Agricultural Scenario in MENA

Agriculture plays an important role in the economies of most of the countries in the Middle East and North Africa.  The contribution of the agricultural sector to the overall economy varies significantly among countries in the region, ranging from about 3.2 percent in Saudi Arabia to 13.4 percent in Egypt.  Large scale irrigation is expanding, enabling intensive production of high value cash and export crops, including fruits, vegetables, cereals, and sugar.

Egypt is the 14th biggest rice producer in the world and the 8th biggest cotton producer in the world. Egypt produced about 5.67 million tons of rice and 635,000 tons of cotton in 2011. The area of cotton crop cultivation accounts for about 5% of the cultivated area in Egypt. The total amount of crop residues is about 16 million tons of dry matter per year. Cotton residues represent about 9% of the total amount of residues. These are materials comprising mainly cotton stalks, which present a disposal problem.

Although the Kingdom of Saudi Arabia is widely thought of as a desert, it has regions where the climate has favored agriculture. By implementing major irrigations projects and adopting large scale mechanization, Saudi Arabia has made great progress in developing agricultural sector. The Kingdom has achieved self-sufficiency in the production of wheat, eggs, and milk, among other commodities, though it still imports the bulk of its food needs. Wheat is the primary cultivated grain, followed by sorghum and barley. Dates, melons, tomatoes, potatoes, cucumbers, pumpkins, and squash are also important crops.

Despite the fact that MENA is the most water-scarce and dry region worldwide, many countries across the region, especially those around the Mediterranean Sea, are highly dependent on agriculture.  For example, the Oum Er Rbia River basin contains half of Morocco’s public irrigated agriculture and produces 60 percent of its sugar beets, 40 percent of its olives, and 40 percent of its milk.

Agricultural output is central to the Tunisian economy. Major crops are cereals and olive oil, with almost half of all the cultivated land sown with cereals and another third planted. Tunisia is one of the world's biggest producers and exporters of olive oil, and it exports dates and citrus fruits that are grown mostly in the northern parts of the country.

Agriculture in Lebanon is the third most important sector in the country after the tertiary and industrial sectors. It contributes nearly 7% to GDP and employs around 15% of the active population. Main crops include cereals (mainly wheat and barley), fruits and vegetables, olives, grapes, and tobacco, along with sheep and goat herding.

Republished by Blog Post Promoter

Agricultural Biomass in MENA


Agriculture plays an important role in the economies of most of the countries in the Middle East and North Africa region.  Despite the fact that MENA is the most water-scarce and dry region in the world, many countries in the region, especially those around the Mediterranean Sea, are highly dependent on agriculture.  The contribution of the agricultural sector to the overall economy varies significantly among countries in the region, ranging, for example, from about 3.2 percent in Saudi Arabia to 13.4 percent in Egypt.  Large scale irrigation coupled with mechanization has enabled entensive production of high-value cash crops, including fruits, vegetables, cereals, and sugar in the Middle East.

The term ‘crop residues’ covers the whole range of biomass produced as by-products from growing and processing crops. Crop residues encompasses all agricultural wastes such as bagasse, straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. Wheat and barley are the major staple crops grown in the Middle East region. In addition, significant quantities of rice, maize, lentils, chickpeas, vegetables and fruits are produced throughout the region, mainly in Egypt, Tunisia, Saudi Arabia, Morocco and Jordan. 

Egypt is the one of world's biggest producer of rice and cotton and produced about 5.67 million tons of rice and 635,000 tons of cotton in 2011. Infact, crop residues are considered to be the most important and traditional source of domestic fuel in rural Egypt. The total amount of crop wastes in Egypt is estimated at about 16 million tons of dry matter per year. Cotton residues represent about 9% of the total amount of residues. These are materials comprising mainly cotton stalks, which present a disposal problem. The area of cotton crop cultivation accounts for about 5% of the cultivated area in Egypt.

Agricultural output is central to the Tunisian economy. Major crops are cereals and olive oil, with almost half of all the cultivated land sown with cereals and another third planted. Tunisia is one of the world's biggest producers and exporters of olive oil, and it exports dates and citrus fruits that are grown mostly in the northern parts of the country.

To sum up, large quantities of crop residues are produced annually in the region, and are vastly underutilised. Current farming practice is usually to plough these residues back into the soil, or they are burnt, left to decompose, or grazed by cattle. These residues could be processed into liquid fuels or thermochemically processed to produce electricity and heat in rural areas. Energy crops, such as Jatropha, can be successfully grown in arid regions for biodiesel production. Infact, Jatropha is already grown at limited scale in some Middle East countries and tremendous potential exists for its commercial exploitation.

Republished by Blog Post Promoter

Sustainability in MENA Cement Industry

The population in the MENA countries has doubled during the last 30 years (from ca. 110m in 1980 to almost 220m in 2010). As per conservative estimates, the rate of urbanisation in the MENA countries will exceed 70% five years from today (average for all developing countries: 54%). The proceeding urbanisation and the population increase involve several problems and challenges for the national governments and also for the cement industry. The cement production of countries in the MENA region has almost tripled during the last 15 years up to approximately 500m tons  Since the start of national revolts and demonstrations in MENA countries in 2011 the problems of especially young Arabs have attracted the attention worldwide.

Environmental problems that accompany a fast growing population and increasing urbanisation are, among others, increasing consumption of energy and raw materials, increasing land use in order to satisfy the increasing food demand, infrastructure development, disposal of increasing amounts of waste and development of sewage systems. Solving these generation spanning problems is a challenging task for the national governments.

Naturally, such high growth rates also affect the cement industry. In the MENA countries it consists of various companies, part of them listed on the stock exchange. A number of cement companies has, partly for cost aspects, responded to the negative consequences of the rapid population growth. The following paragraphs describe the cement industry’s approaches to push a sustainable development in certain sectors. They are partly driven by own responsibility and partly by regulations of the national governments. In this context it should be mentioned that the growth of the cement industry is already partly limited by factors that are directly connected with sustainability and raw material supply.

