Solar Energy in Saudi Arabia: Perspectives

Saudi Arabia, the epicenter of global oil industry, has been showing keen interest in solar energy in recent years. Saudi Arabia has one of the world’s highest solar irradiation in the world, estimated at approximately 2,200 thermal kWh of solar radiation per m2. The country is strategically located near the Sun Belt, in addition to plentiful availability of empty stretches of desert that may accommodate infrastructure for solar power projects.

Vast deposits of sand can be used in the manufacture of silicon PV cells which makes Saudi Arabia an attractive location for solar industry. “The resource is stunning; land is abundantly available; the transmission grid system is relatively new, highly resilient and capable of accommodating intermittent loads; and the creditworthiness of KSA is unbeatable as demonstrated by response to the nation's first ever international bond offering”, explains Paddy Padmanathan, CEO of ACWA Power, one of the world’s leading solar developers.

Another important driver for solar energy deployment in Saudi Arabia is astonishingly high per capita primary energy consumption, four times higher than the global average. The total energy consumption in the Kingdom is rapidly rising at a rapid rate of 6 percent per annum which also presents a strong case for diversification of energy sources.

Slow Progress Yet Ambitious Goals

Despite its tremendous potential, solar energy sector in Saudi Arabia is still in early stages. “Saudi Arabia is yet to turn its huge solar potential into reality”, says Makio Yamada, Research Fellow at King Faisal Center for Research and Islamic Studies (Riyadh). In 2012, the government unveiled plans to invest more than $100 billion in clean energy projects till 2030 in order to generate 41GW, a third of its power requirements, from renewable resources, primarily solar energy.

However, the government drastically scaled back the program in January 2015 and set a more realistic renewables target 14% of current generating capacity (9.5GW) by 2030.  “The installed solar capacity is less than a fifth of that in the UAE which can be attributed to institutional fragmentation and lack of effective collaboration between relevant state and semi-state organizations”, adds Yamada.

The newly launched Vision 2030 document puts forward a strong regulatory and investment framework to develop Saudi solar energy sector, financed in part by $2 trillion sovereign fund. “Vision 2030 highlights renewable energy as a strategic priority for Saudi Arabian economy which would help in economic diversification away from oil revenues, increasing energy security, diversify energy mix, free up oil for export, enhance regulatory framework, and support development of renewable energy industry, thus paving the way for a low-carbon economy in the Kingdom”, say Eaman Abdullah Aman, a Saudi energy expert and writer.

Infact, Saudi Arabia’s long-term goal is to become the leading exporter of solar energy in Middle East and Vision 2030 is expected to play a key role in realizing this objective. “What makes Vision 2030 and King Salman Renewable Energy Initiative different from previous programs is that they represent the highest level commitment to renewable energy ever seen from the Kingdom”, emphasizes Nada.

Under the King Salman Renewable Energy Initiative, the government will review the legal and regulatory framework for private-sector investment in order to encourage public-private partnerships and promote local manufacture. “The new targets and strategy outlined in Vision 2030 and National Transformation Plan is very much in sync with fuel mix trends around the world”, observes Padmanathan.

Winds of Change

The first renewable energy initiative from the Saudi government was the establishment of King Abdullah City for Atomic and Renewable Energy (KA-CARE) in 2010, which is the official agency in-charge of promoting clean energy in the Kingdom. One of its major achievements has been the establishment of 3.5MW PV project at the King Abdullah Petroleum Studies and Research Center. 

Saudi Arabia’s long-term goal is to become a leading exporter of solar energy

Saudi Arabia’s first competitive global tender for utility-scale solar power projects was recently launched – two 50 MW solar power plants at Al-Jouf and Rafha. Though current installed solar capacity in the country is a measly 25MW, world’s leading solar energy companies are already active in the local market, mainly due to the promise and potential of Saudi solar sector. “We already have two pilot projects in place: the first is solar-powered irrigation project at Al-Jouf while the other one is a carport solar power plant for the Saudia Dairy and Foodstuff Company (SADAFCO) in Riyadh”, informs Ahmed Nada, Vice President and Region Executive – Middle East at First Solar.

In addition to solar PV, concentrated solar power (CSP) is an interesting option for Saudi Arabia due to its strong dependence on desalination plants to meet its water requirement. Waste heat of a CSP plant can be used to power seawater desalination projects. In 2015, Saudi Electric Company selected CSP to produce electricity with 550MW Duba 1 project, an integrated Solar Combined Cycle Power Plant located near Tuba. The plant, still in tendering phase, is designed to integrate a parabolic trough unit of around 20 to 30MW. 

Outlook for the Future

Due to its regional dominance, Saudi Arabia can play a vital role in the proliferation of solar energy in the entire Middle East. “The Kingdom needs to urgently move forward with its renewable energy plans and start the production of solar energy on a large-scale”, says Padmanathan. “The current focus is on increasing levels of efficiency, reducing subsidy and slashing government expenditure and on doing things that truly add value”, he adds.

“Vision 2030 target suggests that the country will grow its renewable energy capacity in increments, taking advantage of future cost declines and efficiency improvements, while also leaving the door open for emerging technologies”, says Nada. Under the new leadership of King Salman, the country is making a concerted effort to develop its renewable energy sector. “The reorganization of stakeholders and decision makers on energy policy and renewables, under one umbrella, should accelerate KSA’s renewable energy program”, observes Nada. The government restructuring in May 2016 placed necessary administrative functions under the newly-created super-ministry, the Ministry of Energy, Industry, and Mineral Resources which will eventually pave the way for implementation of solar projects.

However, there are several critical areas which Saudi Arabia should tackle for a smooth transition to renewables-focused energy mix. “Saudi Arabia should take a consultative approach on its renewable energy policy framework by leaning on capable, credible industry partners to share their expertise which will help the country avoid the steep learning curve that other markets have faced”, explains Nada. Lenders and financiers are an integral part of any industry, and they should be properly informed about green financing. “It will be particularly important for banks and lenders based in the Kingdom to better understand the solar energy industry, ensuring that they’re comfortable with providing competitive financing for the program”, stresses Nada.

