process:

Segregation – EPS foam products are separated from other wastes and then sorted.

Compaction – The segregated EPS foam products are fed to a compactor in order to reduce its volume.  Some compactor systems have a compaction ratio of up to 50:1, which means that it can reduce the volume by up to 98%.

Shredding – Larger pieces are shredded into flakes.  Packaging “peanuts” – small EPS foam pieces used to cushion fragile items – normally skip this step and are fed directly to the pelletizing machine.

Melting/Extrusion – The flakes are forced through pelletizing extruders where they are heated and melted, then allowed to cool in order to solidify. The resulting material can then be used, through reheating and melting, to produce clothes hangers, picture frames, DVD cases and numerous other plastic products.

Major Bottlenecks

Although the Alliance of Foam Packaging Recyclers have reported that the recycling rate for post-consumer and post-commercial EPS in the United States have risen to 28% in 2010 from around 20% in 2008, this value is still lower than most solid wastes.  According to USEPA, auto batteries, steel cans and glass containers have recycle rates of 96.2%, 70.6% and 34.2% respectively. Because it is bulky, EPS foam takes up storage space and costs more to transport and yet yields only a small amount of polystyrene for re-use or remolding (infact, polystyrene accounts for only 2% of the volume of uncompacted EPS foams). This provides little incentive for recyclers to consider EPS recycling. 

Products that have been used to hold or store food should be thoroughly cleaned for hygienic reasons, thus compounding the costs.  For the same reasons, these products cannot be recycled to produce the same food containers but rather are used for non-food plastic products.  The manufacture of food containers, therefore, always requires new polystyrene.  At present, it is more economical to produce new EPS foam products than to recycle it, and manufacturers would rather have the higher quality of fresh polystyrene over the recycled one.

Silver Lining

The cost of transporting bulky polystyrene waste discourages recyclers from recycling it.  Organizations that receive a large amount of EPS foam (especially in packaging) can invest in a compactor that will reduce the volume of the products. Recyclers will pay more for the compacted product so the investment can be recovered relatively easier.

There are also breakthroughs in studies concerning EPS recycling although most of these are still in the research or pilot stage.  Several studies have found that the bacteria Pseudomonas putida is able to convert polystyrene to a more biodegradable plastic.  The process of polystyrene depolymerization – converting polystyrene back to its styrene monomer – is also gaining ground. 

Meanwhile, for the rest of us, we can start reducing our polystyrene consumption by opting to use products that can be reused, such as bringing our own coffee mugs and food containers to stores that serve their food and drinks in EPS foam.  A small change in our lifestyles can make a big difference for the environment.

Republished by Blog Post Promoter

Green SMEs in Middle East: Obstacles and Challenges

green-smes-middle-eastWith ‘green’ being the buzzword across all industries, greening of the business sector and development of green skills has assumed greater importance all over the world, and Middle East is no exception. Small and medium-sized enterprises (SMEs) operating in eco-design, green architecture, renewable energy, energy efficiency and sustainability are spearheading the transition to green economy across a wide range of industries. Green SME sector in the Middle East has been growing steadily, albeit at a slower pace than anticipated. 

Regulations

One of the major obstacles in the progress of green SMEs in the Middle East the has been poorly-designed regulation. According to Ruba A. Al-Zu’bi, a renowned sustainable development consultant in MENA, “SMEs should be the drivers of transformation towards green economy in the Middle East. Lack of clear policy direction and enablers are hindering growth and competitiveness of green SMEs”. Product market regulations which stifle competition pose a big hurdle to SMEs operating in renewables, energy, environment and sustainability sectors.  For example, state-owned companies in GCC have almost complete monopoly in network industries which have large environmental impacts (electricity/energy sector) or control strategic environmental services (water and waste management sector).

Restructuring

Restructuring of the SME sector in the Middle East is essential to allow small businesses to grow and prosper, thus catalyzing region’s transition to a green economy. SMEs account for vast majority of production units and employment across the Middle East, for example SMEs are responsible for around 60% of UAE’s GDP. Needless to say, participation of SMEs is essential in the transition to a low-carbon economy, thus paving the way for greening the business sector and development of green skills across all industrial segments.

Green SMEs require strong government support for growth, which is unfortunately lacking in several GCC countries. As Ruba Al-Zu’bi puts it, “Despite the humongous opportunity for green growth in the Middle East, magnified by climate change, water scarcity, oil dependency and environmental footprint, green SMEs are plagued by severe challenges and competition.”

Pressing Challenges

The Middle East region is facing multiple challenges in the growth of green SME sector. As Ruba Al-Zu’bi puts it, “The most pressing challenges are (1) increasing disconnect between education and market needs and (2) the disorientation of research and development from industry priorities and trends. Government agencies, business associations and NGOs need to play a bigger role in advocating more streamlined priorities for green growth across all industrial sectors.” Green SMEs in the region are facing significant barriers to entry despite their key role in developing locally appropriate technologies and eco-friendly business models.

