Community Engagement in Recycling Initiatives in Qatar

The current state of environmental custodianship in Qatar leaves much to be desired from the national government and other institutions that publicly endorse initiatives with much fan-fare but do not commit to sustained action. My previous piece titled “Environmental Initiatives in Middle East – Challenges and Remedies” illuminated some of these gaps, but did not provide a detailed description of what underpins this trend and possible solutions might look like. Thus, this article seeks to delve deeper into how state institutions and civil society in Qatar may be able to work cooperatively in staving off further environmental degradation, especially with regards to waste management and recycling.

I believe that real success will be achieved through popular buy-in and a paradigm shift towards recognizing the interconnectedness of humans with their surroundings, which can be encouraged through education. Perhaps more importantly, there needs to be a public acknowledgement that all individuals residing in Qatar have a vested interest in pushing for greater environmental protection enforcement and accountability. In a region that is already faced with a lack of potable water and arable land, allowing the existing course to be maintained is not only risky, it is flat-out dangerous to the nation’s survival.

An Uphill Battle, But a Necessary One

Individuals that either live in or visited a Gulf Cooperation Council (GCC) nation, especially a hydrocarbon-rich rentier state like Qatar, are probably quite familiar with the inadequacies of current recycling initiatives. As someone who has visited the country on three different occasions I can tell you that I have searched high and low for something resembling a recycling bin, can, or other receptacle but to no avail, save for a few located in Education City. One might imagine this to be exceptionally jarring coming from the hyper-attentive, green-obsessed Washington, DC where trash and recycling cans typically are placed together on streets and in buildings.

Further adding to my chagrin is the apparent disconnect between high level, widely publicized recycling improvements and the realities (and consequences) manifesting among general society. For example, last year there was much excitement surrounding the announcement of upcoming environmental reforms in July 2014, but it appears nothing further came to fruition.

The article touches upon some of the apparent hindrances for recycling programs and other environmental initiatives: bureaucracy; paperwork; budgetary constraints. I would add to this list based upon personal experiences: general apathy towards recycling; inaccessibility of bins; perception of additional costs to conducting business.

Fair enough – I acknowledge that some of these issues are out of citizens’ and expats’ hands, but that is no excuse for giving up. The predicted 6.8% GDP growth spurred by the upcoming 2022 FIFA World Cup and hydrocarbon exports will surely put further pressure on an already fragile ecosystem and lead to an uptick in waste production. This is not meant to stoke unnecessary fear, but the equation here is straightforward; more people present in Qatar, more trash will be created from residential and commercial zones. As noted by fellow EcoMENA contributor, Surya Suresh, the nation presently possesses one solid waste facility at Mesaieed and three landfills devoted to particular items, which now seem to be overwhelmed by growing waste inputs.

Possible Solutions: Personal and Community Action

Given this lag in state responses to the existing recycling crisis and future issues stemming from it, readers may be asking what they can do to help. At the personal level, I would encourage Qatari residents, as well as others in neighboring nations, to begin with educating themselves about the current state of recycling initiatives and conducting an inventory of their daily waste generation. EcoMENA website offers a variety of informative pieces and external resources useful to individuals seeking more information.

My latter point about doing a personal inventory is about consciousness-raising about how we each contribute to a wider problem and identifying means of reducing our impact on the environment. Examples from my own life that I believe are applicable in Qatar include counting the number of plastic bags I used to transport groceries and replacing them with a backpack and reusable bags. I also frequently re-appropriate glass jars for storing items, such as rice, spices, and coffee – make sure to wash them well before reuse! It has taken me several years to get to past the social stigmas surrounding reusing containers and to cultivate the future planning to bring my reusable bags with me, but knowing my actions, aggregated with those of my friends and family, positively affect the environment is quite rewarding and reinforces good behavior. Give it a shot and see what happens.

Furthermore, it may be beneficial for the community at large to begin discussing the topic of recycling and what they would like to see, rather than solely wait on state agencies to address issues. Doing so could initially be formulated on a level that many Qatari residents are probably most familiar with: their place of employment, apartment, or neighborhood. After all, if individuals, specifically employers, are expected to bear the increased costs associated with improved recycling then an understanding of what people want is necessary in hopefully resolving issues effectively and with greater community enthusiasm.

Because of the nature of nation-states’ institutions typically being reactive entities and incapable of being aware of every societal problem, it is up to community-level groups to voice their concerns and be committed to change. Organizations such as the Qatar Green Building Council and the Qatar Green Leaders, offer a variety of informative pieces and training services that may help in establishing dialogues between groups and the government. Perhaps this is too idealistic right now, but Qatari residents have organized popular support for other initiatives, notably in the initial pilot recycling program in 2012. Now let us make that a sustained commitment to recycling!

 

References

  1. Andrew Clark, “Environmental Initiatives in Middle East – Challenges and Remedies,” on EcoMENA.org, http://www.ecomena.org/environment-middle-east/.
  2. Doha News Staff, “Official: New, Sorely Needed Recycling Policies in Qatar Afoot,” on Dohanews.co, http://dohanews.co/official-new-sorely-needed-recycling-policies-in/.
  3. Qatar National Bank, “Qatar Economic Insight 2013,” on www.qnb.com.qa  
  4. Surya Suresh, “Waste Management Outlook for Qatar,” http://www.ecomena.org/waste-qatar/
  5. Doha News Staff, “Responding to Community Calls, Qatar Rolls Out Pilot Recycling Program,” http://dohanews.co/responding-to-community-calls-qatar-rolls-out-pilot/.