Although the factors differ from country to country and cannot be generalised, there are a few major concerns, for example:

  • Fuel shortage
  • Dependence on oil
  • Lack of investment in innovations

Let’s have a closer look on the limiting factors and innovation potential based on practical examples.

Saudi Arabia

In many industrialised countries the continuous and tailored supply of the industry with fossil fuels is only a question of price.  But the fact that of all countries, it was cement plants in the own country that repeatedly reported shortages of fossil fuel supply (heavy fuel oil), was certainly an important reason for the government to get closely involved in this matter.

Cement producers in the Kingdom of Saudi Arabia obtain state-subsidised natural gas at a price of US$ 0.75/mmbtu from the state-owned oil company “Saudi Aramco”. Formerly, the cement production costs resulting thereof were on average US$ 28.8/ton of cement (costs in neighbouring countries: Kuwait US$ 59.2/ton, UAE US$ 47.8/ton, Oman US$ 37.0/ton) which made it redundant to deal with the topic of energy. In India, a country with one of the highest energy costs in the world, the production of one ton of cement costs US$ 70.0/ton in 2010.

Due to such low energy prices and a steadily growing demand the production capacities grew constantly. Currently, the industry accounts for approximately 40% of the overall energy demand of the country. Analysts estimate that this demand will even double within the next 15 years. However, it is planned to reduce this disproportionate energy demand of the industry.

Under the patronage of HRH Prince Abdulaziz bin Salman, the state-owned oil company “Saudi Aramco” is developing a so-called “Mandatory Energy Efficiancy Program” (MEEP) for the entire Saudi-Arabian industry. The plan of MEEP is to “establish mandatory policies and regulations with the objective of reducing existing and future energy consumption levels in the industrial sector”.

For the national cement industry this approach implies investments in energy-saving measures. Key points for an energy-efficient industry are identified as

  • Use of alternative raw materials
  • Use of alternative fuels
  • Training and education in energy efficiency

As the use of alternative fuels and raw materials is not yet common in the Kingdom of Saudi Arabia, guidelines and a regulatory framework have to be defined which set standards for the use of alternative or waste-derived fuels like municipal solid wastes, dried sewage sludge, drilling wastes and others. It has to include:

  • Types of wastes and alternative fuels that may be used by the cement industry
  • Standards for the production of waste-derived fuels
  • Emission standards and control mechanisms while using alternative fuels
  • Standards for permitting procedures

Appropriate standards also need to be established for alternative raw materials that are to be used for clinker and cement production. In order to achieve an energy-efficient production special education, further training and workshops for the involved staff have to be carried out.


The current political developments in Egypt influence the local cement industry significantly. The government expects additional sources of revenue on the one hand from selling licences for the construction of new cement plants and on the other hand from a reduction of subsidies for fossil fuels. Since these news are not a surprise for the local cement plants, they started to invest in the implementation of alternative – mostly biomass-derived fuels. One of them is CemexAssiut that not only started using different kinds of biomass, but also, most notably and exemplary, established plantations for the production of biomass (here: “Casuarina”) that are irrigated with pretreated sewage water from the city Assiut.

Egypt is the 14th biggest rice producer in the world and the 8th biggest cotton producer in the world. Egypt produced about 5.67 million tons of rice and 635,000 tons of cotton in 2011. The area of cotton crop cultivation accounts for about 5% of the cultivated area in Egypt. The total amount of crop residues is about 16 million tons of dry matter per year. Cotton residues represent about 9% of the total amount of residues. Such high production rates should be welcomed by the cement industry since these materials comprise cotton stalks, rice husks and rice straw which serve ideally as alternative fuels.

The use of waste-derived alternative fuels is, however, more complicated. Although for example Cairo produces some 15,000 tons of waste each day, it is not easy for the cement plants to obtain this waste since they are in direct competition with the informal sector that controls approx. 60% of the local waste total. So-called Zabbaleen or scavengers – mostly young people who do not have other options – make their living by collecting and selling waste-derived recyclables.


Some years ago, Tunisia already invested in the establishment of an organised waste management system in form of a state-owned agency named “ANGED”. Funded by the national German KfW development bank, numerous waste collection points as well as organised landfills have been built. Additionally, a special collection centre for hazardous waste was erected in Jradou. This centre was operated by MVW Lechtenberg’s Partner Nehlsen AG, the German Waste Management Group, collecting and processing wastes like used oils and solvents. Such wastes are ideal alternative fuels. A fact that is also known to the local cement companies that planned to use them in their plants. Unfortunately, due to public opposition the centre was closed and the projects for the processing of alternative fuels have been suspended since then.

Tunisia is one of the biggest producers and exporters of olive oil in the world. It also exports dates and citrus fruits that are grown mostly in the northern parts of the country. It seems paradox that for example olive kernels – the waste from Tunisian olive production – is exported to European power plants in order to save fossil fuel-derived CO2 emissions there, while Tunisia imports approximately 90% of its energy demand, consisting of fossil fuel.


The Moroccan cement industry has already achieved a greater success regarding the use of alternative fuels. Cement plants, mostly owned by the international companies Lafarge, Cimpor, Holcim and Italcimenti, already invested years ago in the environmentally friendly use of alternative fuels and alternative raw materials due to the development of world market prices. Also the only local competitor, CIMAT, has started preparing for the implementation of alternative fuels immediately after completion of its new plant (a 5-stage double string calciner from Polysius) in Ben Ahmed, near Casablanca.

In the year 2003 an agreement on the use and import of alternative fuels (used tyres at the time) was made between the Association Professionelle de Ciment and Moroccan government. Since last year attempts are being made to agree on an industry regulation that sets standards for the use of all appropriate special waste available in Morocco.

United Arab Emirates

The United Arab Emirates, represented by Dr. Rashid Ahmad Bin Fahd, Minister of Environment and Water, recently issued a decision streamlining the activities of cement plants all over the country. The resolution will affect all existing and new cement factories across the country. Its provisions obligate the industry to prepare a report assessing the impact of cement plants on the environment.