Promising Initiatives

Abu Dhabi has taken a great step towards consolidation of green SME sector by creating the Masdar Free Zone. As a business cluster, Masdar Free Zone endeavors to provide SMEs and startups with an environment that inspires innovation, offers business development opportunities and provides a living lab and test bed for new technologies. However office rents has been a hurdle to overcome for green SMEs with limited financial capabilities.  “High office rents in Masdar Free Zone have been a major deterrent for small businesses desirous of setting shop in the business cluster”, says Dubai-based sustainability consultant Sunanda Swain.

In 2007, Qatar also launched a promising initiative to promote green growth in the form of Qatar Science and Technology Park (QSTP) with core areas of focus being energy, environment, health sciences and information and communication technologies. During the initial phase, QSTP has been heavily focused on establishing infrastructure and attracting large companies. During the second phase, QSTP intends to target SMEs and provide them support on legal matters, finance, mentoring and business planning.

Future Perspectives

Policy interventions for supporting green SMEs in the Middle East are urgently required to overcome major barriers, including knowledge-sharing, raising environmental awareness, enhancing financial support, supporting skill development and skill formation, improving market access and implementing green taxation. In recent decades, entrepreneurship in the Middle East has been increasing at a rapid pace which should be channeled towards addressing water, energy, environment and waste management challenges, thereby converting environmental constraints into business opportunities.

Republished by Blog Post Promoter

Green Finance in Middle East

Green finance is among the most important enablers that would boost innovation and increase the adoption of green solutions and practices across different industrial sectors. Green finance, which has grown by leaps and bounds in recent years, provides public well-being and social equity while reducing environmental risks and improving ecological integrity.

Middle East is making good progress towards green growth and low-carbon economy. “The latest regional trends highlight the need for green financing mechanisms to support transition to green economy”, said Ruba Al-Zu’bi, CEO of EDAMA. “While green may be the obvious feasible and sustainable approach, access to finance makes it more appealing for small and medium enterprises and to individuals to promptly take the right decision”, she added.

Jordan is one of the earliest proponents of green finance in the Middle East. “Green finance in Jordan is being offered through public channels, such as the Jordan Renewable Energy and Energy Efficiency Fund (JREEEF), commercial banks, micro-finance institutions as well as International Financial Institutions”, said Ruba.  “Most of green finance mechanisms are supported by technical assistance, awareness-raising and targeted marketing activities, all ofwhich are crucial to success of green projects”, she said.

In the GCC, the National Bank of Abu Dhabi (NBAD) is gearing up to launch a $500 million green bond, the first in the region. This green bond will provide a boost to renewable energy and energy efficiency sectors, and is expected to catalyze sustainable development projects in the GCC.

National Bank of Abu Dhabi has the distinction of being the first issuer of green bonds in the Middle East

To sum up, green finance will act as a major enabler for local, regional and international financing needs of green projects. The upcoming COP22 in Marrakesh is expected to provide impetus to climate change mitigation and adaptationprojects across the Middle East region. The key to success, according to Ruba Al-Zu’bi, will be market readiness, effective governance frameworks, capacity-building and technology transfer.

The Menace of Single-Use Plastic Bags

Single-use plastic bags are one of the most objectionable types of litter in urban areas. The sheer volume of plastic waste generated coupled with energy and material resources required for production, as well as emissions resulting from these processes paint a grim picture of the environmental havoc created by plastic bags. Single-use plastic bags are a huge threat to the environment as an estimated 1 trillion such bags are consumed worldwide every year. In the United Arab Emirates alone, nearly 12 billion plastic bags are used annually.

Major Hazards

Single-use plastic bags are notorious for their interference in natural ecosystems and for causing the death of aquatic organisms, animals and birds. In 2006, The United Nations Environment Programme (UNEP) estimated that there are 46,000 pieces of plastic litter floating in every square mile of ocean and upto 80 percent of marine debris worldwide is plastic which are responsible for the death of a more than a million seabirds and 100,000 marine mammals each year from starvation, choking or entanglement. Infact, there is a huge floating dump in the Pacific Ocean called the "Great Pacific Garbage Patch" which is hundreds of miles wide and consists mostly of plastic debris caught  in the ocean's currents. 

Plastic bags are mistakenly ingested by animals, like cows and camels, clogging their intestines which results in death by starvation. In addition, plastic bags clog urban drainage systems and contribute to flooding, as witnessed in Mumbai, Dhaka and Manila in recent decades. Moreover, toxic chemicals from single-use bags can enter the food chain when they are ingested by animals and birds.

Unfortunately only a small percentage of these bags are recycled each year, and most float about the landscape and create a tremendous expense in clean-up costs. Several countries, regions, and cities have enacted legislation to ban or severely reduce the use of disposable plastic shopping bags. Plastic bags litter serves as a floating transportation agent that enables alien species to move to new parts of the world thus threatening biodiversity.

Plausible Solutions

The hazards of single-use plastic bag can be mitigated by raising environmental awareness among communities. Many municipalities in the Gulf region are targeting shopping malls and grocery stores to reduce dependence on single-use plastic bags. Environmental education at workplaces, schools and residential areas is a vital tool in the fight against plastic bags. Empowering people to take proactive actions and encouraging them to be a part of the solution can also be helpful in reducing the reliance on single-use plastic bags.