Republished by Blog Post Promoter

New Fines for Littering in Bahrain

Littering is a common phenomenon both in urban and rural areas of Bahrain. Streets, sidewalks, parking lots, roads and highways are mostly covered with food wrappers, soft drink and water bottles, plastic bags, handbills, cigarette butts, tissues, papers etc. Litter has the potential to cause harm to human health, safety, welfare as well as the environment. Littering can be a fire hazard and it attracts pests and rodents. Litter also cause accidents on roads as drivers avoid litter on road. Litter also harm plants, vegetation and natural areas. The temptation to ‘litter’ is usually motivated by disrespect to the law and its enforcement as well as ignorance and arrogance in our attitude, thinking that municipalities will clean our mess.

There are several factors that may impact on littering behaviour including inconvenience and laziness, absence of ownership or pride for the area, feeling that someone else will pick it up, number, placement and appearance of litter bins at or near the site, absence of realistic penalties, enforcement of legislation, lack of social pressure and lack of knowledge of the environmental impacts of littering.

New Littering Fines in Bahrain

The local authorities in Bahrain have now taken cognizance of the situation. Now littering on Bahrain's roads could carry fines of up to BD300 if a new draft law is passed by parliament. The National Cleanliness Law was approved by the Capital Trustees Board last week and includes tougher punishments for dumping waste, leaving animal faeces on the streets, and disposing of medical or hazardous substances in public. The new law will give more judicial power to the municipal officials to penalize the offenders.

Under the existing law which is almost three decades old, offenders are fined only BD10 for littering. However, if the new rules are implemented, then fines for minor offences will range between BD100 and BD300 and for serious offences will be between BD500 and BD1,000.

Capital Trustees Board chairman has very rightly mentioned that ‘Dumping and littering have become a habit for a number of people and it needs immediate action, especially with fines not matching the offences. The fines once imposed will be monitored by the Capital Trustees Authority, and Bahrain's three other municipalities.

Thus, dumping and littering whether on main roads or neighborhoods, on pavements or alleys, at beaches or wasteland are prohibited. Also, dumping anything that may obstruct traffic or prevent people from movement is illegal whether it is garden waste, construction waste, furniture, vehicles or any other materials.

Conquering Litter

Litter can be conquered. People can make a difference. It is our responsibility to clean up the litter in an ‘earth-friendly manner.’ Clean communities have a better chance of attracting new business, residents and tourists. There is no reason for any of us to litter because we can always find a litter bin to throw the trash away.

Let us set an example for others, especially children, by not littering and by carrying a litterbag in our vehicle, securely covering trash containers to prevent wind or animals from spreading litter, when visiting parks and recreation areas make sure to leave the area clean for the next person to enjoy and restricting the distribution and disposal of handbills.

Republished by Blog Post Promoter

Waste Management Implications of 3D Printing

The rapid deployment of 3D printing is one of the most exciting developments since the appearance of the smart phone. This is technology with some serious potential to change how and where goods are manufactured, transforming supply chains. The New Scientist has gone so far as to herald 3D printing, also known as additive manufacturing, as ushering in a second industrial revolution. But is anyone thinking about how what this new development means for the waste sector?

Whilst the technology is already being put to some dubious uses, the ability to manufacture pretty much anything wherever and whenever it’s needed is certainly appealing. Interest isn’t confined to those frustrated inventors whose imaginations have been constrained by the tools they can fit in the garden shed; there’s likely to be take-up from businesses, householders – and even space agencies, apparently.

Insights into 3D Printing

By building up layer upon layer of material, a 3D printer can produce objects to any pattern, up to the maximum size it can handle. However, the applications to which these objects can be put to may be limited by the physical properties of the materials that will inputted in to 3D printers – the equivalent of the ink in the printers we’re all familiar with. Clearly, you can’t print a toaster if your 3D printer only uses plastic – but an oven knob, or even a wind-powered robot with dozens of moving parts, is no problem.

A quick scan of 3dprinter.net helpfully outlines the different methods 3D printers are able to deploy, which I’ve summarised here. Each appears to require its own TLA (Three Letter Acronym). Perhaps in the future terms such as Stereolithography (SLA), Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS) and PolyJet photopolymer will become as ubiquitous as DVD and VHS have been in the past. Each of these techniques is compatible with a selection of materials, primarily plastics – but some are able to use metals, ceramics or even play-dough.

Environmental Implications

Moving significant amounts of manufacturing away from factories (predominately in Asia) to our own door steps will no doubt have profound impacts on the balance of goods and services across the globe. The economic and social implications of the technology have the potential to be significant– as do the environmental implications.

There is potential for greenhouse gas emissions savings from reduced shipping – not just cutting the number of products that make the long journey across the seas from China, but also reducing road freight. Fewer trucks on the motorways could be one of the unexpected effects 3D printing. But what are the waste management issues associated with mass deployment such technologies. And if we are future gazing, is their deployment consistent with the ‘zero waste economy’ envisaged by governments across the Middle East?

For those who haven’t yet thought too hard about what the technology is; think of it like the ‘replicator’ devices as featured in Star Trek. The replicator was a machine capable of creating objects by voice command, from what appeared to be thin air. 3D printing is only a shade less magical.

Waste Management Perspectives

3D printing is something of a double-edged sword when it comes to waste. It creates new recycling problems, but has considerable potential to help prevent waste. It could even be an outlet for recycled plastics. The opportunity for DIY repairs, especially to everyday items that we might otherwise decide were uneconomic to fix, appears enormous.

But with the higher profile that waste management has these days, I feel that we ought to be making 3D printing the first technology to be designed with recycling in mind. The waste management industry is a service industry; and typically it has had to adapt retrospectively to technology changes that it has not been able to influence. After more than a decade, we’re still catching up with the introduction of plastic milk bottles in lieu of glass. But this reactive approach clearly isn’t the best way to achieve a zero waste economy.

3D printing offers numerous challenges and opportunities to the waste management industry. As we, as a society, become more aware of material security, I’d suggest that the best approach would be for the waste management industry to engage positively with the designers and manufacturers of the 3D printing devices, trying to identify opportunities to ensure that the circular economy doesn’t become an afterthought.