It is also essential to adapt solar energy systems to meet specific energy-intensive applications. “Saudi Arabia could provide long-term solar energy targets for certain, energy-intensive industrial sectors such as cement, steel and petrochemicals”, says Nada.

Lastly, a well-trained and performing workforce is crucial for the development of solar market. “Saudi Arabia needs to invest wisely in technical education to overcome the skills mismatch between schools and the labour market and ensure the supply of rightly-trained human resources to the solar industry”, stresses Yamada.

Food Security in the Middle East

Despite the fact that the Middle East is blessed with a rich geological inheritance of hydrocarbons and mineral resources, it is a water-scarce and arid region that has its share of demographic and socio-economic problems. It is difficult to grow food crops in the Middle East due to scarcity of water supply and limited availability of arable land. The region is highly vulnerable to fluctuations in international commodity markets because of heavy dependence on imported grains and food items.

According to a report issued in 2009 by the World Bank, the United Nations Food and Agriculture Organization (FAO) and the International Fund for Agricultural Development, “Arab countries are the largest importers of cereal in the world. Most import at least 50% of the food calories they consume.” Countries like Egypt, Syria, or Iraq used to be breadbaskets in the recent past but their agricultural sectors have suffered a lot due to government mismanagement, price ceilings, and underinvestment. Infact, all Arab countries are net importers of grains, with small GCC countries like Bahrain, Qatar, UAE, Kuwait, and Oman almost completely dependent on imports for grains.

The Middle East nations are encountering price spikes on world food markets. This is due to competition for the same food products (wheat, corn, soybeans, animal protein, etc.) from other areas of the world, especially Asia, where incomes are rising and demand for more and better calories is exploding. Besides threatening the well-being of those already living on meagre resources, the price hikes have increased the number of poverty-stricken by millions in less-affluent Middle East nations.

To make matters worse for the food supply problem, world markets have experienced severe disruptions in the past several years from distant storms, floods and droughts — from Russia to Argentina to Australia. These natural phenomena have disrupted the fabric of global market mechanisms that underlies the international food trade. Prices for basic food staples are already at socially dangerous levels, approaching or exceeding their 2008 peaks.

Of all the Middle Eastern countries facing the current food crisis, Yemen is in the worst shape. A United Nations’ World Food Programme report states that seven million of Yemen’s 21 million people are “acutely hungry”, making Yemen the 11th most insecure food country in the world. Aquifers are being pumped well beyond the rate of recharge, and the deeper fossil aquifers are also being rapidly depleted. As a result, water tables are falling throughout Yemen by some 2 meters per year. With water tables falling, the grain harvest has shrunk by one third over the last 40 years, while demand has continued to rise. As a result, Yemenis now import more than 80 percent of their grain.

In Saudi Arabia there is little farming without irrigation, which depends almost entirely on fossil aquifers. The desalted seawater used by Saudi Arabia to meet the ever-increasing water demand in cities is too costly for irrigation use. Saudi Arabia’s growing food insecurity has led it to buy or lease arable land in different countries, including world’s hungriest nations Ethiopia and Sudan. Infact, the Saudis are planning to produce food for themselves with the land and water resources of other countries to meet rising food demand of its rapidly growing population. Unfortunately, transferring agricultural land from subsistence farming to export crops has led to even more food shortages. By attempting to ensure their own food security by acquiring foreign farm holdings, affluent nations are creating new food shortages in other parts of the world.

Due to reduced flows of the Euphrates and Tigris Rivers, Iraq and Syria’s grain harvests have been hit badly. Given the future uncertainty of river water supplies, farmers in both countries are drilling and over-pumping more wells for irrigation. Syria’s grain harvest has fallen by one fifth since peaking at roughly 7 million tons in 2001. In Iraq, the grain harvest has fallen by one fourth since peaking at 4.5 million tons in 2002. Jordan, with 6 million people, is skating on thin ice agriculturally. Forty or so years ago, it was producing over 300,000 tons of grain per year. Today it produces only 60,000 tons and thus must import over 90 percent of its grain.

With fast growing populations and an ever increasing pressure on water resources, governments must act urgently to prevent the looming food crisis.  A recent World Bank report found great inefficiencies in many Arab ports and the ways that Arab countries store grain compared with other large wheat importers, such as the Netherlands and South Korea. Port facilities, slow customs service and inefficient transportation from the ports to the mills all contribute to the worsening food situation. Arab countries are going to be huge importers of food no matter what; therefore they should improve their port and storage facilities and manage import risks.

Republished by Blog Post Promoter

CDM Projects in MENA Region

 

The MENA region is an attractive CDM destination as it is rich in renewable energy resources and has a robust oil and gas industry. Surprisingly, countries in MENA host very few and declining number of CDM projects with only 23 CDM projects registered till date. The region accounts for only 1.5 percent of global CDM projects and only two percent of emission reduction credits. The two main challenges facing many of these projects are: weak capacity in most MENA countries for identifying, developing and implementing carbon finance projects and securing underlying finance. 

The registered CDM projects in MENA countries are primarily located in UAE, Egypt, Jordan, Morocco, Qatar, Syria and Tunisia. Other countries in the region, like Saudi Arabia, Bahrain and Oman, are also exploring opportunities for implementing projects that could be registered under the Kyoto Protocol.

Potential CDM projects that can be implemented in the region may come from varied areas like sustainable energy, energy efficiency, waste management, landfill gas capture, industrial processes, biogas technology and carbon flaring. For example, the energy efficiency projects in the oil and gas industry, can save millions of dollars and reduce tons of CO2 emissions. In addition, renewable energy, particularly solar and wind, holds great potential for the region, similar to biomass in Asia.

Let us take a look at some of the recent registered CDM projects from the MENA region.