Municipalities can make use of 5Rs of waste management – Rethink, Reduce, Reuse, Recycle and Recover – to encourage safe disposal of plastic bags which may be facilitated by mass deployment of plastic bag collection systems and recycling facilities at strategic locations. Some of the alternatives are cloth-based bags, such as jute and cotton, which biodegradable as well as reusable. Infact, the range of durable fabric shopping bags is growing each year in the Western countries, including those that can be conveniently folded up into a pocket.

The introduction of ‘plastic bags tax’ can also be a handy weapon in restricting use of single-use plastic bags in the Middle East. For example, Ireland introduced a plastic bag charge called PlasTax ten years ago which has virtually eliminated plastic bags in the country. 

Regional Initiatives

The Middle East region has been slow in gearing up to the challenges posed by single-use plastic bags, though governments have been trying to raise public awareness aimed at behavioral change. The Ministry of Environment and Water in UAE launched an initiative called “UAE free of plastic bags” in 2009 to maintain the health of the natural habitat and enhance the environmental standards of the state. The Dubai Municipality has also launched an ambitious “No to Plastic Bags” campaign to slash 500 million plastic bags. There are similar efforts, but small-scale, efforts in Saudi Arabia, Qatar and Kuwait to encourage clean-up campaigns in seas, deserts and citites. In Egypt, the Red Sea (Hurghada) is the first plastic bag free governorate having introduced a ban in 2009 which generated employment opportunities for women who have been charged with creating cloth bags in the place of plastic bags.

 

About the Authors

Eaman Abdullah Aman is MRLS graduate in Environmental and Natural Resources Law and Policy with a specialization certificate in Energy Law and Policy from Denver University, USA. Her expertise encompasses international petroleum transactions, petroleum contracts and agreements, international petroleum investment operations, energy policy and economics of natural resources law and policy. She has rich knowledge on issues related to climate change mitigation, environmental law and policy, environmental ethics, energy security, sustainable development etc.

Salman Zafar is the Founder of EcoMENA and a renowned expert in waste management, renewable energy, environment protection and sustainability. He is widely acknowledged as an authority on environment and sustainability sector in the Middle East and proactively engaged in creating mass awareness on clean energy, environment and sustainability through his websites, blogs, articles and projects. Salman can be contacted on salman@ecomena.org.

Republished by Blog Post Promoter

Peak Oil: Perspectives for Saudi Arabia

PeakOil-SaudiArabiaThe term ‘peak oil’ is ominous to the Middle East, as most of the countries in the region are heavily dependent on oil and natural gas for industrial, economic and social development. Petroleum is considered one of the world’s most important sources of energy generation, after uranium, of course. Many other substances have been tested in order to be used as alternatives to petroleum, but none have hitherto been successful. Scientific research illustrates how the world is facing catastrophe if it doesn’t find an alternative to oil, as it is currently impossible for the global economy to grow without sufficient amounts of energy which are adapted to the demands of this growth. There is more discussion now than ever before about how the world is definitely starting to approach a stage of peak oil.

What is Peak Oil

Peak oil is a termed coined by the renowned American geologist King Hubbert in the fifties. He managed to predict an oil peak in several regions in America which would occur in the seventies; and exactly what this scientist predicted did in fact happen. For when oil extraction reaches extreme levels it begins to decline and gradually ends. Oil is considered a finite resource, or one which isn’t renewed as it is used up.

This theory confirms that global oil production has reached its peak today and has started declining inexorably now that 50% of the world’s oil reserves have been consumed. This proves that oil could be on the brink of depletion if clear and serious plans are not put in place to guide consumption and therefore encourage using provisional reserves in the best way. However, this theory is not accepted by many or by those who continue to focus on how large the earth’s oil reserves are, and how they only need investment so that they can be drilled.

Peak Oil Scenario for Saudi Arabia

Saudi Arabia is considered one of the largest global oil exporters and the only one able to regulate and stabilise the global oil market, thanks to its reserve stocks. These reserves are calculated to be at 265.4 billion barrels, or what is enough to last, at the current level of production, for more than 72 years. According to ARAMCO reports, there are around a trillion barrels that will be discovered in the future and will satisfy global demands, despite current consumption, for one whole century.

 Saudi Arabia is currently focussing its efforts on drilling and extracting natural gas, as it doesn’t import it but depends on domestic production. Alongside this, the Saudi Kingdom is currently making huge investments in nuclear energy and solar power.

But can natural gas and renewable energy be relied upon as alternatives to oil in order to satisfy Saudi Arabia’s domestic needs, which are rapidly growing each day? According to a recent report by America’s Energy Information Administration (EIA), Saudi Arabia is the largest oil-consuming nation in the Middle East. Saudi Arabia consumed 2.9 million barrels per day of oil in 2013, almost double the consumption in 2000, because of strong industrial growth and subsidised prices. One important contributor to Saudi oil demand is the direct crude oil burn for power generation. There is not just enough fuel oil and natural gas to meet the demand and hence the resorting to crude oil.