The most appealing possibility would be if the machines could recycle waste polymers themselves, and re-use them as feedstock. Could we see a scenario where the machines become the recycling facility, thus greatly reducing the need for even the print medium to be transported? Bringing the nascent 3D printing industry together with experts in waste management could help to make this new technology contribute to rather than challenge our ambitions for a zero waste economy.

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original article can be viewed at http://www.isonomia.co.uk/?p=2512

Republished by Blog Post Promoter

Guide to Green Shopping

With the advent of December, many festivities, celebrations and seasonal parties are planned globally. These events require feverish shopping leading to usage and wastage of more resources. In addition, December is also famous for the shopping mania that grips people from all walks of life. ‘Shopping’ is certainly one of the most famous ‘indoor sport’ being practiced equally by people of developed and developing countries depending on their life style and budget and is mainy being done by the female gender.

‘Going green’ is a way forward for all of us as it is a life style change including improving our shopping and purchasing habits so that the additional environmental burden can be reduced. The market forces, industries, manufacturers are supported by extensive media and marketing campaigns which lure us to buy more and unnecessary commodities.

The responsibility of environmental stewardship lies on us to control and behave and move to ‘green shopping’ altering our pampered purchasing habits. Start by auditing your lifestyles and shopping list and see where improvement can be achieved to reduce pollution.

Being a green consumer we need to conserve resources, save  energy, and prevent waste by buying  products that are energy efficient, are used or reusable, made with  recycled content or are  recyclable and have no  or less packaging.

Green shopping involves learning how to buy smartly and keeping environmental considerations in mind. Here are some useful eco-friendly shopping tips:

  • Check if the item is ‘really’ or ‘urgently’ required. May be you do not have an immediate use or can postpone it to any later date.
  • Check what quantity and content of the item is required and for what duration?
  • What are the alternatives to the item in terms of cost, size, number etc?
  • Buy durable products instead of disposable items. Buy things which last longer and can be reused like rechargeable batteries and avoiding plastic cutlery and plates.
  • Avoid excess packaging. Look for products that have less packaging or buy in bulk meaning less garbage generation, disposal and transportation.  
  • Share items with friends. Another way to save resources and energy is to swap and exchange with friends and family instead of buying brand-new products. This includes sharing video games, CDs, DVDs etc. instead of individuals owning them.
  • Buy energy-efficient appliances and electronic items and promote energy-efficient products.
  • Buying useful presents and gifts aiming at its use and not cost.
  • Select items made with recycled-content materials.
  • When selecting between two similar products, go for the one you can re-use or re-fill later, or the one that hasn't wasted resources on a wrapper you'll throw away as soon as you get home.
  • Buy sustainable products which have the ability to be produced (over and over again) without doing much harm to the environment.
  • Buy locally made or grown food. Local foods are fresher and keep local farmers in business, while avoiding the pollution caused by transporting products around the country or region.

Let us inspire ourselves to live a greener more environmentally friendly, healthy and sustainable lifestyle.

Become a Green Shopper. Explore, Enjoy and Make A Difference! 

Republished by Blog Post Promoter

Environmental Best Practices for MENA Cement Industry

Cement production in MENA region has almost tripled during the last 15 years, mainly on account of high population growth rate, rapid urbanization, increasing industrialization and large-scale infrastructural development. The growth of cement industry in MENA is marked by factors that are directly connected with sustainability, energy efficiency and raw material supply. Although the factors differ from country to country and cannot be generalized, there are major concerns regarding shortage of raw materials, GHG emissions, dependence on fossil fuels and lack of investment in technological innovations.

For the MENA cement sector, key points for an environment-friendly industry are use of alternative raw materials and alternative fuels, energy-efficient equipment and green technologies. As the use of alternative fuels and raw materials is still uncommon in the Middle East, guidelines and regulatory framework have to be defined which can set standards for the use of alternative or waste-derived fuels like municipal solid wastes, dried sewage sludge, agricultural wastes, drilling wastes etc.

Sewage Sludge

An attractive disposal method for sewage sludge is to use it as alternative fuel source in a cement kiln. Dried sewage sludge with high organic content possesses a high calorific value. Due to the high temperature in the kiln the organic content of the sewage sludge will be completely destroyed. The resultant ash is incorporated in the cement matrix. Infact, several European countries, like Germany and Switzerland, have already started adopting this practice for sewage sludge management.

The MENA region produces huge quantity of municipal wastewater which represents a serious problem due to its high treatment costs and risk to environment, human health and marine life. Sewage generation across the region is rising by an astonishing rate of 25 percent every year. Municipal wastewater treatment plants in MENA produce large amounts of sludge whose disposal is a cause of major concern.

For example, Kuwait has 6 wastewater treatment plants, with combined capacity of treating 12,000m³ of municipal wastewater per day, which produce around 250 tons of sludge daily. Similarly Tunisia has approximately 125 wastewater treatment plants which generate around 1 million tons of sewage sludge every year. Currently most of the sewage is sent to landfills. Sewage sludge generation is bound to increase at rapid rates in MENA due to increase in number and size of urban habitats and growing industrialization.

The use of sewage sludge as alternative fuel is a common practice in cement plants around the world, Europe in particular. It could be an attractive business proposition for wastewater treatment plant operators and cement industry in the Middle East to work together to tackle the problem of sewage sludge disposal, and high energy requirements and GHGs emissions from the cement industry.

Use of sludge in cement kilns will led to eco-friendly disposal of municipal sewage

Use of sludge in cement kilns will led to eco-friendly disposal of municipal sewage

Sewage sludge has relatively high net calorific value of 10-20 MJ/kg as well as lower carbon dioxide emissions factor compared to coal when treated in a cement kiln. Use of sludge in cement kilns can also tackle the problem of safe and eco-friendly disposal of sewage sludge. The cement industry accounts for almost 5 percent of anthropogenic CO2 emissions worldwide. Treating municipal wastes in cement kilns can reduce industry’s reliance on fossil fuels and decrease greenhouse gas emissions.