Al-Shaheen Project (Qatar)

The Al-Shaheen project is the first of its kind in the region and third CDM project in the petroleum industry worldwide. The Al-Shaheen oilfield has flared the associated gas since the oilfield began operations in 1994. Prior to the project activity, the facilities used 125 tons per day (tpd) of associated gas for power and heat generation, and the remaining 4,100 tpd was flared. Under the current project, total gas production after the completion of the project activity is 5,000 tpd with 2,800-3,400 tpd to be exported to Qatar Petroleum (QP); 680 tpd for on-site consumption, and only 900 tpd still to be flared. The project activity will reduce GHG emissions by approximately 2.5 million tCO2 per year and approximately 17 million tCO2 during the initial seven-year crediting period.

GASCO Project (Abu Dhabi)

Located at the Asab and Bab gas processing plants in Abu Dhabi, the energy efficiency project is the fifth CDM project in the UAE to be registered under the Kyoto Protocol. The ADNOC's GASCO CDM project helps to reduce CO2 emissions through installation of a device in the flare line to considerably reduce the consumption of fuel gas, thereby ensuring lower greenhouse gas emissions. The project contributes to Abu Dhabi's and ADNOC's goals for sustainable development while improving air quality in the region. This retrofit project is expected to generate approximately 7,770 CERs per year.

Kafr El Dawar Project (Egypt)

Located at the Egypt for Spinning, Weaving and Dying Company in Kafr El Dawar near Alexandria, the fuel switching project is the latest CDM project from MENA to be registered under the Kyoto Protocol. The Kafr El Dawar CDM project helps reduce COemissions through switching from the higher carbon intensive fuel such as Heavy Fuel Oil (HFO) to natural gas, a lower carbon intensive fossil fuel, contributing to Egypt’s goals in sustainable development. It has also significantly mitigated atmospheric emissions of pollutants while improving air quality in the region. The replacement of HFO with natural gas is expected to generate approximately 45,000 Certified Emissions Reductions (CERs) per year.

 

Republished by Blog Post Promoter

Unleashing Solar Power in Saudi Arabia

Saudi Arabia is the largest consumer of petroleum in the Middle East, with domestic consumption reaching 4 million barrels per day in 2012 out of daily production of 10 million barrels. Saudi Arabia’s primary energy consumption per capita is four times higher than the world average. Strong industrial growth, subsidized oil prices, increasing energy demand for electricity and transportation is leading to a growing clamor for oil in the country. The total energy consumption in the Kingdom is rapidly rising at an average rate of about 6 percent per annum.

Solar Energy Prospects 

To meet the rising local energy demand, Saudi Arabia plans to increase generating capacity to 120 GW by 2020. Residential sector holds the biggest share of total energy consumption, accounting for as much as 80 percent of the electricity usage. Despite being the leading oil producer as well as consumer, Saudi Arabia is showing deep interest in the development of large projects for tapping its rich renewable energy potential, especially solar power. The country plans to invest more than $100 billion in clean energy projects to meet its objective of getting one-third of electricity requirements from alternative energy resources.

There is a growing Interest in utilization of solar energy in Saudi Arabia as the country is blessed with abundant solar flux throughout the year. Saudi Arabia has one of the highest solar irradiation in the world, estimated at approximately 2,200 thermal kWh of solar radiation per square meter. The country is strategically located near the Sun Belt, not to mention wide availability of empty stretches of desert that may accommodate solar power generating infrastructure. Moreover, vast deposits of sand can be used in the manufacture of silicon PV cells which makes Saudi Arabia an attractive location for both CSP and PV power generation. 

Promising Developments

The first initiative from the government was the establishment of King Abdullah City for Atomic and Renewable Energy (KA-CARE) which is the official agency in-charge of promoting clean energy in the Kingdom. The kingdom is planning to add an additional 41 GW of solar power by 2032, with 16 GW to be generated by photovoltaics and 25 GW by solar thermal power plants. One of the major achievements was the establishment of 3.5MW PV project at the King Abdullah Petroleum Studies and Research Center. 

Concentrated solar power is another interesting option for Saudi Arabia due to its strong dependence on desalination plants to meet its water requirement. Waste heat of a CSP power plant can be used to power seawater desalination projects. Recently Saudi Electric Company has selected CSP to produce electricity with 550MW Duba 1 project, an integrated Solar Combined Cycle Power Plant located 50km north of Duba near Tuba. The plant is designed to integrate a parabolic trough unit of around 20 to 30MW. 

Keeping in view its regional dominance, Saudi Arabia can play a vital role in the popularization of solar energy in the MENA region. Solar energy program may not only augment oil-wealth of the Kingdom, but also transform Saudi Arabia into a net solar power exporter in the near future. 

Republished by Blog Post Promoter

Peak Oil: Perspectives for Saudi Arabia

PeakOil-SaudiArabiaThe term ‘peak oil’ is ominous to the Middle East, as most of the countries in the region are heavily dependent on oil and natural gas for industrial, economic and social development. Petroleum is considered one of the world’s most important sources of energy generation, after uranium, of course. Many other substances have been tested in order to be used as alternatives to petroleum, but none have hitherto been successful. Scientific research illustrates how the world is facing catastrophe if it doesn’t find an alternative to oil, as it is currently impossible for the global economy to grow without sufficient amounts of energy which are adapted to the demands of this growth. There is more discussion now than ever before about how the world is definitely starting to approach a stage of peak oil.

What is Peak Oil

Peak oil is a termed coined by the renowned American geologist King Hubbert in the fifties. He managed to predict an oil peak in several regions in America which would occur in the seventies; and exactly what this scientist predicted did in fact happen. For when oil extraction reaches extreme levels it begins to decline and gradually ends. Oil is considered a finite resource, or one which isn’t renewed as it is used up.

This theory confirms that global oil production has reached its peak today and has started declining inexorably now that 50% of the world’s oil reserves have been consumed. This proves that oil could be on the brink of depletion if clear and serious plans are not put in place to guide consumption and therefore encourage using provisional reserves in the best way. However, this theory is not accepted by many or by those who continue to focus on how large the earth’s oil reserves are, and how they only need investment so that they can be drilled.

