The Paper Bag Boy of Abu Dhabi

Abdul Muqeet, also known as the Paper Bag Boy, has risen from being just another ordinary student to an extra-ordinary environmentalist. At just ten years old, Abdul Muqeet has demonstrated his commitment to saving the environment in United Arab Emirates and elsewhere. 

Inspired by the 2010 campaign “UAE Free of Plastic Bags”, Abdul Muqeet, a student of Standard V at Abu Dhabi Indian School, applied his own initiative and imagination to create 100% recycled carry bags using discarded newspapers. He then set out to distribute these bags in Abu Dhabi, replacing plastic bags that take hundreds of years to degrade biologically. The bags were lovingly named ‘Mukku bags' and Abdul Muqeet became famous as the Paper Bag Boy.

Abdul Muqeet’s environmental initiative has catalyzed a much larger community campaign. During the first year, Abdul Muqeet created and donated more than 4,000 paper bags in Abu Dhabi. In addition, he has led workshops at schools, private companies and government entities, demonstrating how to create paper bags using old newspapers. His school along with a number of companies in Abu Dhabi adopted his idea by exchanging their plastic bags for paper bags.

Abdul Muqeet was one of the youngest recipients of Abu Dhabi Awards 2011, for his remarkable contribution to conserve environment. The awards were presented by General Sheikh Mohammad Bin Zayed Al Nahyan, Crown Prince of Abu Dhabi and Deputy Commander of the UAE Armed Forces. In 2011, Abdul Muqeet was selected to attend the United Nation’s Tunza conference in Indonesia where he demonstrated his commitment for a cleaner environment through his paper bag initiative. He is actively involved in spreading environmental awareness worldwide, especially UAE, India, USA and Indonesia.

 

Abdul Muqeet continues to make headlines for his concerted efforts towards a plastic-free environment, and has been widely covered by leading newspapers in UAE and other countries. He tirelessly campaigned for the Rio+20 summit, urging world leaders to commit to the Green Economy. “Plant more trees; use less water; reuse and recycle; always remember that everything in this world can be recycled but not time,” offers Abdul.

He has been remarkably supported by his parents and siblings throughout his truly inspiring environmental sojourn. Abdul Muqeet’s monumental achievements at such a tender age make him a torch-bearer of the global environmental movement, and should also inspire the young generation to protect the environment by implementing the concept of ‘Zero Waste’.

Republished by Blog Post Promoter

The City of Nouakchott – Perspectives and Challenges

Nouakchott, capital city of the Islamic Republic of Mauritania, is the biggest city in the Sahara region. Like other major cities worldwide, the city is plagued by environmental, social and economical challenges. Sewage disposal network, dating back to 1960’s is no longer sufficient for Nouakchott. The country is heavily dependent on fossil fuels and woody biomass for meeting energy requirements, though there is good potential of solar, wind and biomass energy. Solid waste management is becoming a major headache for city planners. Population is increasing at a tremendous pace which is putting tremendous strain on meagre civic resources.

Making of a City

Mauritania is a Western African country bordered by the Atlantic Ocean, Morocco, Algeria, Mali and Senegal. Most of its 1,030,700 km2 are covered by deserts. A country as wide as Egypt, it is only scarcely inhabited by some 3.500.000 people. A crossing of cultures, most of the country is inhabited by Arab nomads, the Moors, while the South is inhabited by the African Toucouleur and Soninke people.

Before the country became independent in 1960, the French founded the new capital city Nouakchott. Originally, Nouakchott was a city intended for 3.000 inhabitants. Most of the inhabitants were nomads and the city was established at a meeting place and cattle fair for the nomads. The etymology of the name may mean salt marsh or shore. The area is flat, protected from the sea by low dunes and originally bordered by savannah type vegetation.

After independence, the city grew very quickly, well beyond the expectation of its French founders. In the 1970’s Mauritania sided with Morocco in the Western Sahara war, and was badly defeated by the Polisario rebels. The war caused a massive arrival of refugees from the combat zones in Northern Mauritania. At the same time, drought and famine devastated the whole Sahel region which causes a large-scale refugee influx in the Nouakchott region.

Problems Galore

The arrival of refugees swelled the population of the city, making it the fastest growing city in the region, apart from causing a massive disruption in the environment. For decades, the majority inhabitants of Nouakchott lived in slums. The refugees came with their cattle and contributed to the destruction of existing savanna vegetation by overgrazing. The sand dunes quickly became loose and began to threaten the city from the East and North. Chaotic urbanization caused further environmental destruction, destroying the littoral zone.

The city also suffered social problems, as traditional ways of life disappeared. Former shepherds, agricultural workers and freed slaves became urban poors with little education and abilities to fit in a new economical model. The modern way of life lead to proliferation in plastics items and the landscape of Nouakchott got littered with all sorts of wastes, including plastic bags and bottles.

Nouakchott continues to grow with population reaching one million. However there is stark absence of basic amenities in the city.  Apart from several wells, there are no potable water supplies. The city had no bituminous road beside the two main avenues until recently. The city lacks urban planning, wastewater management and waste management. The construction of harbour and urbanization has led to the destruction of the littoral dunes. The city is in real danger of being flooded in case of sea storm or high tide. The most threatened place is Tevragh Zeina, the most affluent part of the city.

Sand dunes are another cause of worry for Nouakchott. In the 1990’s a Belgian project for the construction of a green belt helped in stopping the progression of dunes. However with expansion of the city, people have now started to build their dwellings in the green belt. The city is also at risk of being flooded in case of rain. In September 2013, during late rainy season, several parts of the city were flooded by rain. Parts of the city are still marked by semi-permanent sewage pools which are a major threat to public health.

Silver Lining

Environment and sustainable development has become a priority during rule of President Mohamed Ould Abdelaziz. The government has built roads in Nouakchott and constructed a water abduction system for bringing water from the Senegal River. Slums have been replaced by social dwellings for the poorest.  New schools, hospitals and universities are sprouting at a rapid pace.

Plans are underway to develop the interior of the country to stop internal immigration to Nouakchott. The country is also making made ambitious climate change strategies and has banned the use of plastic bags which has led to its replacement by biodegradable or reusable bags. Mauritania has rich biodiversity, especially in its sea. Infact, the country has many biodiversity hotspots which may attract people for ecotourism. 

There are huge challenges to be tackled to transform Nouakchott into a modern city. Due to nomadic links, Mauritania’s Arabs have a special link to desert and are counted among the environmentally-conscious people of Western and North Africa. However considerable efforts are required to educate the people living in and around Nouakchott and motivate them to become an active participant in sustainable development of the city.