According to the decision, this report has to be prepared by a consulting firm having expert knowledge regarding environmental protection in the cement industry. This is certainly the first step to evaluate the current situation which will be followed by an investigation of alternatives towards a sustainable development. Interest in the implementation of alternative fuels already exists among the national cement industry which is proven not least by the numerous planned investment projects.


The cement industry in the MENA region will change significantly within the next years. This change will focus on the improvement of energy efficiency and on the increased use of alternative raw materials and alternative fuels. This will include high investments in technology and in the human resources sector where the creation of new jobs, especially in the field of environmentally friendly and sustainable development, provides a perspective for the growing, young population of the MENA countries.

Republished by Blog Post Promoter

Use of Sewage Sludge in Cement Industry

The MENA region produces huge quantity of municipal wastewater which represents a serious problem due to its high treatment costs and risk to environment, human health and marine life. The per capita wastewater generation rate in the region is estimated at 80-200 litres per day. Sewage generation across the region is rising by an astonishing rate of 25 percent every year.

Municipal wastewater treatment plants in MENA produce large amounts of sludge whose disposal is a cause of major concern. For example, Kuwait has 6 wastewater treatment plants, with combined capacity of treating 12,000m³ of municipal wastewater per day, which produce around 250 tons of sludge daily. Similarly Tunisia has approximately 125 wastewater treatment plants which generate around 1 million tons of sewage sludge every year. Currently most of the sewage is sent to landfills. Sewage sludge generation is bound to increase at rapid rates in MENA due to increase in number and size of urban habitats and growing industrialization.

Use of Sewage Sludge in Cement Industry

An attractive disposal method for sewage sludge is to use it as alternative fuel source in a cement kiln. The resultant ash is incorporated in the cement matrix. Infact, several European countries, like Germany and Switzerland, have already started adopting this practice for sewage sludge management. Sewage sludge has relatively high net calorific value of 10-20 MJ/kg as well as lower carbon dioxide emissions factor compared to coal when treated in a cement kiln. Use of sludge in cement kilns can also tackle the problem of safe and eco-friendly disposal of sewage sludge. The cement industry accounts for almost 5 percent of anthropogenic CO2 emissions worldwide. Treating municipal wastes in cement kilns can reduce industry’s reliance on fossil fuels and decrease greenhouse gas emissions.

The use of sewage sludge as alternative fuel in clinker production is one of the most sustainable option for sludge waste management. Due to the high temperature in the kiln the organic content of the sewage sludge will be completely destroyed. The sludge minerals will be bound in the clinker after the burning process. The calorific value of sewage sludge depends on the organic content and on the moisture content of the sludge. Dried sewage sludge with high organic content possesses a high calorific value.  Waste coming out of sewage sludge treatment processes has a minor role as raw material substitute, due to their chemical composition.

The dried municipal sewage sludge has organic material content (ca. 40 – 45 wt %), therefore the use of this alternative fuel in clinker production will save fossil CO2 emissions. According to IPCC default of solid biomass fuel, the dried sewage sludge CO2 emission factor is 110 kg CO2/GJ without consideration of biogenic content. The usage of municipal sewage sludge as fuel supports the saving of fossil fuel emission.

Sludge is usually treated before disposal to reduce water content, fermentation propensity and pathogens by making use of treatment processes like thickening, dewatering, stabilisation, disinfection and thermal drying. The sludge may undergo one or several treatments resulting in a dry solid alternative fuel of a low to medium energy content that can be used in cement industry.


The use of sewage sludge as alternative fuel is a common practice in cement plants around the world, Europe in particular. It could be an attractive business proposition for wastewater treatment plant operators and cement industry in the Middle East to work together to tackle the problem of sewage sludge disposal, and high energy requirements and GHGs emissions from the cement industry.

Republished by Blog Post Promoter

Solar Energy Prospects in Tunisia

Tunisia is an energy-dependent country with modest oil and gas reserves. Around 97 percent of the total energy is produced by natural gas and oil, while renewables contribute merely 3% of the energy mix. The installed electricity capacity in 2014 was 4,799 MW which is expected to sharply increase to 7,500 MW by 2021 to meet the rising power demands of the industrial and domestic sectors. Needless to say, Tunisia is building additional conventional power plants and developing its solar and wind capacities to sustain economic development.

Solar Energy Potential

Tunisia has good renewable energy potential, especially solar and wind, which the government is trying to tap to ensure a safe energy future. The country has very good solar radiation potential which ranges from 1800 kWh/m² per year in the North to 2600kWh/m² per year in the South. The total installed capacity of grid-connected renewable power plant was around 312 MW in 2014 (245 MW of wind energy, 62 MW of hydropower and 15 MW of PV), that was just 6% of the total capacity. 

In 2009, the Tunisian government adopted “Plan Solaire Tunisien” or Tunisia Solar Plan to achieve 4.7 GW of renewable energy capacity by 2030 which includes the use of solar photovoltaic systems, solar water heating systems and solar concentrated power units. The Tunisian solar plan is being implemented by STEG Énergies Renouvelables (STEG RE) which is a subsidiary of state-utility STEG and responsible for the development of alternative energy sector in the country. 

The total investment required to implement the Tunisian Solar Program plan have been estimated at $2.5 billion, including $175 million from the National Fund, $530 million from the public sector, $1,660 million from private sector funds, and $24 million from international cooperation, all of which will be spent over the period of 2012 – 2016. Around 40 percent of the resources will be devoted to the development of energy export infrastructure.

Tunisian Solar Program (PROSOL)

Tunisian Solar Programme, launched in 2005, is a joint initiative of UNEP, Tunisian National Agency for Energy Conservation, state-utility STEG and Italian Ministry for Environment, Land and Sea. The program aims to promote the development of the solar energy sector through financial and fiscal support. PROSOL includes a loan mechanism for domestic customers to purchase Solar Water Heaters and a capital cost subsidy provided by the Tunisian government of 20% of system costs. The major benefits of PROSOL are:

  • More than 50,000 Tunisian families get their hot water from the sun based on loans
  • Generation of employment opportunities in the form of technology suppliers and installation companies.
  • Reduced dependence on imported energy carriers
  • Reduction of GHGs emissions.