Peak Oil Scenario for Saudi Arabia

Saudi Arabia is considered one of the largest global oil exporters and the only one able to regulate and stabilise the global oil market, thanks to its reserve stocks. These reserves are calculated to be at 265.4 billion barrels, or what is enough to last, at the current level of production, for more than 72 years. According to ARAMCO reports, there are around a trillion barrels that will be discovered in the future and will satisfy global demands, despite current consumption, for one whole century.

 Saudi Arabia is currently focussing its efforts on drilling and extracting natural gas, as it doesn’t import it but depends on domestic production. Alongside this, the Saudi Kingdom is currently making huge investments in nuclear energy and solar power.

But can natural gas and renewable energy be relied upon as alternatives to oil in order to satisfy Saudi Arabia’s domestic needs, which are rapidly growing each day? According to a recent report by America’s Energy Information Administration (EIA), Saudi Arabia is the largest oil-consuming nation in the Middle East. Saudi Arabia consumed 2.9 million barrels per day of oil in 2013, almost double the consumption in 2000, because of strong industrial growth and subsidised prices. One important contributor to Saudi oil demand is the direct crude oil burn for power generation. There is not just enough fuel oil and natural gas to meet the demand and hence the resorting to crude oil.

Has peak oil really arrived? If not today, then when? And how will it look, especially for countries totally dependent on oil? Will its consequences be different for both developed and under-developed nations?  Given that global demand for oil will only grow to exceed 100 million barrels a day after 2020, according to the most extreme estimates, I believe that the time may have come for the Kingdom of Saudi Arabia to start planning for what follows the oil era.

Despite looming threat of peak oil, power generation capacity in KSA is expected to rise from current level of 58GW to 120GW by 2032, however Saudi Arabia cannot afford to burn rising crude oil volumes for power generation. In spite of the fifth largest natural gas reserves in the world, it does not produce sufficient gas for power generation and for its vast petrochemical industry. The only solution at this point of time is transition to low-carbon economy whereby Saudi Arabia make use of its massive solar energy potential, implement effective measures for improving energy efficiency in the industrial sector and remove huge energy subsidies for industrial and domestic users.

 

Note: The article has been translated from Arabic by Katie Holland who graduated from Durham University in 2015 with a degree in Arabic and French, having also studied Persian. Currently working in London, she hopes to develop a career that uses her knowledge of Arabic and the Middle East, alongside pursuing her various interests in the arts. 

Republished by Blog Post Promoter

Medical Waste Management in MENA

Healthcare sector in MENA region is growing at a very rapid pace, which in turn has led to tremendous increase in the quantity of medical waste generation by hospitals, clinics and other establishments. According to a recent Ministry of State for Environmental Affairs report, Egypt generated 28,300 tons of hazardous medical wastes in 2010. In the GCC region, more than 150 tons of medical waste is generated in GCC countries every day. Saudi Arabia leads the pack with daily healthcare waste generation of more than 80 tons. These figures are indicative of the magnitude of the problem faced by municipal authorities in dealing with medical waste disposal problem across the MENA region. 

Multitude of Problems

The growing amount of medical wastes is posing significant public health and environmental challenges in major cities of the region. The situation is worsened by improper disposal methods, insufficient physical resources, and lack of research on medical waste management. Improper management of medical wastes from hospitals, clinics and other facilities in MENA pose occupational and public health risks to patients, health workers, waste handlers, haulers and general public. It may also lead to contamination of air, water and soil which may affect all forms of life. In addition, if waste is not disposed of properly, ragpickers may collect disposable medical equipment (particularly syringes) and to resell these materials which may cause dangerous diseases.

Improper management of medical wastes from hospitals, clinics and other facilities in MENA pose occupational and public health risks to patients, health workers, waste handlers, haulers and general public. It may also lead to contamination of air, water and soil which may affect all forms of life. In addition, if waste is not disposed of properly, ragpickers may collect disposable medical equipment (particularly syringes) and to resell these materials which may cause dangerous diseases.

Medical waste management method in MENA is limited to either small-scale incineration or landfilling. The practice of landfilling of medical wastes is a matter of serious concern as it poses grave risks to public health, water resources, soil fertility as well as air quality. In many Middle East and North Africa countries, medical wastes is mixed with municipal solid wastes and/or industrial wastes which transforms medical wastes into a cocktail of dangerous substances. 

The WHO policy paper of 2004 and the Stockholm Convention, has stressed the need to consider the risks associated with the incineration of healthcare waste as a typical medical waste incinerator releases a wide variety of pollutants which may include particulate matter, heavy metals, acid gases, carbon monoxide and organic compounds. Sometimes pathogens may also be found in the solid residues and in the exhaust of poorly designed and badly operated incinerators. In addition, leachable organic compounds, like dioxins and heavy metals, are usually present in bottom ash residues. Due to these factors, many industrialized countries are phasing out healthcare incinerators and exploring technologies that do not produce any dioxins. Countries like United States, Ireland, Portugal, Canada and Germany have completely shut down or put a moratorium on medical waste incinerators. 

Promising Treatment Options

The alternative technologies for healthcare waste treatment are steam sterilization, advanced steam sterilization, microwave treatment, dry heat sterilization, alkaline hydrolysis, and biological treatment. Nowadays, steam sterilization (or autoclaving) is the most common alternative treatment method. Advanced autoclaves or advanced steam treatment technologies combine steam treatment with vacuuming, internal mixing or fragmentation, internal shredding, drying, and compaction thus leading to as much as 90% volume reduction. 

Microwave treatment is a promising technology in which treatment occurs through the introduction of moist heat and steam generated by microwave energy. Alkaline digestion is a unique type of chemical process that uses heated alkali to digest tissues, pathological waste, anatomical parts, or animal carcasses in heated stainless steel tanks. Biological processes, like composting and vermicomposting, can also be used to degrade organic matter in healthcare waste such as kitchen waste and placenta.