Republished by Blog Post Promoter

Waste-to-Energy in Jordan: Potential and Challenges

landfill-jordanEffective sustainable solid waste management is of great importance both for people’s health and for environmental protection. In Jordan, insufficient financial resources, growing population, rapid urbanization, inadequate management and lacking of technical skills represent a serious environmental challenge confronting local government. At the same time, energy remains Jordan’s top challenge for development. The energy needs to be produced in a sustainable way, preferably from renewable sources which have a minimum environmental impact. To face the future problems in waste management, as well as securing the demand of renewable energy, it is necessary to reuse the wasted resources in energy production.

Jordan has definitely acknowledged that making affordable energy solutions available is critical to support industries, investment, and attain sustainable growth. One option is to use solid waste to generate electricity in centralized plants. Waste-to-energy has been recognized as an effective approach to improve recycling rates, reduce the dependence on fossil fuels, reduce the amount of materials sent to landfills and to avoid pollution.

Waste-to-Energy Potential

According to recent statistics, Jordan population stands at around 9.5 million. The estimated municipal waste generated according to the last five years average production is around 3,086,075 ton/year. This huge amount of waste generated is not only a burden, but a potential resource for use in energy production. Considering the country average waste composition 40% is organic waste e.g. avoidable and unavoidable food waste (1,200,000 ton), 10 % are recyclable e.g. paper, plastic, glass, ferrous metals and aluminum (300,000 ton) and 50% are suitable for incineration e.g. garden and park waste, wood and textiles (1,500,000 ton) with high calorific value and energy potential (8.1 MJ/Kg) that is capable to produce electricity 340 kWh/ton waste. The high organic waste is suitable for methane gas capture technologies which is estimated at 170 m3/ton waste.

Technology Options

Nowadays, there are many technologies available which makes it possible to utilize these energy potentials. The major alternatives conventional technologies for large scale waste management are incineration, landfilling and anaerobic digestion. These technologies are affordable, economical visible and associated with minimum environmental impact. The production of electricity is combined with greenhouse gas (GHG) emissions, according to the current energy situation (90% of the country energy produced from fossil fuel), the country emission factor is around 819 CO2-eq/kWh. However, the use of waste to energy solutions is considered to be a clean and definitely the amount of GHG emitted is a lot less than the gases generated by ordinary practices (open dumping and unsanitary landfills).

Construction of an incineration plant for electricity production is often a profitable system even though the installation cost is high since production of electricity often leads to a large economic gain. Landfill gas utilization avoids the release of untreated landfill gases into the atmosphere, and produces electricity to sell commercially in an environmental friendly manner. However, landfilling is associated with methane production. Methane is a potent GHG, contributing 21 times more to global warming than carbon dioxide.

Anaerobic digestion technology is another option. Anaerobic digestion not only decrease GHGs emission but also it is the best technology for treatment of high organic waste through converting the biodegradable fraction of the waste into high-quality renewable calorific gas. Currently, with the growing use of anaerobic technology for treating waste and wastewater, it is expected to become more economically competitive because of its enormous advantages e.g. reduction of pathogens, deactivation of weed seeds and production of sanitized compost.

alghabawi-landfill-jordan

Sorting at the place of generation and recycling e.g. paper, plastic, glass and metals needed to be practiced at the country level or at least where these technologies implemented. Incinerated waste containing plastics (not sorted) releases carbon dioxide, toxic substances and heavy metals to the atmosphere and contributes thereby to climate change and to global warming.

Challenges to Overcome

Waste-to-energy technologies offer enormous potentials as a renewable energy sources and to mitigate climate change in Joran. However, these technologies pose many challenges to the country and discussion makers. Currently, the waste sector is administrated by the government. Poor regulation and insufficient financial resources are limiting the available options toward adapting these new technologies. Private investments and collaboration with the private sector is the key solution in this regard.

Waste Management Implications of 3D Printing

The rapid deployment of 3D printing is one of the most exciting developments since the appearance of the smart phone. This is technology with some serious potential to change how and where goods are manufactured, transforming supply chains. The New Scientist has gone so far as to herald 3D printing, also known as additive manufacturing, as ushering in a second industrial revolution. But is anyone thinking about how what this new development means for the waste sector?

Whilst the technology is already being put to some dubious uses, the ability to manufacture pretty much anything wherever and whenever it’s needed is certainly appealing. Interest isn’t confined to those frustrated inventors whose imaginations have been constrained by the tools they can fit in the garden shed; there’s likely to be take-up from businesses, householders – and even space agencies, apparently.

Insights into 3D Printing

By building up layer upon layer of material, a 3D printer can produce objects to any pattern, up to the maximum size it can handle. However, the applications to which these objects can be put to may be limited by the physical properties of the materials that will inputted in to 3D printers – the equivalent of the ink in the printers we’re all familiar with. Clearly, you can’t print a toaster if your 3D printer only uses plastic – but an oven knob, or even a wind-powered robot with dozens of moving parts, is no problem.

A quick scan of 3dprinter.net helpfully outlines the different methods 3D printers are able to deploy, which I’ve summarised here. Each appears to require its own TLA (Three Letter Acronym). Perhaps in the future terms such as Stereolithography (SLA), Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS) and PolyJet photopolymer will become as ubiquitous as DVD and VHS have been in the past. Each of these techniques is compatible with a selection of materials, primarily plastics – but some are able to use metals, ceramics or even play-dough.

Environmental Implications

Moving significant amounts of manufacturing away from factories (predominately in Asia) to our own door steps will no doubt have profound impacts on the balance of goods and services across the globe. The economic and social implications of the technology have the potential to be significant– as do the environmental implications.

There is potential for greenhouse gas emissions savings from reduced shipping – not just cutting the number of products that make the long journey across the seas from China, but also reducing road freight. Fewer trucks on the motorways could be one of the unexpected effects 3D printing. But what are the waste management issues associated with mass deployment such technologies. And if we are future gazing, is their deployment consistent with the ‘zero waste economy’ envisaged by governments across the Middle East?

For those who haven’t yet thought too hard about what the technology is; think of it like the ‘replicator’ devices as featured in Star Trek. The replicator was a machine capable of creating objects by voice command, from what appeared to be thin air. 3D printing is only a shade less magical.

Waste Management Perspectives

3D printing is something of a double-edged sword when it comes to waste. It creates new recycling problems, but has considerable potential to help prevent waste. It could even be an outlet for recycled plastics. The opportunity for DIY repairs, especially to everyday items that we might otherwise decide were uneconomic to fix, appears enormous.

But with the higher profile that waste management has these days, I feel that we ought to be making 3D printing the first technology to be designed with recycling in mind. The waste management industry is a service industry; and typically it has had to adapt retrospectively to technology changes that it has not been able to influence. After more than a decade, we’re still catching up with the introduction of plastic milk bottles in lieu of glass. But this reactive approach clearly isn’t the best way to achieve a zero waste economy.