Municipal Solid Wastes and Biomass

Alternative fuels, such as refuse-derived fuels or RDF, have very good energy-saving potential. The substitution of fossil fuel by alternative sources of energy is common practice in the European cement industry. The German cement industry, for example, substitutes approximately 61% of their fossil fuel demand. Typical alternative fuels available in MENA countries are municipal solid wastes, agro-industrial wastes, industrial wastes and crop residues.

The gross urban waste generation quantity from Middle East countries has crossed 150 million tons per annum. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita solid waste generation. Solid waste disposal is a big challenge in almost all MENA countries so conversion of MSW to RDF will not ease the environmental situation but also provide an attractive fuel for the regional cement industry. Tens of millions of tyres are discarded across the MENA region each year. Scrap tyres are are an attractive source of energy and find widespread use in countries around the world.

Agriculture plays an important role in the economies of most of the countries in the Middle East and North Africa region.  Despite the fact that MENA is the most water-scarce and dry region in the world, many countries in the region, especially those around the Mediterranean Sea, are highly dependent on agriculture. Egypt is the 14th biggest rice producer in the world and the 8th biggest cotton producer in the world. Similarly Tunisia is one of the biggest producers and exporters of olive oil in the world. Such high biomass production rates should be welcomed by the cement industry since these materials comprise cotton stalks, rice husks and rice straw which serve ideally as alternative fuels. However it is ironical that olive kernels – the waste from Tunisian olive production – is exported to European power plants in order to save fossil fuel-derived CO2 emissions there, while Tunisia imports approximately 90% of its energy demand, consisting of fossil fuels.

Drilling Wastes as Alternative Raw Material

The reduction of clinker portion in cement affords another route to reduce energy consumption. In particular, granulated blast furnace slags or even limestone have proven themselves as substitutes in cement production, thus reducing the overall energy consumption. The Middle East oil and gas industry has made a lot of effort in order to reduce the environmental impact of their activities. The use of drilling wastes and muds is preferable in cement kilns, as a cement kiln can be an attractive, less expensive alternative to a rotary kiln. In cement kilns, drilling wastes with oily components can be used in a fuel-blending program to substitute for fuel that would otherwise be needed to fire the kiln.

Conclusions

The cement industry can play a significant role in the sustainable development in the Arab countries, e.g. by reducing fossil fuel emissions with the use of refused derived fuels (RDF) made from municipal solid waste or biomass pellets. The cement companies in the Middle East can contribute to sustainability also by improving their own internal practices such as improving energy efficiency and implementing recycling programs. Businesses can show commitments to sustainability through voluntary adopting the concepts of social and environmental responsibilities, implementing cleaner production practices, and accepting extended responsibilities for their products.  

The major points of consideration are types of wastes and alternative fuels that may be used, standards for production of waste-derived fuels, emission standards and control mechanisms, permitting procedures etc. Appropriate standards also need to be established for alternative raw materials that are to be used for clinker and cement production.

Republished by Blog Post Promoter

Solid Waste Management in the Middle East – Major Challenges

Middle East is one of the most prolific waste generating regions of the world. Lavish lifestyle, ineffective legislations, infrastructural roadblocks, indifferent public attitude and lack of environmental awareness are the major factors responsible for growing waste management problem in the Middle East. High standards of living are contributing to more generation of waste which when coupled with lack of waste collection and disposal facilities have transformed ‘trash’ into a liability.

Major Hurdles

The general perception towards waste is that of indifference and apathy. Waste is treated as ‘waste’ rather than as a ‘resource’. There is an urgent need to increase public awareness about environmental issues, waste management practices and sustainable living. Public participation in community-level waste management initiatives is lackluster mainly due to low level of environmental awareness and public education. Unfortunately none of the countries in the region have an effective source-segregation mechanism.

Solid waste management in the Middle East is bogged down by deficiencies in waste management legislation and poor planning. Many countries lack legislative framework and regulations to deal with wastes. Insufficient funds, absence of strategic waste management plans, lack of coordination among stakeholders, shortage of skilled manpower and deficiencies in technical and operational decision-making are some of the hurdles experienced in implementing an integrated waste management strategy in the region. In many countries waste management is the sole prerogative of state-owned companies and municipalities which discourage participation of private companies and entrepreneurs.

Though Islam put much stress on waste minimization, Arab countries are among the world’s highest per capita waste generator which is really unfortunate. Due to lack of garbage collection and disposal facilities, dumping of waste in open spaces, deserts and water bodies is a common sight across the region. Another critical issue is lack of awareness and public apathy towards waste reduction, source segregation and waste management.

A sustainable waste management system demands high degree of public participation, effective legislations, sufficient funds and modern waste management practices/technologies. The region can hope to improve waste management scenario by implementing source-segregation, encouraging private sector participation, deploying recycling and waste-to-energy systems, and devising a strong legislative and institutional framework.

Silver Lining

In recent year, several countries, like Qatar and UAE, have established ambitious solid waste management projects but their efficacy is yet to be ascertained. On the whole, Middle East countries are slowly, but steadily, gearing up to meet the challenge posed by waste management by investing heavily in such projects, sourcing new technologies and raising public awareness. However the pace of progress is not matched by the increasing amount of waste generated across the region. Sustainable waste management is a big challenge for policy-makers, urban planners and other stake-holders, and immediate steps are needed to tackle mountains of wastes accumulating in cities throughout the Middle East.

Republished by Blog Post Promoter

Waste Management Perspectives for Egypt

Egypt occupies 7th position in the list of countries with the most mismanaged plastic waste, according to a recent report published in Science magazine. The report was based on data collected in 2010 and one must wonder whether the results of the report would have been different if the zabbaleen had been allowed to continue their work unhindered.