Republished by Blog Post Promoter

Vanishing Aquifers in MENA

aquifer-menaAquifers are of tremendous importance for the MENA as world's most water-stressed countries are located in the region, including Kuwait, Qatar, UAE, Palestine, Saudi Arabia, Oman, Iran, Lebanon and Yemen. However, aquifers in MENA are coming under increasing strain and are in real danger of extinction. Eight aquifers systems, including those in MENA, are categorized as ‘over stressed’ aquifers with hardly any natural recharge to offset the water consumed.

Aquifers in MENA

Aquifers stretched beneath Saudi Arabia and Yemen ranks first among ‘overstressed’ aquifers followed by Indus Basin of northwestern India-Pakistan and then by Murzuk-Djado Basin in North Africa. The Nubian Sandstone Aquifer in the Eastern end of Sahara deserts (parts of Sudan, Chad, Libya and most of Egypt) is the world’s largest known ‘fossil’ aquifer system and Bas Sahara basin (most of Algeria-Tunisian Sahara, Morocco and Libya) encloses whole of the Grand Erg Oriental. The non-renewable aquifers in the Middle East are the Arabian Aquifer and The Mountain Aquifer between Israel and Palestine. Some parts in MENA like Egypt and Iraq rely on major rivers (Nile, Tigris and Euphrates) but these surface water flows does not reach the ocean now. Needless to say, water demand in arid and dry MENA countries is met primarily by aquifers and seawater desalination.

MENA region is the most water-scarce region of the world. The region is home to 6.3 percent of world’s population but has access to measly 1.4 percent of the world’s renewable fresh water. The average water availability per person in other geographical regions is about 7,000 m3/year, whereas water availability is merely 1,200 m3/person/year in the MENA region. The region has the highest per capita rates of freshwater extraction in the world (804 m3/year) and currently exploits over 75 percent of its renewable water resources.

Primarily global exploitation of groundwater is for agricultural irrigation. In Saudi Arabia, during 1970’s, landowners were given free subsidies to pump the aquifers for improvisation of agricultural sectors. Soon the country turned out to be world’s premium wheat exporters. But as years passed, water consumption was high in such a rate that the aquifers approached total depletion. Government announced peoples demand to be met by desalination, which is an expensive approach to meet agricultural sector requirement. By end of 1990’s agricultural land declined to less than half of the country’s farm land. Saudi Arabia is no more a wheat exporter rather relies almost entirely on imported crop from other countries. Unfortunately, country has exploited nonrenewable and ancient ‘fossil’ aquifers which could not be recharged by any form of precipitation.

Key Issues

Stress on a country’s agricultural and water resources majorly cause problems in human health as well as instability and conflicts over shared resources. Climate change has also exacerbated water availability in the Middle East. Infact, water stresses has triggered brutal civil war in Syria and worsened the Palestine-Israel conflicts over sharing aquifers. The key issues, according to World Bank, in water utilization in MENA are as follows:

  • Unsustainable and inefficient use: Middle East countries have the highest per capita consumption of domestic water in the world with 40-50% leakage in the urban systems. And 50% water withdrawn for agriculture does not reach as intended.
  • Ineffective policies: the countries diverts 85% of water to grow crops which would be better importing.
  • Deteriorating water quality: contaminated water systems due to insufficient sanitation infrastructure has caused negative impacts on environment and health issues. Like, in Iran where issues associated with inadequate waste water collection and treatment cost estimated 2.2% of GDP.
  • Excessive reliance on the public investment on water accounts for 1-5 percent of GDP.

In MENA an unexpected climate change is likely to bring 20% rainfall reduction and high rate of evaporation which intensifies water stress. And proportionate climate initiated human behavior, more it gets dry, less water in the river, more tendencies to substitute by groundwater. Also depletion of water below the ground will rise to other disasters like sea water intrusion, land subsidence, especially in Arabian Peninsula, in turn destroys the constructions, infrastructures and developments of the country made-up till date.

Tips to Save Aquifers

We do not know how much water is remaining beneath, but we must understand it is vanishing at a very high rate. MENA must treasure aquifers and natural water resource as same as oil reserves are valued. Individual can play a significant role in saving aquifers in MENA by adopting these simple water conservation guidelines

  • Do not drain cooking oil or grease into sink; use adequate amount, reuse like as a shovel cleaner, polish or donate to machinery shops.
  • Effective use of tap; do not run water while brushing. During winters, store the initial cold water that runs out of the tap prior to the hot water from heater. And also know the convenient tap adjustments.
  • Maintain healthy, hygienic and sanitation practices.
  • Replace conventional water pumps and home appliances with advanced water conservative ones.
  • Avoid unnecessary products, food materials and reduce wastage; water consumed in a diet account’s 92% of water footprint of an individual.
  • Avoid sprinklers for irrigation and in garden use to avoid water loss by evaporation and substitute with efficient water distribution system.

By nature, water is definite in this ‘blue planet’. But when there is no right quantity of water at right quality and time it is called ‘Crisis’.

 

Republished by Blog Post Promoter

MSW Generation in the Middle East

The high rate of population growth, urbanization and economic expansion in the Middle East is not only accelerating consumption rates but also increasing the generation rate of all  sorts of waste. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita solid waste generation. The gross urban waste generation quantity from Middle East countries has crossed 150 million tons per annum.The world’s dependence on Middle East energy resources has caused the region to have some of the largest carbon footprints per capita worldwide. The region is now gearing up to meet the challenge of global warming, as with the rapid growth of the waste management sector. During the last few years, UAE, Qatar and Saudi Arabia have unveiled multi-billion dollar investment plans to Improve waste management scenario in their respective countries. 

Solid Waste Generation Statistics

Saudi Arabia produce more than 15 million tons of garbage each year. With an approximate population of about 28 million, the country produces approximately 1.3 kilograms of waste per person every day. More than 5,000 tons of urban waste is generated in the city of Jeddah alone. 