Has peak oil really arrived? If not today, then when? And how will it look, especially for countries totally dependent on oil? Will its consequences be different for both developed and under-developed nations?  Given that global demand for oil will only grow to exceed 100 million barrels a day after 2020, according to the most extreme estimates, I believe that the time may have come for the Kingdom of Saudi Arabia to start planning for what follows the oil era.

Despite looming threat of peak oil, power generation capacity in KSA is expected to rise from current level of 58GW to 120GW by 2032, however Saudi Arabia cannot afford to burn rising crude oil volumes for power generation. In spite of the fifth largest natural gas reserves in the world, it does not produce sufficient gas for power generation and for its vast petrochemical industry. The only solution at this point of time is transition to low-carbon economy whereby Saudi Arabia make use of its massive solar energy potential, implement effective measures for improving energy efficiency in the industrial sector and remove huge energy subsidies for industrial and domestic users.

 

Note: The article has been translated from Arabic by Katie Holland who graduated from Durham University in 2015 with a degree in Arabic and French, having also studied Persian. Currently working in London, she hopes to develop a career that uses her knowledge of Arabic and the Middle East, alongside pursuing her various interests in the arts. 

Republished by Blog Post Promoter

Guidelines for Eco-Friendly Eidul Fitr

The culmination of the holy month of Ramadan is with the festival of Eidul Fitr or Feast of Breaking the Fast. Eid is considered as a religious holiday celebrated by Muslims worldwide and to show a common goal of unity. The main aspects of Eid are congregational prayers in masjids, open areas and parks, get to gather of families and friends at home or restaurants, making and eating special dishes and wearing ceremonial dresses.

Eidul Fitr, like other local, national and religious festivals often have a major impact on the environmental resources. Extra food, drinks and clothings are made, used and consumed. People spend a fortune on these items. The cost and environmental consideration is often being neglected, not considered and forgotten.

The celebrations and festivity are often extravagant and cause pollution and harm to the environmental resources. The day starts with the special prayers whereby men, women and children gather to offer prayers. The site of praying after the ritual is often plagued by litter, rubbish and waste scattered all over the place and even blowing in the air and migrating to nearby safe havens for unaesthetic accumulations.

Special food is prepared in houses which are visited by the relatives and neighbours. This causes great food wastage often due to under utilization as food is prepared more than the number of visitors and with a feeling that it should not be finished. On the other hand, people also eat limited quantity of special food less than expected or prepared which goes waste quickly. This includes special breakfast, lavish snacks, sumptuous lunches and extravagant dinners during the festival days.

To supply the population with the required quantity of food, government makes huge efforts in procuring or rather over-procuring food stuff for local consumption. It includes meat, poultry, vegetables, fruits, dairy products, cereals, grains, packaged food etc. Meat and poultry is lavishly eaten during the Eid holidays. The demand of beef, mutton, chicken etc increases to around 50% of the normal demand, which in itself is very high.

Eidul Fitr also prompts extra and panic buying of food items and eatables, which are out of shelves quickly in the super markets and cold stores during the last days of Ramadan. This trend again leads to more wastage as the food items bought are not being fully and efficiently utilized and ultimately end up in garbage bins.

Over the period of years, the festivities are increasing with more buying of items and eatables per head. Consumption of eatables has increased many folds in the Middle East  and people have become more wasteful due to rise in income, living standards and affordability. But affordability does not mean that wastage should increase.

While planning for Eidul Fitr celebrations, it is now imperative that we need to think twice before buying, procuring any food items, clothing etc and taking environment into consideration.

Let us change our attitude towards festivity and wastage and celebrate the festival in the right spirit.

Tips for Eco-friendly Eidul Fitr

  • Buying clothes and dressings with minimum packaging.
  • Buy food items in calculated quantities based on the actual requirements and number of guests to be served.
  • It is better to serve food in limited quantities rather than extravagantly in large dishes and quantities.
  • Educating guests in avoiding left overs and wasting food.
  • Serving drinks in small glasses
  • Avoid using disposable cutlery, plates, napkins, tissues etc.
  • Giving leftover food to the less privileged and poor people in the neighbourhood

Let us endeavor to celebrate the Eid in an environment-friendly manner.

 

Republished by Blog Post Promoter

Algae Biorefinery – Promise and Potential

High oil prices, competing demands between foods and other biofuel sources, and the world food crisis, have ignited interest in algaculture (farming of algae) for making vegetable oil, biodiesel, bioethanol, biogasoline, biomethanol, biobutanol and other biofuels. Algae can be efficienctly grown on land that is not suitable for agriculture and hold huge potential to provide a non-food, high-yield source of biodiesel, ethanol and hydrogen fuels. 

Several recent studies have pointed out that biofuel from microalgae has the potential to become a renewable, cost-effective alternative for fossil fuel with reduced impact on the environment and the world supply of staple foods, such as wheat, maize and sugar.

What are Algae?