The Tunisian Solar Plan contains 40 projects aimed at promoting solar thermal and photovoltaic energies, wind energy, as well as energy efficiency measures. The plan also incorporates the ELMED project; a 400KV submarine cable interconnecting Tunisia and Italy.


In Tunisia, the totol solar PV total capacity at the end of 2014 was 15 MW which comprised of mostly small-scale private installations (residential as well as commercial) with capacity ranging from 1 kW and 30 kW. As of early 2015, there were only three operational PV installations with a capacity of at least 100 kW: a 149 kWp installation in Sfax, a 211 kWp installation operated by the Tunisian potable water supply company SONEDE and a 100 kWp installation in the region of Korba, both connected to the medium voltage, and realized by Tunisian installer companies. The first large scale solar power plant of a 10MW capacity, co-financed by KfW and NIF (Neighbourhood Investment Facility) and implemented by STEG, is due 2018 in Tozeur.

TuNur Concentrated Solar Power Project

TuNur CSP project is Tunisia's most ambitious renewable energy project yet. The project consists of a 2,250 MW solar CSP (Concentrated Solar Power) plant in Sahara desert and a 2 GW HVDC (High-Voltage Direct Current) submarine cable from Tunisia to Italy. TuNur plans to use Concentrated Solar Power to generate a potential 2.5GW of electricity on 100km2 of desert in South West Tunisia by 2018. As per project objectives, solar power will be exported to Italy via a 1,000km high-voltage DC cable and then connected to European grids as far afield as the UK. At present the project is at the fund-raising stage.


Republished by Blog Post Promoter

CSP-Powered Desalination Prospects in MENA

Conventional large-scale desalination is cost-prohibitive and energy-intensive, and not viable for poor countries in the MENA region due to increasing costs of fossil fuels. In addition, the environmental impacts of desalination are considered critical on account of GHG emissions from energy consumption and discharge of brine into the sea. The negative effects of desalination can be minimized, to some extent, by using renewable energy to power the plants.

What is Concentrated Solar Power

The core element of Concentrated Solar Power Plant is a field of large mirrors reflecting captured rays of sun to a small receiver element, thus concentrating the solar radiation intensity by several 100 times and generating very high temperature (more than 1000 °C). This resultant heat can be either used directly in a thermal power cycle based on steam turbines, gas turbines or Stirling engines, or stored in molten salt, concrete or phase-change material to be delivered later to the power cycle for night-time operation. CSP plants also have the capability alternative hybrid operation with fossil fuels, allowing them to provide firm power capacity on demand. The capacity of CSP plants can range from 5 MW to several hundred MW.

Three types of solar collectors are utilized for large-scale CSP power generation – Parabolic Trough, Fresnel and Central Receiver Systems. Parabolic trough systems use parabolic mirrors to concentrate solar radiation on linear receivers which moves with the parabolic mirror to track the sun from east to west. In a Fresnel system, the parabolic shape of the trough is split into several smaller, relatively flat mirror segments which are connected at different angles to a rod-bar that moves them simultaneously to track the sun. Central Receiver Systems consists of two-axis tracking mirrors, or heliostats, which reflect direct solar radiation onto a receiver located at the top of a tower.

Theoretically, all CSP systems can be used to generate electricity and heat.  All are suited to be combined with membrane and thermal desalination systems. However, the only commercially available CSP plants today are linear concentrating parabolic trough systems because of lower cost, simple construction, and high efficiency

CSP-Powered Desalination Prospects in MENA

A recent study by International Energy Agency found that the six biggest users of desalination in MENA––Algeria, Kuwait, Libya, Qatar, Saudi Arabia, and United Arab Emirates––use approximately 10 percent of the primary energy for desalination. Infact, desalination accounted for more than 4 percent of the total electricity generated in the MENA region in 2010. With growing desalination demand, the major impact will be on those countries that currently use only a small proportion of their energy for desalination, such as Jordan and Algeria.

The MENA region has tremendous wind and solar energy potential which can be effectively utilized in desalination processes. Concentrating solar power (CSP) offers an attractive option to power industrial-scale desalination plants that require both high temperature fluids and electricity.  CSP can provide stable energy supply for continuous operation of desalination plants based on thermal or membrane processes. Infact, several countries in the region, such as Jordan, Egypt, Tunisia and Morocco are already developing large CSP solar power projects.

Concentrating solar power offers an attractive option to run industrial-scale desalination plants that require both high temperature fluids and electricity.  Such plants can provide stable energy supply for continuous operation of desalination plants based on thermal or membrane processes. The MENA region has tremendous solar energy potential that can facilitate generation of energy required to offset the alarming freshwater deficit. The virtually unlimited solar irradiance in the region will ensure large-scale deployment of eco-friendly desalination systems, thereby saving energy and reducing greenhouse gas emissions.  

Several countries in the MENA region – Algeria, Egypt, Jordan, Morocco and Tunisia – have joined together to expedite the deployment of concentrated solar power (CSP) and exploit the region's vast solar energy resources. One of those projects is a series of massive solar farms spanning the Middle East and North Africa. Two projects under this Desertec umbrella are Morocco’s Ouarzazate Concentrated Solar Power plant, which was approved in late 2011, and Tunisia’s TuNur Concentrated Solar Power Plant, which was approved in January 2012. The Moroccan plant will have a 500-MW capacity, while the Tunisia plant will have a 2 GW capacity. Jordan is also making rapid strides with several mega CSP projects under development in Maa’n Development Area. 


Seawater desalination powered by concentrated solar power offers an attractive opportunity for MENA countries to ensure affordable, sustainable and secure freshwater supply. The growing water deficit in the MENA region is fuelling regional conflicts, political instability and environmental degradation. It is expected that the energy demand for seawater desalination for urban centres and mega-cities will be met by ensuring mass deployment of CSP-powered systems across the region. Considering the severe consequence of looming water crisis in the MENA region it is responsibility of all regional governments to devise a forward-looking regional water policy to facilitate rapid deployment and expansion of CSP and other clean energy resources for seawater desalination.