The per capita MSW generation rate  in the United Arab Emirates ranges from 1.76 to 2.3 kg/day. According to a recent study, the amount of solid waste in UAE totaled 4.892 million tons, with a daily average of 6935 tons in the city of Abu Dhabi, 4118 tons in Al Ain and 2349 tons in the western region.

Qatar's annual waste generation stands at 2.5 million tons while Kuwait produces 2 million tons MSW per annum. Bahrain generates more than 1.5 million tons of municipal waste every year. Countries like Kuwait, Bahrain and Qatar have astonishingly high per capita waste generation rate, primarily because of high standard of living and lack of awarness about sustainable waste management practices.

Country

MSW Generation

(million tons per annum)

Saudi Arabia

13

UAE

5

Qatar

2.5

Kuwait

2

Bahrain

1.5

In addition, huge quantity of sewage sludge is produced on daily basis which presents a serious problem due to its high treatment costs and risk to environment, human health and marine life. On an average, the rate of municipal wastewater generation in the Middle East is 80-200 litres per person per day. Cities in the region are facing increasing difficulties in treating sewage, as has been the case in Jeddah where 500,000 cubic metre of raw sewage is discarded in Buraiman Lake daily. Sewage generation across the region is rising by an astonishing rate of 25 percent every year which is bound to create major headaches for urban planners. 

Waste-to-Energy for the Middle East

Municipal solid waste in the Middle East is comprised of organic fraction, paper, glass, plastics, metals, wood etc which can be managed by making use of recycling, composting and/or waste-to-energy technologies. The composting process is a complex interaction between the waste and the microorganisms within the waste. Central composting plants are capable of handling more than 100,000 tons of biodegradable waste per year, but typically the plant size is about 10,000 to 30,000 tons per year.

Municipal solid waste can be converted into energy by conventional technologies (such as incineration, mass-burn and landfill gas capture) or by modern conversion systems (such as anaerobic digestion, gasification and pyrolysis). The three principal methods of thermochemical conversion are combustion (in excess air), gasification (in reduced air), and pyrolysis (in absence of air). The most common technique for producing both heat and electrical energy from urban wastes is direct combustion. Combined heat and power (CHP) or cogeneration systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity. 

At the landfill sites, the gas produced by the natural decomposition of MSW can be collected from the stored material and scrubbed and cleaned before feeding into internal combustion engines or gas turbines to generate heat and power. In addition, the organic fraction of MSW can be anaerobically stabilized in a high-rate digester to obtain biogas for electricity or steam generation. 

Anaerobic digestion is the most preferred option to extract energy from sewage, which leads to production of biogas and organic fertilizer. The sewage sludge that remains can be incinerated or gasified/pyrolyzed to produce more energy. In addition, sewage-to-energy processes also facilitate water recycling. Infact, energy recovery from MSW is rapidly gaining worldwide recognition as the 4th R in sustainable waste management system – Reuse, Reduce, Recycle and Recover.

Republished by Blog Post Promoter

Energy Efficiency in Saudi Cement Industry

Saudi Arabia is the largest construction market in the Middle East, with large development projects under way and many more in the planning stage. The cement industry in the country is evolving rapidly and is expected to reach annual clinker production of 70 million tonnes in 2013 from current figure of 60 million tonnes per year. The cement industry is one of the highest energy-intensive industries in the world, with fuel and energy costs typically representing 30-40% of total production costs. On an average, the specific electrical energy consumption typically ranges between 90 and 130 kWh per tonne of cement. Keeping in view the huge energy demand of the cement industry, the Saudi Arabian government has been making efforts to reduce the energy consumption in the country towards a more sustainable.

Energy Demand in Cement Production

The theoretical fuel energy demand for cement clinker production is determined by the energy required for the chemical/mineralogical reactions (1,700 to 1,800 MJ/tonne clinker) and the thermal energy needed for raw material drying and pre-heating. Modern cement plants which were built within the last decade have low energy consumption compared to older plants.  The actual fuel energy use for different kiln systems is in the following ranges (MJ/tonne clinker):

  • 3,000 – 3,800 for dry process, multi-stage (3 – 6 stages) cyclone preheater and precalcining kilns,
  • 3,100 – 4,200 for dry process rotary kilns equipped with cyclone preheaters,
  • 3,300 – 4,500 for semi-dry/semi-wet processes (e.g. Lepol-kilns),
  • Up to 5,000 for dry process long kilns,
  • 5,000 – 6,000 for wet process long kilns and
  • 3,100–6,500 for shaft kilns.

Energy Efficiency in Cement Industry

With new built, state-of-the-art cement plants, usually all technical measures seem to be implemented towards low energy consumption. So, how to reduce it further?

Energy efficiency is based on the following three pillars

  • Technical optimization
  • Alternative raw materials for cement and clinker production
  • Alternative fuels

In Europe, the new energy efficiency directive from 2011 intends to reduce the energy consumption of the overall industry by 20%, achieving savings of 200billion Euros at the energy bill and with the goal to create 2 million new jobs within Europe. This approach will have a significant influence also on the cement industry. Saving 20% of the energy consumption is a challenging goal, especially for plants with state-of-the-art technology.

In older plants modernizations in the fields of grinding, process control and process prediction can, if properly planned and installed, reduce the electricity consumption – sometimes in a two digit number.

Alternative Fuels

Alternative fuels, such as waste-derived fuels or RDF, bear further energy saving potential. The substitution of fossil fuel by alternative sources of energy is common practice in the European cement industry.The German cement industry, for example, substitutes approximately 61% of their fossil fuel demand. The European cement industry reaches an overall substitution rate of at least ca. 20%.

Typical “alternative fuels” available in Saudi Arabia are municipal solid wastes, agro-industrial wastes, industrial wastes and some amount of crop residues. To use alternative or waste-derived fuels, such as municipal solid wastes, dried sewage sludges, drilling wastes etc., a regulatory base has to be developed which sets

  • Types of wastes/alternative fuels,
  • Standards for the production of waste-derived fuels,
  • Emission standards and control mechanism while using alternative fuels and
  • Standards for permitting procedures.