A History of the Zabbaleen

The zabbaleen, or garbage collectors, are the descendants of farmers from Upper Egypt who moved to Cairo in the 1940s. Together with another migrant group, they have made a living in Cairo collecting, sorting, salvaging, and recycling the waste of the city's nearly 20 million residents. With the help of NGOs, the zabbaleen recycled up to 80% of the waste they collected, more than three times the amount of waste recycled by garbage collectors in major cities in developed nations. The zabbaleen collected the garbage free of charge; they were part of Cairo's informal public sector. Their work was not supported by the government. Their income came from selling the recyclable material and from the pigs they raised on the organic waste. Many residents also gave monetary tips to the garbage collectors. This meager income barely supported the zabbaleen, who live together in different settlements around the city, all of them extremely poor.

Believing the zabbaleen's system to be backwards and unhygienic, in 2003, the government sold contracts to three multinational companies (and one local company) to collect Cairo's waste, pushing the zabbaleen out of the system. These companies were required to recycle only 20% of the waste collected, the other 80% making its way to landfills. It did not take long for residents to complain about this new service. They now had to pay for their garbage collection and that did not include door-to-door pick-up. There were not enough bins in the streets to hold all the waste and streets quickly filled with the overflowing garbage. The new companies simply could not keep up with the waste being produced. Not only did this have a devastating effect on the waste management situation in Cairo, it destroyed the zabbaleen's way of life as they lost access to the garbage that was the foundation of their economic activities. At one point, the private companies realized they needed the zabbaleen and tried to subcontract them, but the zabbaleen were highly underpaid and the system failed. Some residents, though, continued to hire the zabbaleen on their own.

Adding to both the city's garbage woes and the plight of the zabbaleen, in 2009, in response to the H1Ni influenza outbreak, the government ordered the culling of all the zabbaleen's pigs. These pigs were an essential part of the zabbaleen's recycling program. The pigs consumed all of the organic waste that was sorted from the garbage. When they lost their pig herds, the zabbaleen stopped collecting organic waste and the effect was felt almost immediately. Again, residents complained about the trash piling up on the streets. The trash piles became home to rats and disease. And once again, the zabbaleen suffered as they were no longer able to earn enough money to support themselves and had lost an important food source.

Change is in the Air

Since the 2011 revolution, many changes have taken place in Egypt, spurred on by environmentally-minded individuals, small businesses, and new government ministers. One of the more hopeful changes involves the collection of garbage. The government has finally implemented a proposal for officially employing the zabbaleen, replacing the international companies with smaller zabbaleen-run companies. Once registered, the local companies are given uniforms, government vehicles and business training from an NGO. The system had a test-run and debuted in a few areas late last year. If successful, there are plans to expand over the next two years. This is good news for Cairo's waste management and even better news for the zabbaleen.

Other private-sector initiatives are tackling recycling as well.  Recyclobekia is a new company that offers electronic waste recycling services. The company collects, sorts, and dismantles e-waste – old laptops, computers, cameras, phones, and more – and in return companies and individuals are given credit for an online shop or even cash if they recycle more than 500 kg of waste. GreenTec is an exciting recycling initiative that offers Automated Recycling Machines. With these machines, individuals can deposit their plastic water bottles and receive credit for their mobile phones. Another new venture coming out of Cairo is Refuse, a company that upcycles plastic bags and creates backpacks, tote bags, laptop covers, and other accessories with this waste. They also offer workshops to teach others how to upcycle.  Gamayit El-Misbah El-Mudii, started in 2005, provides free collection and recycling of paper, plastic, glass, and other items. They collect from individuals, schools, and businesses. Resala, a charity organization, also offers recycling services. As these initiatives and companies continue to grow, so will the awareness and action of individuals in terms of waste management and recycling.

Individual Action

While our local and national authorities attempt to improve the collection and recyling of our waste at the city level, it is important to remember that we as individuals can do a lot as well. The first and simplest action we can take it to sort our trash into organic and non-organic waste. Our garbage collectors, whoever they may be, will appreciate this effort and it will keep any paper or board waste clean so that it can be recycled. Once you've sorted your trash, make sure it's getting recycled. If the zabbaleen do not collect in your area, contact one of the organizations listed above. The most important action we can take is to reduce the amount of waste we are creating in the first place. Less waste produced means less waste needing to be managed. We can start by refusing to use or purchase disposable plastic. Bring your own reusable bags to the supermarket so that you don't need the plastic ones. Invest in a water filter and a reusable bottle so you can drink your tap water and skip the plastic water bottles. Avoid buying food packaged with polystyrene; it's not recyclable. Read this guide to a plastic-free life and search other websites for tips and ideas on reducing plastic waste. You'll find that most of the suggestions will be better for your health and the health of our environment, and at the same time, save you money. If we all do our part by taking these steps, perhaps Egypt won't make the top ten list of worst plastic offenders again.

Republished by Blog Post Promoter

Wastes as Energy Resource

The tremendous increase in the quantum and diversity of waste materials generated by human activities has focused the spotlight on waste management options. Waste generation rates are affected by standards of living, degree of industrialization and population density. Generally, the greater the economic prosperity and the higher percentage of urban population, the greater the amount of waste produced. A good example are the oil-rich GCC nations who are counted among the world's most prolific per capita waste generators.

Reduction in the volume and mass of wastes is a crucial issue due to limited availability of final disposal sites in the Middle East. There is, no doubt, an obvious need to reduce, reuse and recycle wastes but recovery of energy from wastes is also gaining ground as a vital method for managing wastes and Middle East should not be an exception.

Wastes can be transformed into clean and efficient energy and fuel by a variety of technologies, ranging from conventional combustion process to state-of-the-art plasma gasification technology. Besides recovery of energy, such technologies leads to substantial reduction in the overall waste quantities requiring final disposal. Waste-to-energy projects provide major business opportunities, environmental benefits, and energy security.  Feedstock for waste-to-energy plants can be obtained from a wide array of sources including municipal wastes, crop residues and agro-industrial wastes. 