Desertec: What Went Wrong?

A plan to power Europe from solar power plants in Sahara desert, popularly known as Desertec, seems to have stalled, but several large North African solar projects are still going ahead despite local concerns. Where did the Desertec project go wrong, and can desert solar power yet play a role in a democratic and sustainable future?

If you use social media, you may well have seen a graphic going around, showing a tiny square in the Sahara desert with the caption: ‘This much solar power in the Sahara would provide enough energy for the whole world!’

Can this really be true? It is based on data from a research thesis written by Nadine May in 2005 for the Technical University of Braunschweig in Germany. According to May, an area of 3.49 million km² is potentially available for concentrating solar power (CSP) plants in the North African countries Morocco, Algeria, Tunisia, Libya and Egypt. She argues that an area of 254 kilometres x 254 kilometres (the biggest box on the image) would be enough to meet the total electricity demand of the world. The amount of electricity needed by the EU-25 states could be produced on an area of 110 kilometres x 110 kilometres (assuming solar collectors that could capture 100 per cent of the energy). A more realistic estimation by the Land Art Generator Initiative assumed a 20-per-cent capture rate and put forward an area approximately eight times bigger than the May study for meeting the world’s energy needs. Nevertheless, the map is a good illustration of the potential of solar power and how little space would be needed to power the entire planet.

This isn’t a new idea. Back in 1913, the American engineer Frank Shuman presented plans for the world’s first solar thermal power station to Egypt’s colonial elite, including the British consul-general Lord Kitchener. The power station would have pumped water from the Nile River to the adjacent fields where Egypt’s lucrative cotton crop was grown, but the outbreak of the First World War abruptly ended this dream.

The idea was explored again in the 1980s by German particle physicist Gerhard Knies, who was the first person to estimate how much solar energy was required to meet humanity’s demand for electricity. In 1986, in direct response to the Chernobyl nuclear accident, he arrived at the following remarkable conclusion: in just six hours, the world’s deserts receive more energy from the sun than humans consume in a year. These ideas laid the groundwork for Desertec.

What is Desertec?

For the sake of clarity, it is worth differentiating between the Desertec Foundation and the Desertec Industrial Initiative. The non-profit Desertec Foundation was founded in January 2009 by a network of scientists, politicians and economists from around the Mediterranean. Its aim is to supply as many people and businesses as possible with renewable energy from the world’s deserts. This should, they hope, provide opportunities for prosperity and help protect the climate.

In the autumn of 2009, an ‘international’ consortium of companies formed the Desertec Industrial Initiative (Dii), with weighty players such as E.ON, Munich Re, Siemens and Deutsche Bank all signing up as ‘shareholders’. It was formed as a largely German-led private-sector initiative with the aim of translating the Desertec concept into a profitable business project, by providing around 20 per cent of Europe’s electricity by 2050 through a vast network of solar- and windfarms stretching right across the Middle East and North Africa (MENA) region. These generators would be connected to continental Europe via special high voltage, direct current transmission cables. The tentative total cost of this project has been estimated at €400 billion ($472 billion).

To understand the thinking behind Desertec, we need to consider some history. Between 1998 and 2006, a set of Euro-Mediterranean Association Agreements were formed between the EU and Algeria, Egypt, Jordan, Israel, Lebanon, Morocco, Palestine and Tunisia. Their stated aim was the ‘gradual liberalization of trade’ in the region and the establishment of a Mediterranean free trade area. A project with similar goals called the Union for the Mediterranean (UfM) was championed by the French President Nicolas Sarkozy from 2008, to strengthen the ‘interdependence’ between the EU and the southern Mediterranean.

This goal of ‘interdependence’ is reminiscent of previous French prime minister Edgar Fouré’s famous coinage back in 1956, ‘L’indépendance dans l’interdépendance’, (independence in interdependence), a strategy promoted by successive French governments to maintain control and domination of the new ‘independent’ African countries. The UfM is designed to follow in their footsteps, furthering EU economic interests and reducing the need for energy imports from Russia. Promoting a renewable energy partnership was seen as a priority core project towards achieving these goals.

It is within this context of pro-corporate trade deals and a scramble for influence and energy resources that we should understand the Desertec project and especially its industrial arm, the Dii. Desertec could play a role in diversifying energy sources away from Russia as well as contributing to EU targets of reducing carbon emissions – and what better region to achieve these aims than MENA, an area well-endowed with natural resources, from fossil fuels to sun and wind. It seems that a familiar ‘colonial’ scheme is being rolled in front of our eyes: the unrestricted flow of cheap natural resources from the Global South to the rich industrialized North, maintaining a profoundly unjust international division of labour.

This is a genuine concern given the language used in different articles and publications describing the potential of the Sahara in powering the whole world. The Sahara is described as a vast empty land, sparsely populated; constituting a golden opportunity to provide Europe with electricity so it can continue its extravagant consumerist lifestyle and profligate energy consumption. This is the same language used by colonial powers to justify their civilizing mission and, as an African myself, I cannot help but be very suspicious of such megaprojects and their ‘well-intentioned’ motives that are often sugar-coating brutal exploitation and sheer robbery. Such sentiments were also raised by Daniel Ayuk Mbi Egbe of the African Network for Solar Energy in 2011. ‘Many Africans are sceptical about Desertec,’ he said. ‘Europeans make promises, but at the end of the day, they bring their engineers, they bring their equipment, and they go. It’s a new form of resource exploitation, just like in the past.’ The Tunisian trade unionist Mansour Cherni made similar points at the World Social Forum 2013 (WSF) held in Tunis when he asked: ‘Where will the energy produced here be used?…Where will the water come from that will cool the solar power plants? And what do the locals get from it all?’

Sustainable Development or Status quo?

There is nothing inherently wrong or dishonest in the Desertec idea. On the contrary, the goal of providing sustainable energy for the planet to fight global warming is to be applauded. But like any other idea, the questions of who uses it, how it is implemented, for what agenda and in which context it is being promoted, are of great importance.