Algae are unicellular microorganisms, capable of photosynthesis. They are one of the world’s oldest forms of life, and it is strongly believed that fossil oil was largely formed by ancient microalgae. Microalgae (or microscopic algae) are considered as a potential oleo-feedstock, as they produce lipids through photosynthesis, i.e. using only carbon , water, sunlight, phosphates, nitrates and other (oligo) elements that can be found in residual waters. Oils produced by diverse algae strains range in composition. For the most part are like vegetable oils, though some are chemically similar to the hydrocarbons in petroleum.

Advantages of Algae

Apart from lipids, algae also produce proteins, isoprenoids and polysaccharides. Some strains of algae ferment sugars to produce alcohols, under the right growing conditions. Their biomass can be processed to different sorts of chemicals and polymers (Polysaccharides, enzymes, pigments and minerals), biofuels (e.g. biodiesel, alkanes and alcohols), food and animal feed (PUFA, vitamins, etc.) as well as bioactive compounds (antibiotics, antioxidant and metabolites) through down-processing technology such as transesterification, pyrolysis and continuous catalysis using microspheres.

Algae can be grown on non-arable land (including deserts), most of them do not require fresh water, and their nutritional value is high. Extensive R&D underway on algae as raw material worldwide, especially in North America and Europe with a high number of start-up companies developing different options.

Most scientific literature suggests an oil production potential of around 25-50 ton per hectare per year for relevant algae species. Microalgae contain, amongst other biochemical, neutral lipids (tri-, di-, monoglycerides free fatty acids), polar lipids (glycolipids, phospholipids), wax esters, sterols and pigments. The total lipid content in microalgae varies from 1 to 90 % of dry weight, depending on species, strain and growth conditions.

Algae-based Biorefinery

In order to develop a more sustainable and economically feasible process, all biomass components (e.g. proteins, lipids, carbohydrates) should be used and therefore biorefining of microalgae is very important for the selective separation and use of the functional biomass components.

The term biorefinery was coined to describe the production of a wide range of chemicals and bio-fuels from biomasses by the integration of bio-processing and appropriate low environmental impact chemical technologies in a cost-effective and environmentally sustainable. If biorefining of microalgae is applied, lipids should be fractionated into lipids for biodiesel, lipids as a feedstock for the chemical industry and essential fatty acids, proteins and carbohydrates for food, feed and bulk chemicals, and the oxygen produced should be recovered also.

The potential for commercial algae production is expected to come from growth in translucent tubes or containers called photo bioreactors or in open systems (e.g. raceways) particularly for industrial mass cultivation or more recently through a hybrid approach combining closed-system precultivation with a subsequent open-system. Major advantages of a algal biorefinery include:

  • Use of industrial refusals as inputs ( CO2,wastewater and desalination plant rejects)
  • Large product basket with energy-derived (biodiesel, methane, ethanol and hydrogen) and non-energy derived (nutraceutical, fertilizers, animal feed and other bulk chemicals) products.
  • Not competing with food production (non-arable land and no freshwater requirements)
  • Better growth yield and lipid content than crops.

Indeed, after oil extraction the resulting algal biomass can be processed into ethanol, methane, livestock feed, used as organic fertilizer due to its high N:P ratio, or simply burned for energy cogeneration (electricity and heat). If, in addition, production of algae is done on residual nutrient feedstocks and CO2, and production of microalgae is done on large scale in order to lower production costs, production of bulk chemicals and fuels from microalgae will become economically, environmentally and ethically extremely attractive.

Republished by Blog Post Promoter

Medical Waste Management in MENA

Healthcare sector in MENA region is growing at a very rapid pace, which in turn has led to tremendous increase in the quantity of medical waste generation by hospitals, clinics and other establishments. According to a recent Ministry of State for Environmental Affairs report, Egypt generated 28,300 tons of hazardous medical wastes in 2010. In the GCC region, more than 150 tons of medical waste is generated in GCC countries every day. Saudi Arabia leads the pack with daily healthcare waste generation of more than 80 tons. These figures are indicative of the magnitude of the problem faced by municipal authorities in dealing with medical waste disposal problem across the MENA region. 

Multitude of Problems

The growing amount of medical wastes is posing significant public health and environmental challenges in major cities of the region. The situation is worsened by improper disposal methods, insufficient physical resources, and lack of research on medical waste management. Improper management of medical wastes from hospitals, clinics and other facilities in MENA pose occupational and public health risks to patients, health workers, waste handlers, haulers and general public. It may also lead to contamination of air, water and soil which may affect all forms of life. In addition, if waste is not disposed of properly, ragpickers may collect disposable medical equipment (particularly syringes) and to resell these materials which may cause dangerous diseases.

Improper management of medical wastes from hospitals, clinics and other facilities in MENA pose occupational and public health risks to patients, health workers, waste handlers, haulers and general public. It may also lead to contamination of air, water and soil which may affect all forms of life. In addition, if waste is not disposed of properly, ragpickers may collect disposable medical equipment (particularly syringes) and to resell these materials which may cause dangerous diseases.

Medical waste management method in MENA is limited to either small-scale incineration or landfilling. The practice of landfilling of medical wastes is a matter of serious concern as it poses grave risks to public health, water resources, soil fertility as well as air quality. In many Middle East and North Africa countries, medical wastes is mixed with municipal solid wastes and/or industrial wastes which transforms medical wastes into a cocktail of dangerous substances. 