3D printing offers numerous challenges and opportunities to the waste management industry. As we, as a society, become more aware of material security, I’d suggest that the best approach would be for the waste management industry to engage positively with the designers and manufacturers of the 3D printing devices, trying to identify opportunities to ensure that the circular economy doesn’t become an afterthought.

The most appealing possibility would be if the machines could recycle waste polymers themselves, and re-use them as feedstock. Could we see a scenario where the machines become the recycling facility, thus greatly reducing the need for even the print medium to be transported? Bringing the nascent 3D printing industry together with experts in waste management could help to make this new technology contribute to rather than challenge our ambitions for a zero waste economy.

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original article can be viewed at http://www.isonomia.co.uk/?p=2512

Republished by Blog Post Promoter

النفايات الصلبة في قطاع غزة

لم تكن التحذيرات التي أطلقها منسق الشئون الإنسانية  بالأمم المتحدة "ماكسويل جيلارد" بالأمر المفاجئ أو الغريب على أكثر من مليون و نصف غزّي يسكنون في تلك البقعة من العالم. هذه التحذيرات بنيت على دراسة تابعة للأمم المتحدة صدرت في شهر أغسطس 2012 و أشارت إلى أن قطاع غزة لن يكون "ملائماً للحياة" بحلول عام 2020. فقطاع غزة يعاني من مشكلات كثيرة منذ أكثر من عقد من الزمان مع بدء الانتفاضة الثانية عام 2001 و ما تلاه من حصار خانق بعد فوز حركة المقاومة الإسلامية حماس في الانتخابات التشريعية عام 2006.

في أيامنا هذه و مع وصول أول سفينة فضائية لكوكب المريخ، ما زال قطاع غزة يعاني الكثير من المشاكل البيئية بسبب الوضع السياسي، الاجتماعي، الاقتصادي، التنظيمي ، و التقني السائد في مدن القطاع. خلال الأسطر القادمة، سأصطحبكم لكي نلقي الضوء على إحدى المشاكل التي نعيشها منذ عقود من الزمان. و قبل البدء أريد أن أوضح بأني لا أملك العصا السحرية لتغيير الحال بين عشية و ضحاها و لست بالدبلوماسي لأقوم بإلقاء التهم على جهة معينة أو فرد بعينه ولكن المقصد هو إلقاء الضوء على هذه القضية عسى أن تصل رسالتي كمواطن لأصحاب القرار.

يعاني قطاع غزة من مشكلة متفاقمة في ادارة النفايات الصلبة، نتيجة لوصول مكبات النفايات إلى الحد الاستيعابي الأقصى، و غياب الاهتمام من قبل الجهات المعنية على العمل لحل الأزمة. ففي عام 2010، قدرت وزارة التخطيط كمية النفايات التي نتجت من قطاع غزة ب 1300 طن/يومياً على أن تتضاعف هذه الكمية لتصل إلى 2350 طن/يومياً بعد عشرين عاماً. فهذه الأرقام، مصحوبة بتصريحات السيد "ماكسويل جيلارد" بأن عدد السكان في قطاع غزة سيزيد إلى 2.1 مليون في عام 2020، جعلت من الأهمية أن أتطرق لهذا الموضوع و نطرحه على الطاولة للنقاش. فالمشكلة كبيرة  و أسبابها عديدة و لكن و من باب الانصاف يجدر القول أن إدارة المخلفات الصلبة قد شهدت تحسنا ملحوظا في السنوات الأخيرة بفضل المشاريع الدولية التي نفذت في هذا المجال و الشعور بخطورة ما وصل إليه الحال في مناطق القطاع المختلفة.

أسباب وجود هذه المشكلة

و في بداية الحديث عن حلول قد تساعد على التخفيف من هذه المشكلة المتفاقمة، يجدر بنا أن ندرس الأسباب التي أحدثت هذه القضية . فمن خلال البحث و التدقيق، توصلت إلى أن الأسباب هي كالتالي:

أولاً: عدم كفاءة النظام الحالي بسبب غياب الدراسات التفصيلية و عدم وجود الرؤية الموحدة بين الجهات المعنية بإدارة الملف. فعلي سبيل المثال، قانون البيئة رقم (7) لعام 1999 غير مطبق حتى الآن مما يفقد الجهات المختصة السلطة و القوة لفرض سيطرتها من أجل تحسين الوضع العام.

ثانياً: الزيادة المفرطة في عدد السكان في القطاع مصحوباً بزيادة كميات المخلفات و عدم وجود الأماكن المناسبة لطمر المخلفات بطرق سليمة.

ثالثاً: عدم إدراك عامة الشعب بحساسية الموضوع و ضرورة التعاون مع الجهات المختصة لحل الأزمة.  مما سبق، يمكن أن نستنتج الآلية التي أرى أنها قد تساعد على أن تغير الحال الحالي.

أولى هذه الخطوات هي توفر سياسة و رؤية موحدة  ما بين كل الجهات الحكومية المعنية في هذا الشأن بالإضافة إلى البلديات من أجل وضع خطة شاملة تعمل على تحسين الوضع العام لنظام إدارة النفايات الصلبة في قطاع غزة.

هذا المبدأ لابد أن يقوم أساساً على نموذج 3R الأكثر اتباعاً في أيامنا هذه و يشمل ثلاث مقترحات لإدارة الأزمة بطريقة صحيحة و هي (تقليل كمية النفايات الناتجة Reduce ، إعادة استخدام Reuse، إعادة التدوير Recycle) و فيما يلي توضيح لهذه الخطوات:

أولا: تقليل النفايات Reduce

بالغالب تزيد كمية النفايات الناتجة من أي مجتمع بزيادة عدد أفراده. فخلال السنوات الماضية، شهدت الكميات الناتجة ارتفاعاً ملحوظاً دون إدراك عامة الشعب لخطورة الأزمة. و لهذا وجب علينا أن نركز على هذه القضية و نعمل على تغيير ما بأنفس الناس و دعوتهم أن يكونوا على قدر المسئولية و أن يقوموا بدورهم في هذا الملف عن طريق العمل على تقليل المخلفات الصادرة من منازلهم. كما أنه يجب على البلديات إعداد برامج خاصة لإدارة النفايات الصلبة للقطاع التجاري وفرض قيود على أصحاب الأعمال للتقليل من كميات المخلفات الناتجة من أنشطتهم التجارية.

ثانيا: إعادة الاستخدام Reuse

إعادة استخدام المخلفات ليس حل لمشكلة المخلفات و حسب، بل إنه من الأمور التي قد تدفع العجلة الاقتصادية إلى الأمام  من خلال تقليص ميزانية شراء المواد الخام لبعض الصناعات,  و زيادة رأس المال لصناعات الأخرى. فمن خلال هذه الطريقة، يمكن لأصحاب الصناعات بيع كل ما يزيد عن أنشطتهم التجارية لجهات أخرى و جني دخل إضافي للمؤسسة التجارية.