Desertec was presented as a response to the issues of climate change, the Russian-Ukrainian gas conflicts in 2006 and 2009, fears of peak oil, and the global food crisis of 2009. However, if Desertec is really serious about addressing those crises, it needs to target their structural causes. Being an apolitical techno-fix, it promises to overcome these problems without fundamental change, basically maintaining the status quo and the contradictions of the global system that led to these crises in the first place. Moreover, by presenting the Euro-Med region as a unified community (we are all friends now and we need to fight against a common enemy!), it masks the real enemy of the MENA region, which is oppressive European hegemony and Western domination.

Big engineering-focused ‘solutions’ like Desertec tend to present climate change as a shared problem with no political or socio-economic context. This perspective hides the historical responsibilities of the industrialized West, the problems of the capitalist energy model, and the different vulnerabilities between countries of the North and the South. The MENA region is one of the regions hardest hit by climate change, despite producing less than 5 per cent of global carbon emissions, with water supplies in the area being particularly affected. The spread of solar energy initiatives that further plunder these increasingly-scarce water resources would be a great injustice. Desertec also provides PR cover to major energy businesses and oil and gas-fuelled regimes. Supporting big ‘clean energy’ projects lets them present themselves as environmental protectors rather than climate culprits.

The website of the foundation (which came up with the concept and gave it its name) states: ‘Desertec has never been about delivering electricity from Africa to Europe, but to supply companies in desert regions with energy from the sun instead of oil and gas.’ Despite this, the Dii consortium of (mainly European) companies was openly geared towards delivering energy from Africa to Europe. Eventually, however, the fall in the price of solar panels and wind turbines in the EU led the consortium to concede in 2013 that Europe can provide for most of its clean energy needs indigenously. The tensions between the foundation and Dii culminated in a divorce between the two in July 2013 as the former preferred to distance itself from the management crisis and disorientation of the industrial consortium. As a result of these developments, Dii shrank from 17 partners to only three by the end of 2014 (German RWE, Saudi Acwa Power and China State Grid).

Where is Desertec now?

For some people, the shrinking of Dii signalled the demise of Desertec. However, with or without Dii, the Desertec vision is still going ahead with projects in Tunisia, Morocco and Algeria. Despite its stated ideals about powering Africa, the Desertec foundation is backing the Tunur project in Tunisia, a joint venture between Nur Energy, a British-based solar developer and a group of Maltese and Tunisian investors in the oil and gas sector. It explicitly describes itself as a large solar power export project linking the Sahara desert to Europe that will dispatch power to European consumers starting in 2018. Given that Tunisia depends on its neighbour Algeria for its energy needs and that it faces increasingly frequent power cuts, it would be outrageous (to say the least) to proceed with exports rather than producing for the local market. According to Med Dhia Hammami, a Tunisian investigative journalist working in the energy sector, the project seeks to take advantage of new Tunisian legislation allowing the liberalization of green energy production and distribution, breaking the monopoly of the state company STEG (Société Tunisienne d’Electricité et de Gaz) and opening the way to direct export of electricity by private companies. He describes it as ‘state prostitution’ and a confirmation of the Tunisian government’s submission to corporate diktats that go against the national interest.

Meanwhile, the Moroccan government, with help from Dii consortium members, has attracted funding from international lenders to develop the world’s largest concentrating solar power (CSP) plant at Ourzazate. It was originally envisioned as an export project, but failed to secure Spanish government support for an undersea cable; the project is now promoted as a means for Morocco to increase its own renewable energy supply. However, the role of transnational companies in the project is still attracting criticism. M Jawad, a campaigner from ATTAC/CADTM Morocco, is concerned about the increasing control exerted by transnationals on electrical energy production in his country. He sees projects like Ourzazate as a threat to national sovereignty in the clean energy sector, because crucial decisions that affect the whole population are being taken by a handful of technocrats, far from any democratic process or consultation.

A Community-centred Approach

The assumption that economic liberalization and ‘development’ necessarily lead to prosperity, stability and democracy – as if neoliberalism and the (under)development agenda of the West had nothing to do with the Arab Uprisings – is preposterous. Any project concerned with producing sustainable energy must be rooted in local communities, geared towards providing and catering for their needs and centred around energy and environmental justice.

This is even more important when we think about the issue in the context of the Arab Uprisings and the demands of the revolutions: bread, freedom, social justice and national sovereignty. Projects involving large transnationals tend to take a top-down approach, increasing the risk of displacement, land-grabbing and local pollution. Without community involvement, there is no guarantee that such schemes will help with alleviating poverty, reducing unemployment or preserving a safe environment.

This has been a major failing of the Desertec initiative. Only a few actors from the South of the Mediterranean were involved in its development, and most of them represented public institutions and central authorities, not the local communities who would be affected by the project.

The Desertec foundation did publish a set of criteria to ensure that large-scale solar projects in desert regions are implemented in an environmentally and socially responsible way. However, in the absence of democratic control, transparency and citizen participation in decision making in the MENA region, those criteria will remain ink on paper.

Another important question is: will these projects transfer the knowledge, expertise and designs of the renewable technology to the countries in this region? This seems unlikely given the transnationals’ usual reticence in doing so and questions of intellectual property around such technologies. As an example, the glass troughs (solar thermal collectors) for North African CSP plants are all made in Germany, and the patents for the glass tube receivers are held by German companies. Without fair access to such technologies, MENA countries will remain dependent on the West and transnationals for future renewable development.

Solar Energy, a new Tool for Authoritarian Regimes?

To come back to the Arab uprisings, Desertec presented itself as a possible way out of the crisis, by bringing new opportunities to the region. This is baffling given that the project co-operated with corrupt elites and authoritarian regimes, some of which have since been overthrown, and others of which continue to oppress their populations.

Instead of providing a route to ‘develop’ away from repressive governments, the centralized nature of large CSP plants makes them an ideal source of income for corrupt and authoritarian regimes in the region (such as Algeria, Egypt and Morocco) and thus could help to keep them in power. To illustrate this risk, let’s take Algeria as an example.