Alternative Raw Materials

The reduction of clinker portion in cement affords another route to reduce energy consumption. In particular, granulated blast furnace slags or even limestone have proven themselves as substitutes in cement production, thus reducing the overall energy consumption.

To force the use of alternative raw materials within the cement industry, also – and again –standards have to be set, where

  • Types of wastes, by-products and other secondary raw materials are defined,
  • Standards for the substitution are set,
  • Guidelines for processing are developed,
  • Control mechanisms are defined.

Conclusions

To reduce the energy consumption, an energy efficiency program, focusing on “production-related energy efficiency” has to be developed. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists and can be exhausted by determined approaches.

Republished by Blog Post Promoter

Renewable Energy in GCC: Need for a Holistic Approach

The importance of renewable energy sources in the energy portfolio of any country is well known, especially in the context of energy security and impacts on climate change. The growing quest for renewable energy and energy efficiency in the Gulf Cooperation Council (GCC) countries has been seen by many as both – a compulsion to complement the rising energy demand, and as an economic strength that helps them in carrying forward the clean energy initiatives from technology development to large scale deployment of projects from Abu Dhabi to Riyadh.

Current Scenario

The promotion of renewable energy (RE) is becoming an integral part in the policy statements of governments in GCC countries. Particular attention is being paid to the development and deployment of solar energy for various applications. Masdar is a shining example of a government’s commitment towards addressing sustainability issues through education, R&D, investment, and commercialization of RE technologies. It not only has emerged as the hub of renewable energy development and innovation but is also acting as a catalyst for many others to take up this challenge.

With the ongoing developments in the clean energy sphere in the region, the growing appetite for establishing clean energy market and addressing domestic sustainability issues arising out of the spiralling energy demand and subsidized hydrocarbon fuels is clearly visible. Saudi Arabia is also contemplating huge investments to develop its solar industry, which can meet one-third of its electricity demand by the year 2032. Other countries are also trying to reciprocate similar moves. While rationalizing subsidies quickly may be a daunting task for the governments (as for any other country, for that matter, including India as well), efforts are being made by UAE to push RE in the supply mix and create the market.

Accelerating Renewable Energy Growth

However, renewable energy initiatives are almost exclusively government-led projects. There is nothing wrong in capitalizing hydrocarbon revenue for a noble cause but unless strong policies and regulatory frameworks are put in place, the sector may not see viable actions from private players and investors. The present set of such instruments are either still weak or absent, and, therefore, are unable to provide greater comfort to market players. This situation may, in turn, limit the capacity/flexibility to reduce carbon footprints in times to come as government on its own cannot set up projects everywhere, it can only demonstrate and facilitate.

In this backdrop, it is time to soon bring in reforms that would pave way for successful RE deployment in all spheres. Some of the initiatives that need to be introduced or strengthened include:

  • Enabling policies for grid connected RE that should cover interconnection issues between RE power and utilities, incentives, facilitation and clearances for land, water, and environment (wherever relevant); and
  • Regulatory provisions relating to – setting of minimum Renewable Purchase Obligation (RPO) to be met, principles of tariff determination for different technologies, provisions for trading in RE, plant operation including scheduling (wherever relevant), and evacuation of power.
  • Creation of ancillary market for effectively meeting the grid management challenges arising from intermittent power like that from solar and wind, metering and energy accounting, protection, connectivity code, safety, etc.

For creating demand and establishing a thriving market, concerted efforts are required by all the stakeholders to address various kinds of issues pertaining to policy, technical, regulatory, and institutional mechanisms in the larger perspective. In the absence of a strong framework, even the world’s most visionary and ambitious project Desertec which  envision channeling of solar and wind power to parts of Europe by linking of renewable energy generation sites in MENA region may also face hurdles as one has to deal with pricing, interconnection, grid stability and access issues first. This also necessitates the need for harmonization in approach among all participating countries to the extent possible.

Conclusions

It is difficult to ignore the benefits of renewable energy be it social, economic, environmental, local or global. Policy statements are essential starting steps for accelerating adoption of clean energy sources including smaller size capacity, where there lies a significant potential. In GCC countries with affluent society, the biggest challenge would be to create energy consciousness and encourage smarter use of energy among common people like anywhere else, and the same calls for wider application of behavioural science in addressing a wide range of sustainability issues.

Republished by Blog Post Promoter

Green Building Rating Systems in MENA

Green buildings not only contribute towards a sustainable construction and environment but also bring lots of benefits and advantages to building owners and users. Lower development costs, lower operating costs, increased comforts, healthier indoor environment quality, and enhanced durability and less maintenance costs are hallmarks of a typical green building.

A wide range of green building rating and assessment systems are used around the world, including LEED and BREEAM. Sustainability is now a top priority in MENA region and countries like Qatar and UAE have come up with their own green building rating system to incorporate socio-economic, environmental and cultural aspects in modern architecture.

Global Sustainability Assessment System (Qatar)

The Global Sustainability Assessment System (GSAS), formerly known as the Qatar Sustainability Assessment System (QSAS), was developed in 2010 by Gulf Organization for Research and Development (GORD) in collaboration with T.C. Chan Center at the University of Pennsylvania. GSAS aims at creating a sustainable urban environment to reduce environmental impacts of buildings while satisfying local community needs. 

GSAS is billed as the world’s most comprehensive green building assessment system developed after rigorous analysis of 40 green building codes from all over the world. The most important feature of GSAS is that it takes into account the region’s social, economic, environmental and cultural aspects, which are different from other parts of the world. Several countries in the MENA region, such as Saudi Arabia, Kuwait, Jordan and Sudan, have shown keen interest in the adoption of GSAS as unified green building code for the region.