Let us explore some of major waste resources that are readily available in Middle East and North Africa region:

Municipal Solid Wastes

Atleast 150 million tons of solid wastes are collected each year in the MENA region with the vast majority disposed of in open fields and dumpsites. The major energy resource in municipal solid waste is made up of food residuals, paper, fruits, vegetables, plastics etc which make up as much as 75 – 80 percent of the total MSW collected.

Municipal wastes can be converted into energy by thermochemical or biological technologies. At the landfill sites the gas produced by the natural decomposition of MSW (called landfill gas) can be collected, scrubbed and cleaned before feeding into internal combustion engines or gas turbines to generate heat and power. The organic fraction of MSW can be biochemically stabilized in an anaerobic digester to obtain biogas (for heat and power) as well as fertilizer. Sewage sludge is a big nuisance for municipalities and general public but it is a very good source of biogas, which can efficiency produced at sewage treatment plants.

Agricultural Residues

Crop residues encompasses all agricultural wastes such as bagasse, straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. Large quantities of crop residues are produced annually in the MENA region, and are vastly underutilised. Wheat and barley are the major staple crops grown in the Middle East region. In addition, significant quantities of rice, maize, lentils, chickpeas, vegetables and fruits are produced throughout the region, mainly in Egypt, Tunisia, Saudi Arabia, Morocco and Jordan. 

Current farming practice is usually to plough these residues back into the soil, or they are burnt, left to decompose, or grazed by cattle. Agricultural residues are characterized by seasonal availability and have characteristics that differ from other solid fuels such as wood, charcoal, char briquette. Crop wastes can be used to produce biofuels, biogas as well as heat and power through a wide range of well-proven technologies.

Animal Wastes

The MENA countries have strong animal population. The livestock sector, in particular sheep, goats and camels, plays an important role in the national economy of respective countries. Many millions of live ruminants are imported each year from around the world. In addition, the region has witnessed very rapid growth in the poultry sector.

The biogas potential of animal manure can be harnessed both at small- and community-scale. In the past, this waste was recovered and sold as a fertilizer or simply spread onto agricultural land, but the introduction of tighter environmental controls on odour and water pollution means that some form of waste management is now required, which provides further incentives for waste-to-energy conversion. The most attractive method of converting these waste materials to useful form is anaerobic digestion.

Wood Wastes

Wood processing industries primarily include sawmilling, plywood, wood panel, furniture, building component, flooring, particle board, moulding, jointing and craft industries. Wood wastes generally are concentrated at the processing factories, e.g. plywood mills and sawmills. In general, processing of 1,000 kg of wood in the furniture industries will lead to waste generation of almost half (45 %), i.e. 450 kg of wood.

Similarly, when processing 1,000 kg of wood in sawmill, the waste will amount to more than half (52 %), i.e. 520 kg wood. Wood wastes has high calorific value and can be efficiency converted into energy by thermal technologies like combustion and gasification.

Industrial Wastes

The food processing industry in MENA produces a large number of organic residues and by-products that can be used as biomass energy sources. These waste materials are generated from all sectors of the food industry with everything from meat production to confectionery producing waste that can be utilised as an energy source. In recent decades, the fast-growing food and beverage processing industry has remarkably increased in importance in major countries of the region.

Since the early 1990s, the increased agricultural output stimulated an increase in fruit and vegetable canning as well as juice, beverage, and oil processing in countries like Egypt, Syria, Lebanon and Saudi Arabia. Wastewater from food processing industries contains sugars, starches and other dissolved and solid organic matter. A huge potential exists for these industrial wastes to be biochemically digested to produce biogas, or fermented to produce ethanol, and several commercial examples of waste-to-energy conversion already exist around the world.

Conclusions

An environmentally sound and techno-economically viable methodology to treat wastes is highly crucial for the sustainability of modern societies. The MENA region is well-poised for waste-to-energy development, with its rich resources in the form of municipal solid waste, crop residues and agro-industrial waste. The implementation of advanced waste-to-energy conversion technologies as a method for safe disposal of solid and liquid wastes, and as an attractive option to generate heat, power and fuels, can greatly reduce environmental impacts of wastes in the Middle East. 

Republished by Blog Post Promoter

Garbage Woes in Cairo

Cairo, being one of the largest cities in the world, is home to more than 15 million inhabitants. Like other mega-cities, solid waste management is a huge challenge for Cairo municipality and other stakeholders.  The city produces more than 15,000 tons of solid waste every day which is putting tremendous strain on city’s infrastructure. Waste collection services in Cairo are provided by formal as well as informal sectors. While local authorities, such as the Cairo Cleanliness and Beautification Authority (CCBA), form the formal public sector, the informal public sector is comprised of traditional garbage-collectors (the Zabbaleen).

Around 60 percent of the solid waste is managed by formal as well as informal waste collection, disposal or recycling operations while the rest is thrown on city streets or at illegal dumpsites. The present waste management is causing serious ecological and public health problems in Cairo and adjoining areas. Infact, disposal of solid waste in water bodies has lead to contamination of water supplies is several parts of the city. Waste collection in Cairo is subcontracted to ‘zabbaleen’, local private companies, multinational companies or NGOs. The average collection rate ranges from 0 percent in slums to 90% in affluent residential areas.

The Zabbaleen of Cairo

The Zabbaleen, traditional waste collectors of Cairo, have been responsible for creating one of the world’s most efficient and sustainable resource-recovery and waste-recycling systems. Since 1950's, the Zabbaleen have been scouring the city of Cairo to collect waste from streets and households using donkey carts and pickup trucks. After bringing the waste to their settlement in Muqattam Village, also called Cairo’s garbage city, the waste is sorted and transformed into useful products like quilts, rugs, paper, livestock food, compost, recycled plastic products etc. After removing recyclable and organic materials, the segregated waste is passed onto various enterprises owned by Zabbaleen families.