Oil and gas have provided income for the Algerian regime for decades, and are used to buy social peace and maintain its grip on power. As the brutal Algerian civil war (a war against civilians, to be more accurate) was raging, with systematic violence from both the state and Islamist fundamentalists, BP finalized a contract worth $3 billion in December 1995, giving it the right to exploit gas deposits in the Sahara for the next 30 years. Total completed a similar deal worth $1.5 billion one month later, and in November 1996 a new pipeline supplying gas to the EU was opened, the Maghreb-Europe Gas Pipeline through Spain and Portugal. These contracts undoubtedly bolstered the regime as it exerted systematic violence across the country and at a time of international isolation.

Tied to Algeria through huge investments, these companies and the EU had a clear interest in making sure that the repressive regime did not go under and acquiesced to the Algerian regime’s ‘Dirty War’ of the 1990s. A renewable megaproject like Desertec that ties European economies to corrupt MENA governments would create exactly the same kind of problems.

Parting Shot

Whether fossil fuelled or renewable, energy schemes that don’t benefit the people where the energy is extracted, that serve to prop up authoritarian and repressive regimes or only enrich a tiny minority of voracious elites and transnationals are scandalous and must be resisted.

Advocates for benign-sounding clean energy export projects like Desertec need to be careful they’re not supporting a new ‘renewable energy grab’: after oil, gas, gold, diamonds and cotton, is it now the turn of solar energy to maintain the global imperial dominance of the West over the rest of the planet?

Rather than embracing such gargantuan projects, we should instead support decentralized small-scale projects that can be democratically managed and controlled by local communities that promote energy autonomy. We don’t want to replicate the fossil fuel tragedy and therefore we must say: Leave the sunlight in the desert for its people!

Note: This article was originally published in March 2015 issue of New Internationalist and can be found at this link.

CDM Projects in MENA Region


The MENA region is an attractive CDM destination as it is rich in renewable energy resources and has a robust oil and gas industry. Surprisingly, countries in MENA host very few and declining number of CDM projects with only 23 CDM projects registered till date. The region accounts for only 1.5 percent of global CDM projects and only two percent of emission reduction credits. The two main challenges facing many of these projects are: weak capacity in most MENA countries for identifying, developing and implementing carbon finance projects and securing underlying finance. 

The registered CDM projects in MENA countries are primarily located in UAE, Egypt, Jordan, Morocco, Qatar, Syria and Tunisia. Other countries in the region, like Saudi Arabia, Bahrain and Oman, are also exploring opportunities for implementing projects that could be registered under the Kyoto Protocol.

Potential CDM projects that can be implemented in the region may come from varied areas like sustainable energy, energy efficiency, waste management, landfill gas capture, industrial processes, biogas technology and carbon flaring. For example, the energy efficiency projects in the oil and gas industry, can save millions of dollars and reduce tons of CO2 emissions. In addition, renewable energy, particularly solar and wind, holds great potential for the region, similar to biomass in Asia.

Let us take a look at some of the recent registered CDM projects from the MENA region.

Al-Shaheen Project (Qatar)

The Al-Shaheen project is the first of its kind in the region and third CDM project in the petroleum industry worldwide. The Al-Shaheen oilfield has flared the associated gas since the oilfield began operations in 1994. Prior to the project activity, the facilities used 125 tons per day (tpd) of associated gas for power and heat generation, and the remaining 4,100 tpd was flared. Under the current project, total gas production after the completion of the project activity is 5,000 tpd with 2,800-3,400 tpd to be exported to Qatar Petroleum (QP); 680 tpd for on-site consumption, and only 900 tpd still to be flared. The project activity will reduce GHG emissions by approximately 2.5 million tCO2 per year and approximately 17 million tCO2 during the initial seven-year crediting period.

GASCO Project (Abu Dhabi)

Located at the Asab and Bab gas processing plants in Abu Dhabi, the energy efficiency project is the fifth CDM project in the UAE to be registered under the Kyoto Protocol. The ADNOC's GASCO CDM project helps to reduce CO2 emissions through installation of a device in the flare line to considerably reduce the consumption of fuel gas, thereby ensuring lower greenhouse gas emissions. The project contributes to Abu Dhabi's and ADNOC's goals for sustainable development while improving air quality in the region. This retrofit project is expected to generate approximately 7,770 CERs per year.

Kafr El Dawar Project (Egypt)

Located at the Egypt for Spinning, Weaving and Dying Company in Kafr El Dawar near Alexandria, the fuel switching project is the latest CDM project from MENA to be registered under the Kyoto Protocol. The Kafr El Dawar CDM project helps reduce COemissions through switching from the higher carbon intensive fuel such as Heavy Fuel Oil (HFO) to natural gas, a lower carbon intensive fossil fuel, contributing to Egypt’s goals in sustainable development. It has also significantly mitigated atmospheric emissions of pollutants while improving air quality in the region. The replacement of HFO with natural gas is expected to generate approximately 45,000 Certified Emissions Reductions (CERs) per year.


Environmental Impact of Olive Oil Processing Wastes

More commonly known for its popular culinary and medicinal benefits, olive cultivation and olive oil production are a part of the local heritage and rural economy throughout the North African and Mediterranean regions. In 2012, an estimated 2,903,676 tons of olive oil was produced worldwide, the largest olive oil producers being Spain, Italy, and Greece followed by Turkey and Tunisia and to a lesser extent Portugal, Morocco and Algeria. Within the European Union’s olive sector alone, there are roughly 2.5 million producers, who make up roughly one-third of all EU farmers.

The olive oil industry offers valuable opportunities to farmers in terms of seasonal employment as well as significant employment to the off-farm milling and processing industry.  While this industry has significant economic benefits in regards to profit and jobs; the downside is it leads to severe environmental harm and degradation.   

The Flipside

Currently, there are two processes that are used for the extraction of olive oil, the three-phase and the two-phase. Both systems generate large amounts of byproducts.  The two byproducts  produced by the three-phase system are a solid residue known as olive press cake (OPC) and large amounts of aqueous liquid known as olive-mill wastewater (OMW).  The three-phase process usually yields 20% olive oil, 30% OPC waste, and 50% OMW.  This equates to 80% more waste being produced than actual product.  