Qatar has incorporated QSAS into Qatar Construction Standards 2010 and it is now mandatory for all private and public sector projects to get GSAS certification. GSAS combines 140 building sustainability assessment mechanisms and is divided into eight categories including urban connectivity, site, energy, water, materials, indoor environment, cultural and economic value and management and operations. Each category of the system will measure a different aspect of a project’s environmental impact. Each category is broken down into specific criteria that measure and define individual issues. A score is then awarded for each category on the basis of the degree of compliance.

Pearl Rating System (Abu Dhabi)

The Pearl Rating System (PRS) is the green building rating system for the emirate of Abu Dhabi designed to support sustainable development from design to construction to operational accountability of communities, buildings and villas. It provides guidance and requirements to rate potential performance of a project with respect to Estidama (or sustainability).

The Pearl Rating System is an initiative of the part of the government to improve the life of people living in Abu Dhabi, by focusing on cultural traditions and social values. The rating system is specifically tailored to the hot and arid climate of Abu Dhabi which is characterized by high energy requirements for air-conditioning, high evaporation rates, infrequent rainfall and potable water scarcity.

The Pearl Rating System has various levels of certification. ranging from one to five pearls. A minimum certification of one pearl is required for all new development projects within Abu Dhabi. The Pearl Rating System is organized into seven categories where there are both mandatory and optional credits. To achieve a 1 Pearl rating, all the mandatory credit requirements must be met. 

ARZ Building Rating System (Lebanon)

The relatively unknown ARZ Building Rating System is the first Lebanese green building initiative of international standard with its certification process being administered by the Lebanon Green Building Council (LGBC).  It has been established to support the growth and adoption of sustainable building practices in Lebanon, with a specific focus on the environmental assessment and rating system for commercial buildings.

The ARZ Green Building Rating System was developed by Lebanese expertise of LGBC in partnership with the International Finance Corp. Its aim is to maximize the operational efficiency and minimize environmental impacts. The ARZ rating system is evidence-based approach to assessing how green a building is. The system includes a list of technologies, techniques, procedures and energy consumption levels that LGBC expects to see in green buildings.

An assessor accredited by LGBC will take an inventory of the energy and water consumption, technologies, techniques and procedures that are used in the building and then LGBC will score the building according to how well the inventory matches the list of technologies, techniques and procedures that make up the ARZ rating system requirements. 

Republished by Blog Post Promoter

Asbestos Waste Management in MENA

Each year countries from the Middle East and North Africa import large amount of asbestos for use in the construction industry. As per the last known statistics, the Middle East and Africa accounted for 20% of world demand for the material. Iran and the United Arab Emirates are among the biggest consumers of the material. Infact, the entire Middle East has been steadily increasing their asbestos imports, except for Egypt and Saudi Arabia, which are the only two countries that have placed bans on asbestos but with questionable effectiveness. Iran alone has been reported to order 30,000 tons of asbestos each year. More than 17,000 tonnes of asbestos was imported and consumed in the United Arab Emirates in 2007. 

Fallouts from Wars and Revolutions

Asbestos is at its most dangerous when exposed to people who are not protected with masks and other clothing. In times past, such considerations were not thought about. At the moment, most people think of asbestos exposure as part of the construction industry. This means demolition, refurbishment and construction are the prime times that people can be exposed to the fibres.

In the Middle East and North Africa, however, turbulent times have increased the danger of exposure for people across the region. Since 2003, there has been the Iraq War, revolutions in Egypt, Libya and Tunisia, plus the uprising in Syria. Not to mention a raft of conflicts in Lebanon, Palestine and Israel. The upshot of this is that a building hit by an explosive, which contains asbestos, is likely to put the material in the local atmosphere, further endangering the lives of nearby.

Asbestos Waste Management

In many countries around the world companies, institutions and organizations have a legal responsibility to manage their waste. They are banned from using substances that are deemed hazardous to the general public. This includes a blanket ban on the use of asbestos. Where discovered it must be removed and dealt with by trained individuals wearing protective clothing. In the Middle East and North Africa, it is vitally important for there to be the development of anti-asbestos policies at government and business levels to further protect the citizens of those countries.

Not a single Middle East country has ratified International Labour Organization Law Number 162, which was instituted at the 1986 Asbestos Convention. The ILO No. 162 outlines health and safety procedures related to asbestos, including regulations for employers put forth in an effort to protect the safety of all workers. Asbestos waste management in the MENA region needs to take in several distinct action phases. Education and legislation are the first two important steps followed by actual waste management of asbestos. 

Largely speaking, the MENA region has little or no framework systems in place to deal with this kind of problem. Each year more than 100,000 people die worldwide due to asbestos-related diseases and keeping in view the continuous use of asbestos use in the region, it is necessary to devise a strong strategy for phasing out of asbestos from the construction industry.

Future Strategy

Many may argue that there is still a philosophical hurdle to overcome. This is why education must go in tandem with legislation. As of 2006, only Egypt and Saudi Arabia had signed up to a ban on asbestos. Even then, there is evidence of its continued use. Whether as part of official pronouncements or in the papers, on the TVs or in schools, it is vitally important that bans are backed up with information so the general public understand why asbestos should not only be banned, but removed. It is important that other countries consider banning the material and promoting awareness of it too.

Governments have the resources to open up pathways for local or international companies to begin an asbestos removal programme. In many places education will be required to help companies become prepared for these acts. Industrial asbestos removal begins with a management survey to identify what asbestos materials are in a building and where. This is followed up by a refurbishment and pre-demolition survey to best see how to remove the asbestos and replace it with better materials. These come in tandem with risk assessments and fully detailed plans.

Asbestos management cannot be completed without such a survey. This may prove to be the most difficult part of implementing widespread asbestos waste management in the Middle East and North Africa. Doing so will be expensive and time consuming, but the alternative is unthinkable – to rip out the asbestos without taking human safety into account. First, therefore, the infrastructure and training needs to be put into place to begin the long work of removing asbestos from the MENA region.

Republished by Blog Post Promoter