The WHO policy paper of 2004 and the Stockholm Convention, has stressed the need to consider the risks associated with the incineration of healthcare waste as a typical medical waste incinerator releases a wide variety of pollutants which may include particulate matter, heavy metals, acid gases, carbon monoxide and organic compounds. Sometimes pathogens may also be found in the solid residues and in the exhaust of poorly designed and badly operated incinerators. In addition, leachable organic compounds, like dioxins and heavy metals, are usually present in bottom ash residues. Due to these factors, many industrialized countries are phasing out healthcare incinerators and exploring technologies that do not produce any dioxins. Countries like United States, Ireland, Portugal, Canada and Germany have completely shut down or put a moratorium on medical waste incinerators. 

Promising Treatment Options

The alternative technologies for healthcare waste treatment are steam sterilization, advanced steam sterilization, microwave treatment, dry heat sterilization, alkaline hydrolysis, and biological treatment. Nowadays, steam sterilization (or autoclaving) is the most common alternative treatment method. Advanced autoclaves or advanced steam treatment technologies combine steam treatment with vacuuming, internal mixing or fragmentation, internal shredding, drying, and compaction thus leading to as much as 90% volume reduction. 

Microwave treatment is a promising technology in which treatment occurs through the introduction of moist heat and steam generated by microwave energy. Alkaline digestion is a unique type of chemical process that uses heated alkali to digest tissues, pathological waste, anatomical parts, or animal carcasses in heated stainless steel tanks. Biological processes, like composting and vermicomposting, can also be used to degrade organic matter in healthcare waste such as kitchen waste and placenta.

Republished by Blog Post Promoter

Energy Efficiency Perspectives for UAE

With Abu Dhabi alone on track to generate more than 10,000 megawatts of electricity for the first time, discussion about improving energy efficiency in the United Arab Emirates is taking on a more critical tone. Daytime energy use in the hot summer months is still experiencing rampant year-on-year growth, with peak demand this year growing by 12 per cent. Lying at the heart of these consumption levels is the need for air conditioning, which accounts for about half of total electricity demand.

Business and Government Action

At the commercial level, considerable steps are being taken to reduce the Emirate’s carbon footprint. A building insulation program in Dubai has resulted in claims that all buildings there have become twice as energy efficient since completion of the program. Further steps are also underway in other ecological areas such as water efficiency and waste management with the intention of ensuring the green credentials of every building meet international environmental standards and expectations.

At the official level the Emirates’ Authority for Standardization and Metrology continues to implement its Energy Efficiency Standardization and Labelling (EESL) program. This introduced specific efficiency and labelling requirements for non-ducted room air-conditioners in 2011.

These measures were joined this year by requirements under the same program for many other household electrical goods including lamps, washing machines and refrigerating appliances. The labelling requirements under this program will become mandatory by 2013 enabling consumers to see which machines are the most efficient and make sound environmental choices that will also save them money on running costs. The EESL programme will be further extended in 2013 to include ducted air-conditioners and chillers.

The UAE’s oil and gas sector also is recognising the importance of the energy efficiency agenda. It might seem counterintuitive that a sector with oil reserves of about 97 billion barrels and natural gas reserves of six trillion cubic meters should be thinking about how to save energy. The issue is that these reserves, despite their size, are not finite and that oil for export produces greater revenue generation than oil for the domestic market. It is, therefore, in the oil and gas sector’s interest to work with those trying to drive down domestic consumption, as it will maximise the sector’s longer term sustainability.  

The Emirates Energy Award was launched in 2007 to recognize the best implemented practices in energy conservation and management that showcase innovative, cost effective and replicable energy efficiency measures. Such acknowledged practices should manifest a sound impact on the Gulf region to stir energy awareness on a broad level and across the different facets of society.

Significance of Behavioural Change

As much as formal initiatives and programmes have their place in the battle for a more energy efficient UAE, there also needs to be a general shift in culture by the public. Improving public perception of green issues and encouraging behaviours that support energy efficiency can contribute significantly towards the overall goal. As fuel prices increase in the domestic market, the UAE’s citizens are already adding more weight to fuel efficiency when considering what cars they will buy.

SUVs and 4x4s might still be the biggest sellers but household budgets are becoming increasingly stretched and many ordinary citizens are looking for smaller more efficient cars. Perhaps for the first time, the entire running costs of cars are being considered and the UAE’s car dealers and their suppliers are looking to accommodate this change in their customers’ attitudes. This trend is so significant that some car dealerships are seeing large year-on-year increases in sales of their smaller, more efficient models.

Car rental companies are seeing this trend also and in Dubai, at least one is making hiring a car with green credentials more appealing to a wider cross-section of the public – offering everything from the more familiar Chevrolet Volts and Nissan Leafs to the most exotic hybrid and fully electric cars available to hire or lease.

Capitalising on these trends makes both environmental and business sense but economic drivers cannot alone be left to change public behaviour. There are really simple measures that government and business should be encouraging people to take. Some may argue that switching-off computers, lights and air-conditioning at the end of the working day may save energy but is not sufficiently worthwhile promoting – voluntary measures of this sort will not impact on overall energy trends.