و كمثال آخر، يمكن لهذا المبدأ أن يستخدم كأداة للعديد من المؤسسات غير الربحية عن طريق بيع ما يتبرع به المواطنون من أدوات ليسوا بحاجة لها فيما يعرف بمحلات " الأدوات المستعملة"  و لكن النظرة المجتمعية لهذه الفكرة سلبية و غير مرحب بها لاعتبارات اجتماعية و لكن يجدر الإشارة إلى فوائد هذا النوع من المشاريع و منها:

  • زيادة نسبة المواد المعاد استخدامها بين المواطنين ( أثاث، كتب، أدوات كهربائية).
  • زيادة الدخل المالي لهذه المؤسسات مما يزيد من أنشطتها الميدانية للمواطنين.
  • تغيير بعض العادات السلوكية بين المواطنين و تشجيع الاندماج و التعاون بين كافة أفراد المجتمع.

ثالثا: إعادة التدوير Recycle  

أشارت دراسات إلى أن نسبة إعادة التدوير في قطاع غزه 4.2 % لعام 2002 بمعدل 9 طن/يومياً يتم إعادة تدويرها بمبادرة فردية لبعض الصناعات المحلية. ترجع النسبة الضئيلة هذه إلى عدة عوامل منها:

 أولاً: غياب الدعم الحكومي لمشاريع إعادة التدوير.

ثانياً: عدم اهتمام عامة الشعب لهذه المشاريع و تقدير القيمة الاقتصادية لها. ففي حقيقة الأمر، و نتيجة لزيادة أسعار المواد الخام في الأسواق العالمية، فقد زادت أسعار بعض الأنواع من المخلفات لتصل إلى أكثر من 100دولار/ طن      ( فعلى سبيل المثال: سعر طن البلاستيك PET  250-300   دولار/طن، و سعر الورق المقوى (كرتون) يتراوح بين 240-260  دولار/طن)

و من هنا تنبع ضرورة الاهتمام بهذا النوع من المشاريع من أجل دفع العجلة الاقتصادية للقطاع. و من ناحية عملية يمكن أن يتم البدء بهذه المشاريع بإدارة عليا من البلديات و لكن عن طريق انشاء عدد من الشركات و خصخصتها من أجل تحقيق التنمية الاقتصادية و البيئية في آن واحد. 

في الختام و من خلال التحليل السابق يتضح أن قضية إدارة النفايات الصلبة تتطلب خطوة  مشتركة بين الدولة و الشعب عن طريق وضع أهداف واضحة و محددة المعالم و من ثم العمل على النهوض بالوضع البيئي في قطاع غزة.

Republished by Blog Post Promoter

Recycling Attitudes in Saudi Arabia: A Survey

recycling-bin-jeddahThe waste management and recycling industry in Saudi Arabia is underestimated source of income. The continued increase in population and industrial development in the Kingdom has increased individual waste generation manifolds in the past few decades. The shortage of recycling industries in Saudi Arabia cost around SR 40 billion. The focus of Saudi recycling industry is plastic, papers and metals. If recycling industry targeted only plastic and paper and metals they can meet the need of the Saudi market efficiently. According to Arab League, recycling industry can save over 500 million SR just from iron, paper and plastic waste. The distribution of recycling companies is manly in big cities which make sense for the huge expected amount of waste products. There are several recycling companies operating in the big cities such as Riyadh, Jeddah and Dammam.

The new orientation of Saudi Arabia as a country is toward the global investment as per Vision 2030 released by Chairman of the Council of Economic and Development Affairs Mohammad bin Salman bin Abdulaziz Al-Saud.  The envisioned industrial growth of Saudi Arabia emphasizes the need to adopt modern recycling practices and encourage recycling attitude in public. 

Recycling Attitude in Saudi Arabia

The government did its part by encouraging recycling industry and while I was searching I noticed that there are many recycling companies in the Kingdom.  The question is not why the recycling attitude is not active or obvious, rather than how to make it a daily habit? At the beginning, I did a personal interview with few people in their 50-60 years old about recycling and why they should do it? The answers were disappointing because of lack of knowledge and awareness. Then I thought to switch to the young generation who are more educated and knowledgeable.  

I did a short survey to get a sense of young generation recycling attitude in Saudi Arabia. The survey was addressed to the University students in the age group of 18-24 years. I asked about several issues and whether if they agree with the recycling act or not? And if there are recycling services nearby where they live? The survey showed that majority of people acknowledged the importance of recycling act and would like to contribute.  

charts-ecomena_page_1

The survey showed that 74% of the sample think that recycling is very important but 45% of them recycle their house waste sometimes, while 44% don’t recycle at all. The challenge for 50% of the people on survey sample was the lack of recycling containers near where they live. However, around 15% of the sample think that sorting material is difficult while 12% think that recycling is not important.  

charts-ecomena_page_2

Key Takeaways

It seems that majority of the young generation in Saudi Arabia accept the fact that recycling is a healthy choice and important to the environment but lack the facilities or containers other than embedding the attitude of recycling in their daily behavior. The need to embed the healthy recycling behavior is very important especially in this era of economic challenge. To enhance the recycling act, we should start from school to implant recycling importance in education. Although decision makers are predominantly from the older generation but discussing the present and future issues should be always directed to the young generation since they represent majority of the population in Saudi Arabia. As per latest data, the population of Saudi Arabia is 32,384,951, with median age of 28 years old and 15 person per km2 population density. The urban population represents 78% of Saudis with 1.5 percent growth rate.

charts-ecomena_page_3

The global issues associated with unbalanced environment should be more clear to the public. The global warming, the plastic virtual life, how many years until all these products degraded and do not affect the microflora and other creatures. The importance of diversity in creatures and soil, air, water microorganisms. Why we should care when we through stuff without sorting? Why recycling is a sign of high manners? All these questions and more should be answered and included in education.  

The other major step is to establish environmental center under the government supervision to provide containers and production lines. The step of environmental care center establishment should be accompanied with recycling industry business broadcasted on all sort of media. Social media such as Snapchat, Twitter, Facebook and Instagram became the broadcasting tool for the young generation. Using the media nowadays is necessity as a part of transparency. Applying transparency is an essential key to gain people trust and attention to their contribution toward any case. Making recycling attitude as an obvious contribution of people encourages them to continue the healthy act.  

Environmental Best Practices for MENA Cement Industry

Cement production in MENA region has almost tripled during the last 15 years, mainly on account of high population growth rate, rapid urbanization, increasing industrialization and large-scale infrastructural development. The growth of cement industry in MENA is marked by factors that are directly connected with sustainability, energy efficiency and raw material supply. Although the factors differ from country to country and cannot be generalized, there are major concerns regarding shortage of raw materials, GHG emissions, dependence on fossil fuels and lack of investment in technological innovations.