The Zabbaleen collect around 60 percent of the total solid waste generated in Cairo and recycle up to 80 percent of the collected waste which is much higher than recycling efficiencies observed in the Western world.  Over the last few decades, the Zabbaleen have refined their collection and sorting methods, built their own labor-operated machines and created a system in which every man, child and woman works.

Tryst with International Companies

In 2002, international waste management companies started operations in Egypt, particularly Cairo, Alexandria and Giza governorates, and the Zabbaleen were sidelined. However after ten years of participation in solid waste management in Cairo, their performance has been dismal. Infact, in 2009 Egyptian government acknowledged that solid waste management has deteriorated alarmingly after the entry of foreign companies.

The waste management situation in Greater Cairo has assumed critical proportions because of high population, increased waste generation and lack of waste collection infrastructure and disposal facilities. Garbage accumulation on streets, along highways and in waterways is a common sight. As a result of the bad performance of multinational private sector companies in SWM in Egypt during the last decade, the level of street cleanliness deteriorated and the pollution resulting from open-burning of trash increased significantly.

Moreover, the Zabbaleen suffered loss of livelihood after the entry of foreign solid waste management companies due to restricted access to their main asset. The mass slaughtering of pigs in 2009, after fears of swine flu epidemic, has lead to accumulation of organic wastes in many parts of the city.

The waste management situation in Cairo is at a serious juncture and concerted efforts are required to improve waste collection and disposal services across the city. The involvement of Zabbaleen is essential to the success of any waste management plan and the Egyptian government must involve all stake-holders is putting together a sustainable waste management for Cairo.

Republished by Blog Post Promoter

Solid Waste Management in Iraq

Iraq is one of the most populous Arab countries with population exceeding 32 million. Rapid economic growth, high population growth, increasing individual income and sectarian conflicts have led to worsening solid waste management problem in the country. Iraq is estimated to produce 31,000 tons of solid waste every day with per capita waste generation exceeding 1.4 kg per day. Baghdad alone produces more than 1.5 million tons of solid wastes each year.

Rapid increase in waste generation production is putting tremendous strain on Iraqi waste handling infrastructure which have heavily damaged after decades of conflict and mismanagement. In the absence of modern and efficient waste handling and disposal infrastructure most of the wastes are disposed in unregulated landfills across Iraq, with little or no concern for both human health and environment. Spontaneous fires, groundwater contamination, surface water pollution and large-scale greenhouse gas emissions have been the hallmarks of Iraqi landfills.

National Waste Management Plan

The National Solid Waste Management Plan (NSWMP) for Iraq was developed in 2007 by collaboration of international waste management specialist. The plan contains the recommendations for development and which explains the background for decisions. The key principles of waste strategy development in Iraq can be summarized as:

  • Sustainable development;
  • Proximately principles and self-sufficiency;
  • Precautionary principles;
  • Polluter pays principle;
  • Producer responsibility;
  • Waste hierarchy;
  • Best practicable environmental option.

The plan generally states that Iraq will build 33 environmentally engineered landfills with the capacity of 600 million m3 in all of the 18 governorates in Iraq by 2027. In addition to constructing landfills the plan also focuses on the collection and transportation, disposable, recycling and reuses systems. Social education was also taken into consideration to ensure provision of educational system which supports the participation of both communities and individuals in waste management in Iraq.

Besides Iraqi national waste management plan, the Iraqi ministry of environment started in 2008 its own comprehensive development program which is part of the ministry of environment efforts to improve environmental situation in Iraq. Ministry of Municipalities and Public Work, in collaboration with international agencies like UN Habitat, USAID, UNICEF and EU, are developing and implementing solid waste management master plans in several Iraqi governorates including Kirkuk, Anbar, Basra, Dohuk, Erbil, Sulaimaniya and Thi Qar.

Promising Developments

Kirkuk was the first city in Iraq to benefit from solid waste management program when foreign forces initiated a solid-waste management program for the city in 2005 to find an environmentally safe solution to the city’s garbage collection and disposal dilemma. As a result the first environmentally engineered and constructed landfill in Iraq was introduced in Kirkuk In February 2007. The 48-acre site is located 10 miles south of Kirkuk, with an expected lifespan of 10–12 years and meets both the U.S. Environmental Protection Agency and European Union Landfill Directive standards.

The Iraqi city of Basra also benefited from international aid with the completion of the first landfill that is compliant with international environmental standards has been completed. Basra solid waste management program developed by UNICEF will not only restore efficient waste collection systems in the citybut will also create informal “recycling schools” that will help in spreading environmental awareness in in the city’s society by launching a campaign to educate the public about effective waste disposal practices, in addition to that In the long term, the Basra city program plans to establish a regional treatment and disposal facility and initiate street sweeping crews. Basra city waste management program is part of the UNICEF program supported by the European Union to develop Iraq’s water and sanitation sector.

Erbil’s solid waste management master plan has also been developed by UNICEF with funding from the European Union. Recently a contract was signed by the Kurdistan Region's Ministry of Municipalities and Tourism and a Canadian company to recycle the city's garbage which will involve the construction of two recycling plants in the eastern and western outskirts of Erbil.

UNICEF has also developed a master plan to improve the management of solid waste in Dohuk Governorate which has been finalized in June 2011. Solid waste management master plans for Anbar, Sulaimaniya and Thi Qar governorates are also a part of UNICEF and EU efforts to attaining Iraq’s Millennium Development Goal targets of ensuring environmental sustainability by 2015.

Even though all of the effort by the international organizations are at local level and still not enough to solve solid waste management problem in Iraq, however these initiatives have been able to provide a much needed information regarding the size of the issue and valuable lessened learned used later by the Iraqi government to develop the Iraqi national waste management plan with the support of organizations such as UN Habitat, UNDG Iraq Trust Fund and USAID. The Iraqi national waste management plan is expected to ease the solid waste management problem in Iraq in the near future.