There is evidence however that if these behaviours are added to measures like installing energy efficient lighting, lowering thermostats and optimising EESL five-star rated air-conditioners, the energy savings really do become significant – potentially halving a building’s energy consumption.

Conserving energy may not yet be a way of life in the UAE but the rapid changes being seen there are an indicator of what is to come. Formal energy efficiency programs and voluntary measures combined will help the UAE maintain its economic strength in the region and because of this it is one agenda that will not be going away.

Republished by Blog Post Promoter

CSP-Powered Desalination Prospects in MENA

Conventional large-scale desalination is cost-prohibitive and energy-intensive, and not viable for poor countries in the MENA region due to increasing costs of fossil fuels. In addition, the environmental impacts of desalination are considered critical on account of GHG emissions from energy consumption and discharge of brine into the sea. The negative effects of desalination can be minimized, to some extent, by using renewable energy to power the plants.

What is Concentrated Solar Power

The core element of Concentrated Solar Power Plant is a field of large mirrors reflecting captured rays of sun to a small receiver element, thus concentrating the solar radiation intensity by several 100 times and generating very high temperature (more than 1000 °C). This resultant heat can be either used directly in a thermal power cycle based on steam turbines, gas turbines or Stirling engines, or stored in molten salt, concrete or phase-change material to be delivered later to the power cycle for night-time operation. CSP plants also have the capability alternative hybrid operation with fossil fuels, allowing them to provide firm power capacity on demand. The capacity of CSP plants can range from 5 MW to several hundred MW.

Three types of solar collectors are utilized for large-scale CSP power generation – Parabolic Trough, Fresnel and Central Receiver Systems. Parabolic trough systems use parabolic mirrors to concentrate solar radiation on linear receivers which moves with the parabolic mirror to track the sun from east to west. In a Fresnel system, the parabolic shape of the trough is split into several smaller, relatively flat mirror segments which are connected at different angles to a rod-bar that moves them simultaneously to track the sun. Central Receiver Systems consists of two-axis tracking mirrors, or heliostats, which reflect direct solar radiation onto a receiver located at the top of a tower.

Theoretically, all CSP systems can be used to generate electricity and heat.  All are suited to be combined with membrane and thermal desalination systems. However, the only commercially available CSP plants today are linear concentrating parabolic trough systems because of lower cost, simple construction, and high efficiency

CSP-Powered Desalination Prospects in MENA

A recent study by International Energy Agency found that the six biggest users of desalination in MENA––Algeria, Kuwait, Libya, Qatar, Saudi Arabia, and United Arab Emirates––use approximately 10 percent of the primary energy for desalination. Infact, desalination accounted for more than 4 percent of the total electricity generated in the MENA region in 2010. With growing desalination demand, the major impact will be on those countries that currently use only a small proportion of their energy for desalination, such as Jordan and Algeria.

The MENA region has tremendous wind and solar energy potential which can be effectively utilized in desalination processes. Concentrating solar power (CSP) offers an attractive option to power industrial-scale desalination plants that require both high temperature fluids and electricity.  CSP can provide stable energy supply for continuous operation of desalination plants based on thermal or membrane processes. Infact, several countries in the region, such as Jordan, Egypt, Tunisia and Morocco are already developing large CSP solar power projects.

Concentrating solar power offers an attractive option to run industrial-scale desalination plants that require both high temperature fluids and electricity.  Such plants can provide stable energy supply for continuous operation of desalination plants based on thermal or membrane processes. The MENA region has tremendous solar energy potential that can facilitate generation of energy required to offset the alarming freshwater deficit. The virtually unlimited solar irradiance in the region will ensure large-scale deployment of eco-friendly desalination systems, thereby saving energy and reducing greenhouse gas emissions.  

Several countries in the MENA region – Algeria, Egypt, Jordan, Morocco and Tunisia – have joined together to expedite the deployment of concentrated solar power (CSP) and exploit the region's vast solar energy resources. One of those projects is a series of massive solar farms spanning the Middle East and North Africa. Two projects under this Desertec umbrella are Morocco’s Ouarzazate Concentrated Solar Power plant, which was approved in late 2011, and Tunisia’s TuNur Concentrated Solar Power Plant, which was approved in January 2012. The Moroccan plant will have a 500-MW capacity, while the Tunisia plant will have a 2 GW capacity. Jordan is also making rapid strides with several mega CSP projects under development in Maa’n Development Area. 

Conclusions

Seawater desalination powered by concentrated solar power offers an attractive opportunity for MENA countries to ensure affordable, sustainable and secure freshwater supply. The growing water deficit in the MENA region is fuelling regional conflicts, political instability and environmental degradation. It is expected that the energy demand for seawater desalination for urban centres and mega-cities will be met by ensuring mass deployment of CSP-powered systems across the region. Considering the severe consequence of looming water crisis in the MENA region it is responsibility of all regional governments to devise a forward-looking regional water policy to facilitate rapid deployment and expansion of CSP and other clean energy resources for seawater desalination.