For the MENA cement sector, key points for an environment-friendly industry are use of alternative raw materials and alternative fuels, energy-efficient equipment and green technologies. As the use of alternative fuels and raw materials is still uncommon in the Middle East, guidelines and regulatory framework have to be defined which can set standards for the use of alternative or waste-derived fuels like municipal solid wastes, dried sewage sludge, agricultural wastes, drilling wastes etc.

Sewage Sludge

An attractive disposal method for sewage sludge is to use it as alternative fuel source in a cement kiln. Dried sewage sludge with high organic content possesses a high calorific value. Due to the high temperature in the kiln the organic content of the sewage sludge will be completely destroyed. The resultant ash is incorporated in the cement matrix. Infact, several European countries, like Germany and Switzerland, have already started adopting this practice for sewage sludge management.

The MENA region produces huge quantity of municipal wastewater which represents a serious problem due to its high treatment costs and risk to environment, human health and marine life. Sewage generation across the region is rising by an astonishing rate of 25 percent every year. Municipal wastewater treatment plants in MENA produce large amounts of sludge whose disposal is a cause of major concern.

For example, Kuwait has 6 wastewater treatment plants, with combined capacity of treating 12,000m³ of municipal wastewater per day, which produce around 250 tons of sludge daily. Similarly Tunisia has approximately 125 wastewater treatment plants which generate around 1 million tons of sewage sludge every year. Currently most of the sewage is sent to landfills. Sewage sludge generation is bound to increase at rapid rates in MENA due to increase in number and size of urban habitats and growing industrialization.

The use of sewage sludge as alternative fuel is a common practice in cement plants around the world, Europe in particular. It could be an attractive business proposition for wastewater treatment plant operators and cement industry in the Middle East to work together to tackle the problem of sewage sludge disposal, and high energy requirements and GHGs emissions from the cement industry.

Use of sludge in cement kilns will led to eco-friendly disposal of municipal sewage

Use of sludge in cement kilns will led to eco-friendly disposal of municipal sewage

Sewage sludge has relatively high net calorific value of 10-20 MJ/kg as well as lower carbon dioxide emissions factor compared to coal when treated in a cement kiln. Use of sludge in cement kilns can also tackle the problem of safe and eco-friendly disposal of sewage sludge. The cement industry accounts for almost 5 percent of anthropogenic CO2 emissions worldwide. Treating municipal wastes in cement kilns can reduce industry’s reliance on fossil fuels and decrease greenhouse gas emissions.

Municipal Solid Wastes and Biomass

Alternative fuels, such as refuse-derived fuels or RDF, have very good energy-saving potential. The substitution of fossil fuel by alternative sources of energy is common practice in the European cement industry. The German cement industry, for example, substitutes approximately 61% of their fossil fuel demand. Typical alternative fuels available in MENA countries are municipal solid wastes, agro-industrial wastes, industrial wastes and crop residues.

The gross urban waste generation quantity from Middle East countries has crossed 150 million tons per annum. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita solid waste generation. Solid waste disposal is a big challenge in almost all MENA countries so conversion of MSW to RDF will not ease the environmental situation but also provide an attractive fuel for the regional cement industry. Tens of millions of tyres are discarded across the MENA region each year. Scrap tyres are are an attractive source of energy and find widespread use in countries around the world.

Agriculture plays an important role in the economies of most of the countries in the Middle East and North Africa region.  Despite the fact that MENA is the most water-scarce and dry region in the world, many countries in the region, especially those around the Mediterranean Sea, are highly dependent on agriculture. Egypt is the 14th biggest rice producer in the world and the 8th biggest cotton producer in the world. Similarly Tunisia is one of the biggest producers and exporters of olive oil in the world. Such high biomass production rates should be welcomed by the cement industry since these materials comprise cotton stalks, rice husks and rice straw which serve ideally as alternative fuels. However it is ironical that olive kernels – the waste from Tunisian olive production – is exported to European power plants in order to save fossil fuel-derived CO2 emissions there, while Tunisia imports approximately 90% of its energy demand, consisting of fossil fuels.

Drilling Wastes as Alternative Raw Material

The reduction of clinker portion in cement affords another route to reduce energy consumption. In particular, granulated blast furnace slags or even limestone have proven themselves as substitutes in cement production, thus reducing the overall energy consumption. The Middle East oil and gas industry has made a lot of effort in order to reduce the environmental impact of their activities. The use of drilling wastes and muds is preferable in cement kilns, as a cement kiln can be an attractive, less expensive alternative to a rotary kiln. In cement kilns, drilling wastes with oily components can be used in a fuel-blending program to substitute for fuel that would otherwise be needed to fire the kiln.

Conclusions

The cement industry can play a significant role in the sustainable development in the Arab countries, e.g. by reducing fossil fuel emissions with the use of refused derived fuels (RDF) made from municipal solid waste or biomass pellets. The cement companies in the Middle East can contribute to sustainability also by improving their own internal practices such as improving energy efficiency and implementing recycling programs. Businesses can show commitments to sustainability through voluntary adopting the concepts of social and environmental responsibilities, implementing cleaner production practices, and accepting extended responsibilities for their products.  

The major points of consideration are types of wastes and alternative fuels that may be used, standards for production of waste-derived fuels, emission standards and control mechanisms, permitting procedures etc. Appropriate standards also need to be established for alternative raw materials that are to be used for clinker and cement production.

Republished by Blog Post Promoter

Waste-to-Energy Outlook for the Middle East

The high rate of population growth, urbanization and economic expansion in the Middle East is not only accelerating consumption rates but also increasing the generation rate of all sorts of waste. High-income Middle Eastern countries like Saudi Arabia, UAE, Qatar, Bahrain and Kuwait are counted as world’s largest waste producers in terms of per capita waste generation which is more than 2kg per day in some countries. The urban waste generation from the region has now crossed 150 million tons per year which has forced policy-makers and urban planners to look for sustainable waste management solutions, including recycling and waste-to-energy.

Let us take a look at solid waste generation in major countries across the Middle East region:

Country

MSW Generation

(million tons per annum)

Saudi Arabia

15

United Arab Emirates

6

Qatar

2.5

Kuwait

2

Bahrain

1.5

Egypt

20

Tunisia

2.3

Morocco

5

Lebanon

1.6

Jordan

2

In addition, huge quantity of sewage sludge is also generated in the Middle East which presents a serious problem due to its high treatment costs and risk to environment and human health. On an average, the rate of wastewater generation is 80-200 litres per person each day and sewage output is rising by 25 percent every year across the region.