More contemporary is the two-phase system, in this system “the volume of OMW produced is reduced because less water is used and much of that water and toxic substances are held within the solid olive cake, thus producing a semi-solid residue (SOR).” While the two-phase system produces less OMW, the SOR it produces has a “high organic matter concentration giving an elevated polluting load and it cannot be easily handled by traditional technology which deals with the conventional three-phase olive cake.”

Regardless of system used, the effluents produced from olive oil production exhibit highly phytotoxic and antimicrobial properties, mainly due to phenols.  Phenols are a poisonous caustic crystalline compound.  These effluents unless disposed of properly can result in serious environmental damage.  Troublingly, there is no general policy for disposal of this waste in the olive oil producing nations around the world.  This results in inconsistent monitoring and non-uniform application of guidelines across these regions. 

Environmental Concerns

Around 30 million m3 of olive mill wastewater is produced annually in the Mediterranean area.  This wastewater cannot be sent to ordinary wastewater treatment systems, thus, safe disposal of this waste is of serious environmental concern.  Moreover, due to its complex compounds, olive processing waste (OPW) is not easily biodegradable and needs to be detoxified before it can properly be used in agricultural and other industrial processes. 

This poses a serious problem when the sophisticated treatment and detoxification solutions needed are too expensive for developing countries in MENA such as Morocco, Algeria and Tunisia where it is common for OMW to be dumped into rivers and lakes or used for farming irrigation.  This results in the contamination of ground water and eutrophication of lakes, rivers and canals.  Eutrophication results in reductions in aquatic plants, fish and other animal populations as it promotes excessive growth of algae. As the algae die and decompose, high levels of organic matter and the decomposing organisms deplete the water of oxygen, causing aquatic populations to plummet.

Another common tactic for disposal of olive mill wastewater is to collect and retain it in large evaporation basins or ponds.  It is then dried to a semi-solid fraction. In less developed countries where olive processing wastes is disposed of, this waste, as well as olive processing cake and SOR waste is commonly unloaded and spread across the surrounding lands where it sits building up throughout the olive oil production season.  Over time these toxic compounds accumulate in the soil, saturating it, and are often transported by rain water to other nearby areas, causing serious hazardous runoff. Because these effluents are generally untreated it leads to land degradation, soil contamination as well as contamination of groundwater and of the water table itself. 

Even a small quantity of olive wastewater in contact with groundwater has the potential to cause significant pollution to drinking water sources. The problem is more serious where chlorine is used to disinfect drinking water. Chlorine in contact with phenol reacts to form chlorophenol which is even more dangerous to human health than phenol alone.

Current Remedies

The problems associated with olive processing wastes have been extensively studied for the past 50 years.  Unfortunately,research has continued to fall short on discovering a technologically feasible, economically viable, and socially acceptable solution to OPW.  The most common solutions to date have been strategies of detoxification, production system modification, and recycling and recovery of valuable components.  Because the latter results in reductions in the pollution and transformation of OPW into valuable products, it has gained popularity over the past decade.Weed control is a common example of reusing OPW; due to its plant inhibiting characteristics OPW once properly treated can be used as an alternative to chemical weed control.

Research has also been done on using the semisolid waste generated from olive oil production to absorb oil from hazardous oil spills.  Finally, in terms of health, studies are suggesting that due to OPW containing high amounts of phenolic compounds, which have high in antioxidant rates, OPW may be an affordable source of natural antioxidants. Still, none of these techniques on an individual basis solve the problem of disposal of OMW to a complete and exhaustive extent.

At the present state of olive mill wastewater treatment technology, industry has shown little interest in supporting any traditional process (physical, chemical, thermal or biological) on a wide scale.This is because of the high investment and operational costs, the short duration of the production period (3-5 months) and the small size of the olive mills.


Overall, the problems associated with olive processing wastes are further exemplified by lack of common policy among the olive oil producing regions, funding and infrastructure for proper treatment and disposal, and a general lack of education on the environmental and health effects caused by olive processing wastes.   While some progress has been made with regards to methods of treatment and detoxification of OPW there is still significant scope for further research.  Given the severity of environmental impact of olive processing wastes, it is imperative on policy-makers and industry leaders to undertake more concrete initiatives to develop a sustainable framework to tackle the problem of olive oil waste disposal. 


Art, H. W. (1995). The Dictionary of Ecology and Environmental Science. New York, New York: Henry Holt and Company.

Borja, R., Raposo, F., & Rincón, B. (2006). Treatment technologies of liquid and solid wastes from two-phase olive oil mills. 57, 32-46.

Boz, O., Ogut, D., Kir, K., & Dogan, N. (2009). Olive Processing Waste as a Method of Weed Control for Okra, Fava Bean, and Onion. Weed Technology, 23, 569-573.

Caba, J., Ligero, F., Linares, A., Martınez, J., & De la Rubia, T. (2003). Detoxification of semisolid olive-mill wastes and pine-chip mixtures using Phanerochaete flavido-alba Chemosphere, 51, 887–891.

El Hajjouji, H., Guiresse, M., Hafidi, M., Merlina, G., Pinelli, E., & Revel, J. (2007). Assessment of the genotoxicity of olive mill waste water (OMWW) with the Vicia faba micronucleus test Morocco.

FAOSTAT. (2013).   Retrieved 11/30/2013, from

Niaounakis, M., & Halvadakis, C. P. (2006). Olive Processing Waste Management, 2nd Edition (2nd ed.): Pergamon.

Olives and the Olive Tree. (2010).   Retrieved 11/30/2013, 2013, from

Spandre, R., & Dellomonaco, G. (1996). POLYPHENOLS POLLUTION BY OLIVE MILL WASTE WATERS, TUSCANY, ITALY. Journal of Environmental Hydrology, 4, 1-13.

The olive oil sector in the European Union (2002).   Retrieved 12/01/2013, from