Republished by Blog Post Promoter

Vanishing Aquifers in MENA

aquifer-menaAquifers are of tremendous importance for the MENA as world's most water-stressed countries are located in the region, including Kuwait, Qatar, UAE, Palestine, Saudi Arabia, Oman, Iran, Lebanon and Yemen. However, aquifers in MENA are coming under increasing strain and are in real danger of extinction. Eight aquifers systems, including those in MENA, are categorized as ‘over stressed’ aquifers with hardly any natural recharge to offset the water consumed.

Aquifers in MENA

Aquifers stretched beneath Saudi Arabia and Yemen ranks first among ‘overstressed’ aquifers followed by Indus Basin of northwestern India-Pakistan and then by Murzuk-Djado Basin in North Africa. The Nubian Sandstone Aquifer in the Eastern end of Sahara deserts (parts of Sudan, Chad, Libya and most of Egypt) is the world’s largest known ‘fossil’ aquifer system and Bas Sahara basin (most of Algeria-Tunisian Sahara, Morocco and Libya) encloses whole of the Grand Erg Oriental. The non-renewable aquifers in the Middle East are the Arabian Aquifer and The Mountain Aquifer between Israel and Palestine. Some parts in MENA like Egypt and Iraq rely on major rivers (Nile, Tigris and Euphrates) but these surface water flows does not reach the ocean now. Needless to say, water demand in arid and dry MENA countries is met primarily by aquifers and seawater desalination.

MENA region is the most water-scarce region of the world. The region is home to 6.3 percent of world’s population but has access to measly 1.4 percent of the world’s renewable fresh water. The average water availability per person in other geographical regions is about 7,000 m3/year, whereas water availability is merely 1,200 m3/person/year in the MENA region. The region has the highest per capita rates of freshwater extraction in the world (804 m3/year) and currently exploits over 75 percent of its renewable water resources.

Primarily global exploitation of groundwater is for agricultural irrigation. In Saudi Arabia, during 1970’s, landowners were given free subsidies to pump the aquifers for improvisation of agricultural sectors. Soon the country turned out to be world’s premium wheat exporters. But as years passed, water consumption was high in such a rate that the aquifers approached total depletion. Government announced peoples demand to be met by desalination, which is an expensive approach to meet agricultural sector requirement. By end of 1990’s agricultural land declined to less than half of the country’s farm land. Saudi Arabia is no more a wheat exporter rather relies almost entirely on imported crop from other countries. Unfortunately, country has exploited nonrenewable and ancient ‘fossil’ aquifers which could not be recharged by any form of precipitation.

Key Issues

Stress on a country’s agricultural and water resources majorly cause problems in human health as well as instability and conflicts over shared resources. Climate change has also exacerbated water availability in the Middle East. Infact, water stresses has triggered brutal civil war in Syria and worsened the Palestine-Israel conflicts over sharing aquifers. The key issues, according to World Bank, in water utilization in MENA are as follows:

  • Unsustainable and inefficient use: Middle East countries have the highest per capita consumption of domestic water in the world with 40-50% leakage in the urban systems. And 50% water withdrawn for agriculture does not reach as intended.
  • Ineffective policies: the countries diverts 85% of water to grow crops which would be better importing.
  • Deteriorating water quality: contaminated water systems due to insufficient sanitation infrastructure has caused negative impacts on environment and health issues. Like, in Iran where issues associated with inadequate waste water collection and treatment cost estimated 2.2% of GDP.
  • Excessive reliance on the public investment on water accounts for 1-5 percent of GDP.

In MENA an unexpected climate change is likely to bring 20% rainfall reduction and high rate of evaporation which intensifies water stress. And proportionate climate initiated human behavior, more it gets dry, less water in the river, more tendencies to substitute by groundwater. Also depletion of water below the ground will rise to other disasters like sea water intrusion, land subsidence, especially in Arabian Peninsula, in turn destroys the constructions, infrastructures and developments of the country made-up till date.

Tips to Save Aquifers

We do not know how much water is remaining beneath, but we must understand it is vanishing at a very high rate. MENA must treasure aquifers and natural water resource as same as oil reserves are valued. Individual can play a significant role in saving aquifers in MENA by adopting these simple water conservation guidelines

  • Do not drain cooking oil or grease into sink; use adequate amount, reuse like as a shovel cleaner, polish or donate to machinery shops.
  • Effective use of tap; do not run water while brushing. During winters, store the initial cold water that runs out of the tap prior to the hot water from heater. And also know the convenient tap adjustments.
  • Maintain healthy, hygienic and sanitation practices.
  • Replace conventional water pumps and home appliances with advanced water conservative ones.
  • Avoid unnecessary products, food materials and reduce wastage; water consumed in a diet account’s 92% of water footprint of an individual.
  • Avoid sprinklers for irrigation and in garden use to avoid water loss by evaporation and substitute with efficient water distribution system.

By nature, water is definite in this ‘blue planet’. But when there is no right quantity of water at right quality and time it is called ‘Crisis’.

 

Republished by Blog Post Promoter