Conversion Pathways

Municipal solid waste is a very good source of biomass in the Middle East. Municipal solid waste is comprised of organic fraction, paper, glass, plastics, metals, wood etc. Almost 50% of the solid waste is contributed by organic matter.

Municipal solid waste can be converted into energy by conventional technologies (such as incineration, mass-burn and landfill gas capture). Municipal solid waste can also be efficiently converted into energy and fuels by advanced thermal technologies, such as gasification and pyrolysis.

At the landfill sites, the gas produced by the natural decomposition of MSW is collected from the stored material and scrubbed and cleaned before feeding into internal combustion engines or gas turbines to generate heat and power. In addition, the organic fraction of MSW can be anaerobically stabilized in a high-rate digester to obtain biogas for electricity or steam generation.

Anaerobic digestion is the most preferred option to extract energy from sewage, which leads to production of biogas and organic fertilizer. The sewage sludge that remains can be incinerated or gasified/pyrolyzed to produce more energy. In addition, sewage-to-energy processes also facilitate water recycling.

Relevance for Middle East

The variety of technological options available means that waste-to-energy can be applied at a small, localized scale primarily for heat, or it can be used in much larger base-load power generation capacity whilst also producing heat. Waste-to-energy conversion can thus be tailored to rural or urban environments in the Middle East, and utilized in domestic, commercial or industrial applications in the entire region.

The world’s dependence on Middle East energy resources has caused the region to have some of the largest carbon footprints per capita worldwide. The GCC region is now gearing up to meet the challenge of global warming, as with the rapid growth of the waste management sector. During the last few years, UAE, Qatar and Saudi Arabia have unveiled multi-billion dollar investment plans to Improve waste management scenario. In particular, the establishment of Domestic Solid Waste Management Centre in Qatar has catalyzed public interest in deployment of waste-to-energy systems in the Middle East.

Energy recovery from MSW is rapidly gaining worldwide recognition as the fourth ‘R’ in sustainable waste management system – Reuse, Reduce, Recycle and Recover. A transition from conventional waste management system to one based on sustainable practices is necessary to address environmental concerns and to foster sustainable development in the region.

Republished by Blog Post Promoter

Solid Waste Management in Iraq

Iraq is one of the most populous Arab countries with population exceeding 32 million. Rapid economic growth, high population growth, increasing individual income and sectarian conflicts have led to worsening solid waste management problem in the country. Iraq is estimated to produce 31,000 tons of solid waste every day with per capita waste generation exceeding 1.4 kg per day. Baghdad alone produces more than 1.5 million tons of solid wastes each year.

Rapid increase in waste generation production is putting tremendous strain on Iraqi waste handling infrastructure which have heavily damaged after decades of conflict and mismanagement. In the absence of modern and efficient waste handling and disposal infrastructure most of the wastes are disposed in unregulated landfills across Iraq, with little or no concern for both human health and environment. Spontaneous fires, groundwater contamination, surface water pollution and large-scale greenhouse gas emissions have been the hallmarks of Iraqi landfills.

National Waste Management Plan

The National Solid Waste Management Plan (NSWMP) for Iraq was developed in 2007 by collaboration of international waste management specialist. The plan contains the recommendations for development and which explains the background for decisions. The key principles of waste strategy development in Iraq can be summarized as:

  • Sustainable development;
  • Proximately principles and self-sufficiency;
  • Precautionary principles;
  • Polluter pays principle;
  • Producer responsibility;
  • Waste hierarchy;
  • Best practicable environmental option.

The plan generally states that Iraq will build 33 environmentally engineered landfills with the capacity of 600 million m3 in all of the 18 governorates in Iraq by 2027. In addition to constructing landfills the plan also focuses on the collection and transportation, disposable, recycling and reuses systems. Social education was also taken into consideration to ensure provision of educational system which supports the participation of both communities and individuals in waste management in Iraq.

Besides Iraqi national waste management plan, the Iraqi ministry of environment started in 2008 its own comprehensive development program which is part of the ministry of environment efforts to improve environmental situation in Iraq. Ministry of Municipalities and Public Work, in collaboration with international agencies like UN Habitat, USAID, UNICEF and EU, are developing and implementing solid waste management master plans in several Iraqi governorates including Kirkuk, Anbar, Basra, Dohuk, Erbil, Sulaimaniya and Thi Qar.

Promising Developments

Kirkuk was the first city in Iraq to benefit from solid waste management program when foreign forces initiated a solid-waste management program for the city in 2005 to find an environmentally safe solution to the city’s garbage collection and disposal dilemma. As a result the first environmentally engineered and constructed landfill in Iraq was introduced in Kirkuk In February 2007. The 48-acre site is located 10 miles south of Kirkuk, with an expected lifespan of 10–12 years and meets both the U.S. Environmental Protection Agency and European Union Landfill Directive standards.

The Iraqi city of Basra also benefited from international aid with the completion of the first landfill that is compliant with international environmental standards has been completed. Basra solid waste management program developed by UNICEF will not only restore efficient waste collection systems in the citybut will also create informal “recycling schools” that will help in spreading environmental awareness in in the city’s society by launching a campaign to educate the public about effective waste disposal practices, in addition to that In the long term, the Basra city program plans to establish a regional treatment and disposal facility and initiate street sweeping crews. Basra city waste management program is part of the UNICEF program supported by the European Union to develop Iraq’s water and sanitation sector.

Erbil’s solid waste management master plan has also been developed by UNICEF with funding from the European Union. Recently a contract was signed by the Kurdistan Region's Ministry of Municipalities and Tourism and a Canadian company to recycle the city's garbage which will involve the construction of two recycling plants in the eastern and western outskirts of Erbil.

UNICEF has also developed a master plan to improve the management of solid waste in Dohuk Governorate which has been finalized in June 2011. Solid waste management master plans for Anbar, Sulaimaniya and Thi Qar governorates are also a part of UNICEF and EU efforts to attaining Iraq’s Millennium Development Goal targets of ensuring environmental sustainability by 2015.

Even though all of the effort by the international organizations are at local level and still not enough to solve solid waste management problem in Iraq, however these initiatives have been able to provide a much needed information regarding the size of the issue and valuable lessened learned used later by the Iraqi government to develop the Iraqi national waste management plan with the support of organizations such as UN Habitat, UNDG Iraq Trust Fund and USAID. The Iraqi national waste management plan is expected to ease the solid waste management problem in Iraq in the near future.

Republished by Blog Post Promoter

Overview of Composting Methods

The composting process is a complex interaction between the waste and the microorganisms within the waste. The microorganisms that carry out this process fall into three groups: bacteria, fungi, and actinomycetes. Actinomycetes are a form of fungi-like bacteria that break down organic matter. The first stage of the biological activity is the consumption of easily available sugars by bacteria, which causes a fast rise in temperature. The second stage involves bacteria and actinomycetes that cause cellulose breakdown. The last stage is concerned with the breakdown of the tougher lignins by fungi.