Republished by Blog Post Promoter

Solid Waste Management in Qatar

Qatar is counted among the world’s fastest growing economies. Municipal solid waste management is one of the most serious challenges faced by this tiny Gulf nation on account of high population growth rate, urbanization, industrial growth and economic expansion. The country has one of the highest per capita waste generation rates worldwide which is as high as 1.8 kg per day. Qatar produces more than 2.5 million tons of municipal solid waste each year. Solid waste stream is mainly comprised of organic materials (around 60 percent) while the rest of the waste steam is made up of recyclables like glass, paper, metals and plastics.

Municipalities are responsible for solid waste collection in Qatar both directly, using their own logistics, and indirectly through private sector contract. Waste collection and transport is carried out by a large fleet of trucks that collect MSW from thousands of collection points scattered across the country.

The predominant method of solid waste disposal is landfilling. The collected is discharged at various transfer stations from where it is sent to the landfill. There are three landfills in Qatar; Umm Al-Afai for bulky and domestic waste, Rawda Rashed for construction and demolition waste, and Al-Krana for sewage wastes. However, the method of waste disposal by landfill is not a practical solution for a country like Qatar where land availability is limited.

Waste Management Strategy

According to Qatar National Development Strategy 2011-2016, the country will adopt a multi-faceted strategy to contain the levels of waste generated by households, commercial sites and industry – and to promote recycling initiatives. Qatar intends to adopt integrated waste hierarchy of prevention, reduction, reuse, recycling, energy recovery, and as a last option, landfill disposal. 

A comprehensive solid waste management plan is being implemented which will coordinate responsibilities, activities and planning for managing wastes from households, industry and commercial establishments, and construction industry. The target is to recycle 38 percent of solid waste, up from the current 8 percent, and reduce domestic per capita waste generation. Five waste transfer stations have been setup in South Doha, West Doha, Industrial Area, Dukhan and Al-Khor to reduce the quantity of waste going to Umm Al-Afai landfill. These transfer stations are equipped with material recovery facility for separating recyclables such as glass, paper, aluminium and plastic.

In this respect, one of the most promising developments has been the creation of Domestic Solid Waste Management Centre (DSWMC) at Mesaieed. This centre is designed to maximize recovery of resources and energy from waste by installing state-of-the-art technologies for separation, pre-processing, mechanical and organic recycling, and waste-to-energy and composting technologies. It will treat 1550 tons of waste per day, and is expected to generate enough power for in-house requirements, and supply a surplus of 34.4 MW to the national grid. 

The Way Forward

While commendable steps are being undertaken to handle solid waste, the Government should also strive to enforce strict waste management legislation and create mass awareness about 4Rs of waste management viz. Reduce, Reuse, Recycle and Recovery. Legislations are necessary to ensure compliance, failure of which will attract a penalty with spot checks by the Government body entrusted with its implementation.

Citizens can play a vital role in improving waste management scenario in Qatar by helping to reduce garbage generation and practicing source-segregation in households, offices etc. Being an influential Muslim country, the government may also take help of leading Islamic scholars to motivate the population to reduce per capita waste generation and conserve natural resources.

Improvement in curbside collection mechanism and establishment of material recovery facilities and recycling centres may also encourage public participation in waste management initiatives. When the Qatar National Development Strategy 2011-2016 was conceived, the solid waste management facility plant at Mesaieed was a laudable solution, but its capacity has been overwhelmed by the time the project was completed. Qatar needs a handful of such centers to tackle the burgeoning garbage disposal problem.

Republished by Blog Post Promoter

Methods for Plastic Wastes Collection

Plastic consumption has grown at a tremendous rate over the past two decades as plastics now play an important role in all aspects of modern lifestyle. Collection and disposal of plastic waste has emerged as an important environmental challenge and its recycling is facing roadblocks due to their non-degradable nature. There are four basic ways in which communities can offer plastic recycling collection services for plastic bottles and containers – curbside, drop-off, buy-back or deposit/refund programs.

Curbside Recycling

The first, and most widely accessible, collection method is curbside collection of recyclables. Curbside (or kerbside) collection is considered a low-risk stategy to reduce waste volunes and increase recycling rates. Materials are usually collected in large bins, colored bags or small open plastic tubs specifically designed for content

Curbside recycling programs are generally the most convenient for community residents to participate in and yield high recovery rates as a result. Communities that provide curbside collection generally request residents to separate designated recyclables from their household garbage and to place them into special receptacles or bags, which are then set out at the curb for collection by municipal or municipally-contracted crews.

Drop-Off Recycling

In this method, containers for designated recyclable materials are placed at central collection locations throughout the community, such as parking lots, mosques, schools, malls or other civic associations. The containers are generally marked as to which recyclable material should be placed in them. Residents are requested to deliver their recyclables to the drop-off location, where recyclables are separated by material type into their respective collection containers. Drop-off recycling programs are more suitable when residents are taking their garbage to a central waste collection facility or transfer station. Such programs suffer from low or unpredictable throughput.

Buy-Back Centers

Most buy-back recycling centers are operated by private companies and pay consumers for recyclable materials that are brought to them. Buy-back centers usually have purchasing specifications that require consumers to source separate recyclable materials brought for sale. These purchase specifications can greatly reduce contamination levels and allow the buy-back center to immediately begin processing the recyclables they purchase, while providing consumers with an economic incentive to comply with the specifications. Buy-back centers are similar to dro-off centers expect they pay waste generators for their items based on market values.

Deposit/Refund Programs

These programs requires collection of a monetary deposit purchase of a plastic container. When container is returned to an authorized redemption center, or to the original seller, the deposit is partly or fully refunded to the redeemer. These programs are familiar to anyone in the USA who has ever purchased a beverage in a can or bottle. 

Republished by Blog Post Promoter