Types of Composting

The methodology of composting can be categorized into three major segments—anaerobic composting, aerobic composting, and vermicomposting.

In anaerobic composting, the organic matter is decomposed in the absence of air. Organic matter may be collected in pits and covered with a thick layer of soil and left undisturbed six to eight months. The compost so formed may not be completely converted and may include aggregated masses.

Aerobic composting is the process by which organic wastes are converted into compost or manure in presence of air and can be of different types. The most common is the Heap Method, where organic matter needs to be divided into three different types and to be placed in a heap one over the other, covered by a thin layer of soil or dry leaves. This heap needs to be mixed every week, and it takes about three weeks for conversion to take place.

The process is same in the Pit Method, but carried out specially constructed pits. Mixing has to be done every 15 days, and there is no fixed time in which the compost may be ready. Berkley Method uses a labor-intensive technique and has precise requirements of the material to be composted. Easily biodegradable materials, such as grass, vegetable matter, etc., are mixed with animal matter in the ratio of 2:1. Compost is usually ready in 15 days.

Vermicomposting involves use of earthworms as natural and versatile bioreactors for the process of conversion. It is carried out in specially designed pits where earthworm culture also needs to be done. Vermicomposting is a precision-based option and requires overseeing of work by an expert. It is also a more expensive option (O&M costs are high).

However, unlike the above two options, it is a completely odorless process making it a preferred solution in residential areas. It also has an extremely high rate of conversion, so quality of the end product is very high with rich macro and micronutrients. The end product also has the advantage that it can be dried and stored safely for a longer period of time.

 

Republished by Blog Post Promoter

Solid Waste Management in Qatar

Qatar is counted among the world’s fastest growing economies. Municipal solid waste management is one of the most serious challenges faced by this tiny Gulf nation on account of high population growth rate, urbanization, industrial growth and economic expansion. The country has one of the highest per capita waste generation rates worldwide which is as high as 1.8 kg per day. Qatar produces more than 2.5 million tons of municipal solid waste each year. Solid waste stream is mainly comprised of organic materials (around 60 percent) while the rest of the waste steam is made up of recyclables like glass, paper, metals and plastics.

Municipalities are responsible for solid waste collection in Qatar both directly, using their own logistics, and indirectly through private sector contract. Waste collection and transport is carried out by a large fleet of trucks that collect MSW from thousands of collection points scattered across the country.

The predominant method of solid waste disposal is landfilling. The collected is discharged at various transfer stations from where it is sent to the landfill. There are three landfills in Qatar; Umm Al-Afai for bulky and domestic waste, Rawda Rashed for construction and demolition waste, and Al-Krana for sewage wastes. However, the method of waste disposal by landfill is not a practical solution for a country like Qatar where land availability is limited.

Waste Management Strategy

According to Qatar National Development Strategy 2011-2016, the country will adopt a multi-faceted strategy to contain the levels of waste generated by households, commercial sites and industry – and to promote recycling initiatives. Qatar intends to adopt integrated waste hierarchy of prevention, reduction, reuse, recycling, energy recovery, and as a last option, landfill disposal. 

A comprehensive solid waste management plan is being implemented which will coordinate responsibilities, activities and planning for managing wastes from households, industry and commercial establishments, and construction industry. The target is to recycle 38 percent of solid waste, up from the current 8 percent, and reduce domestic per capita waste generation. Five waste transfer stations have been setup in South Doha, West Doha, Industrial Area, Dukhan and Al-Khor to reduce the quantity of waste going to Umm Al-Afai landfill. These transfer stations are equipped with material recovery facility for separating recyclables such as glass, paper, aluminium and plastic.

In this respect, one of the most promising developments has been the creation of Domestic Solid Waste Management Centre (DSWMC) at Mesaieed. This centre is designed to maximize recovery of resources and energy from waste by installing state-of-the-art technologies for separation, pre-processing, mechanical and organic recycling, and waste-to-energy and composting technologies. It will treat 1550 tons of waste per day, and is expected to generate enough power for in-house requirements, and supply a surplus of 34.4 MW to the national grid. 

The Way Forward

While commendable steps are being undertaken to handle solid waste, the Government should also strive to enforce strict waste management legislation and create mass awareness about 4Rs of waste management viz. Reduce, Reuse, Recycle and Recovery. Legislations are necessary to ensure compliance, failure of which will attract a penalty with spot checks by the Government body entrusted with its implementation.

Citizens can play a vital role in improving waste management scenario in Qatar by helping to reduce garbage generation and practicing source-segregation in households, offices etc. Being an influential Muslim country, the government may also take help of leading Islamic scholars to motivate the population to reduce per capita waste generation and conserve natural resources.

Improvement in curbside collection mechanism and establishment of material recovery facilities and recycling centres may also encourage public participation in waste management initiatives. When the Qatar National Development Strategy 2011-2016 was conceived, the solid waste management facility plant at Mesaieed was a laudable solution, but its capacity has been overwhelmed by the time the project was completed. Qatar needs a handful of such centers to tackle the burgeoning garbage disposal problem.

Republished by Blog Post Promoter

Women and the Environment in Arabia

Women and the environment are closely interlinked, throughout history, different nations glorified women as powerful symbols of nature, and nature has always been given the female characteristics: care, reproduction and life-giving. Nevertheless, women’s involvement in the preservation of the environment has seldom been recognized and documented in the histories of several nations.

One of the most significant phenomena in the last decades is recognition of women rights to achieve sustainable development; many international agreements reflected this recognition, including Rio Declaration in 1992, which stresses the point of the centrality of the full women participation to achieve environmental sustainability. The UN Conference on Sustainable Development in 2012 has acknowledged the importance of gender equality and women empowerment, the CBD identifies the integration of women right in biodiversity conservation as intrinsically vital. Linking gender equality and sustainable development is not only important for ethical and moral reasons, but also because achieving gender equality as human rights of women is prerequisite of a fair and sustainable globe and future.

Increasingly, achievement environmental sustainability is recognized as central to pursue development goals. It`s crucial that gender equality —a human right—is central to this pursuit. Worldwide, there is a perception that women are closer to nature than men, as women interact directly and more intensively with the natural surroundings more than their counterparts' men, which produced their profound experience, understanding and knowledge about the environment. Many studies on women and environment have shown that women are significant role player in natural resources management and ecological preservation. Women have served as farmers, water and firewood collectors and scientists with more respective and caring attitude.

The interesting dilemma about all is since women interact directly with the environment, and because of their roles as home-managers, they are often vulnerable to several environmental threats and hazards especially rural women in developing countries. The toxic environmental hazards may increase the risk of birth defects, abortion, perinatal death, and fetal growth retardation.

Women in Agriculture and Plant and Soil Conservation

Globally, women produce around half of all the grown food, women`s roles in agriculture include: planting, cultivation, production, weeding, distribution, harvesting and storage, women are also involved in animal farming such as rearing poultry and goat. Some examples of women role in agriculture in Arabia include rural women in the Jordan Valley, who have proved themselves in agricultural work and is now irreplaceable in various agricultural operations. In addition, women have participated in and led soil and plant conservation projects. A role model is the Royal Botanic Garden (RBG) of Jordan, led by its founder HRH Princess Basma bint Ali. The RBG aims to preserve plants and ecosystems, and promote biodiversity research and environmental education in Jordan.

Women in Forest Management and Tree Planting                                                

In many areas of the Arab world, natural resources, such as firewood, are the main source of energy for domestic consumption. Unfortunately, the extensive use of these sources has led to forests degradation and air pollution. At the same time, women are the main contributor in forest management through planting and protection. A good example is the campaign organized by the APN, represented by its President Razan Zeater, which has planted more than two million trees in Jordan and Palestine.

Women and Water Resources

Around the Middle East, women constitute the main group of direct users of water for household consumptions. Therefore, they are a mainstream interest group in water management to provide and safeguard their own water resources. Women involvement in water management is growing up, but not yet receiving the attention it deserves. To fill the gap, many programs are launched to empower women at all levels including research. Dr. Malak AlNory, a scientist and a winner of Ibn Khaldun fellowship, researched the supply chain for water in Saudi Arabia and was the first Saudi woman presented her paper at the IDA Congress in 2013.

Women and Waste Management

Women role in waste management include garbage disposal management and research. Dr.Sumaya Abbas, a Bahraini engineer and a winner of L'Oréal-UNESCO For Women In Science Fellowship, works on waste management and waste transformation into energy. “Because oil and gas resources are depleting, we are looking at alternatives sources of energy, and waste is one of them ” she clarifies.

Women and Energy

Worldwide, many people lack access to modern, clean energy, which has a huge impact on general quality of life. Rural women devote much of their time as fuel gatherers. Additionally, women work on projects to produce energy. An excellent model is the Jordanian brave Bedouin Rafea, who decided to challenge gender roles in her Bedouin community and followed her aspirations to light up her underprivileged village by enrolling in a solar program in India. Rafea has not only become the first female solar engineer in Jordan, but she has also set up 80 small-scale solar systems, helping her village to become solar-powered. Today Rafea is a role model, an elected leader and training many others on how to use sustainable energy.

Women and Policy

There is growing evidence of the synergies between gender equality and environmental sustainability. While women participation is vital, their involvement in policy-making aimed at sustainability does not mean better gender equality, especially when the foundations of gender inequality remain unchanged. Governments and donor agencies target women as influential agents for green transformation.

However, such stereotypical assumptions which view women as “sustainability saviors” have risks, as it's based on the assumption that women are unlimited resource that can sustain environments without consideration of women’s health, time, knowledge, interests and opportunities. Thus, women’s involvement in policy-making focused only at sustainability doesn't mean better gender equality; on the contrary, increase of women’s already heavy unpaid work burdens without consideration of their benefits in advantage to the environment can worsen gender inequalities and power imbalances.

Conclusions

Despite the challenges, this is a time of great opportunity for Arab women.  Worldwide, there are many examples of alternative pathways that move towards environmental sustainability and gender equality synergistically, which means respect for women knowledge, capabilities and rights, while ensuring that roles are matched with rights, control over resources and decision-making power.

 

References

  1. Wuyep, Solomon Z. et al "Women Participation in Environmental Protection and Management: Lessons from Plateau State, Nigeria." American Journal of Environmental Protection, n.d. Web. 2014.
  2. Yalan, Zhu. Women’s Participation in Environmental Protection Organizations—A Qualitative Study of Australian Women’s Involvement in Green Non-Governmental Organizations. Diss. D the Graduate School of Beijing Foreign Studies U, 2007. N.p.: n.p., n.d. Print.
  3. Chelala, Cesar. "Women's Role Key to Saving Environment." China Daily. N.p., 2011. Web. 27 July 2015.
  4. "Women, Environment and Sustainable Development: Making the Links." UNEP (n.d.): n. pag. Web. <http://www.unep.org/civilsociety/Portals/24105/documents/publications/Women%20and%20the%20environment/ChapterTwo.pdf>.
  5. The Environment and Women's Health (n.d.): n. pag. Web. <http://www.womenshealth.gov/publications/our-publications/fact-sheet/environment-womens-health.pdf>.
  6. JACKSON, CECILE. "Doing What Comes Naturally? Women and Environment in Development." World Development. N.p., n.d. Web. http://josiah.berkeley.edu/2007Fall/ER275/Readings/DP3/jackson-GAD-1993.pdf.
  7. Schultz, . Irmgard.et al  "Research on Gender, the Environment and Sustainable Development." N.p., n.d. Web. <ftp://ftp.cordis.europa.eu/pub/eesd/docs/wp1_endversion_complete.pdf>.
  8. UN Documents. Beijing Platform for Action. Chapter IV. K. Women and the Environment, n.d. Web. 26 July 2013. http://www.un-documents.net/bpa-4-k.html
  9. "Gender and Sustainable Development." (2014): n. pag. The Research and Data Section of UN Women. Web..
  10. "Postural Synergies: Gender Equality, Economic Development and Environmental Sustainability." SpringerReference (2012): n. pag. UNDP. Web.
  11. "For Women, It's Personal." Water.org. N.p., n.d. Web. 31 July 2015.
  12. "WEDO » NEW Article: "Women and Energy Access: Impact on Sustainable Development and Livelihoods"" WEDO RSS. N.p., n.d. Web. 31 July 2015
  13. "Sustainable Energy." (2010): n. pag" http://www.ashden.org/files/pdfs/reports/DFID-Energia-Ashden-Report-Public-Summary-Feb-2015.pdf"
  14. Rafea: Solar Mama. Dir. Jehane Noujaim and Mona Eldaief. Perf. Rafea, Rouf Dabbas, Um Bader. N.p., 2014. Web. <https://www.youtube.com/watch?v=ON_NQ1HnRYs>.
  15. Sarant, Louise. "L'Oreal-UNESCO Recognises Exceptional Arab Women Scientists." – News. Nature Middle East, 9 Feb. 2013. Web. 31 July 2015. <http://www.natureasia.com/en/nmiddleeast/article/10.1038/nmiddleeast.2013.20>.
  16. http://ccwce.mit.edu/Ibn-Khaldun-Fellowship <2015>.
  17. www.rbg.org.jo

Republished by Blog Post Promoter