أزمه المياه في مصر

تعاني مصر في السنوات الاخيرة من شح شديد في المياه و يعد توزيع المياه غير المتكافئ و اساءه استخدام موارد المياه وتقنيات الري غير الفعاله بعض العوامل الرئيسيه التي تلعب دورا مدمرا للأمن المائي فيالبلاد.

يعد نهر النيل شريان الحياة في مصر حيث  يغطي متطلبا ت الزراعة و الصناعه و هو المصدر الرئيسيلمياه الشرب للسكان. ان ارتفاع معدلات النمو السكاني و التنمية الاقتصادية السريعة  في دول حوض النيل  بالإضافة الى التلوث و التدهور  البيئي آخذُ باستنزاف الموارد المائية في مصر.

 و تواجه مصر   عجزا مائيا يقدر  بسبع بليون متر مكعب سنويا .وفي حقيقة الامر فإن الامم المتحدة قد حذرت من نفاذ المياه في مصر بحلول عام 2025.

دعونا نلقي نظره فاحصه على العوامل الرئيسيه التي تؤثر على الامن المائي في مصر.

الانفجار السكاني

ان العدد السكاني في مصر اّخذ بالتكاثر بمعدل ينذر بالخطر , ولقد زاد بنسبه 41 بالمئه منذ بداية التسعينيات. تشير التقارير الاخيرة من قبل الحكومة الى ان حوالي 4,700   حديثي الولادة تضاف الى عدد السكان كل أسبوع و تشير التوقعات المستقبليه  الى ان عدد السكان سيرتفع من 80 مليون الى 98.7 مليون بحلول عام 2025.

ان الزيادة السكانية السريعة من شأنها ان تضاعف الضغط على الامداد المائي من خلال زيادة الاحتياجات المائية  للاستهلاك المحلي و زيادة استخدام مياه الري  لتلبيه الطلب على الغذاء.

الري غير الفعال

تحصل مصر على نسبه اقل من 80 ملم من الهطول المطري سنويا,وتعد ما نسبته 6 بالمئه من اراضيها فقط صالحا للزراعة وما تبقى فهو صحراء.وهذا بدوره  يؤدي الى الافراط في الري واستخدام تقنيات الري المسرف كالري السطحي ( الري بالغمر) و هي طريقه قديمه للري حيث يتم اغراق القطعة الزراعيه بالمياه.

في الوقت الحالي,فان شبكة الري تستمد بالكامل من سد اسوان العالي و هذا بدوره ينظم اكثر من 18,000 ميل من القنوات الرئيسية و القنوات الفرعيه التي تروي الاراضي الزراعيه المجاوره للنهر. يعد هذا النظام غير فعال , حيث يقدر معدل الفاقد من مياه النيل بفعل التبخر 3 مليارات متر مكعب سنويا . ان من شأن  انخفاض الامداد المائي  ان يقود الى انخفاض الاراضي الصالحة للزراعة و حيث ان قطاع الزراعه يشكل اكبر رب عمل للشباب فان شح المياه يمكن ان يقود الى زيادة معدلات البطالة.

التلوث

 اصبحت المخلفات الزراعية والنفايات الصناعية السائلة  و مياه الصرف الصحي ُتلقى بغير اهتمام في نهر النيل مما يجعلها تدريجيا غير صالحة للاستهلاك البشري. اضف الى ذلك فإن مياه الصرف الصحي القادمة من الاحياء الفقيرة ومناطق عديدة في القاهره اضحت تفرغ في نهر النيل وذلك لنقص  المحطات المعالجة لتلك المياه.

 تلك المخلفات الزراعية عاده ما تحتوي على ملوثات من مبيدات الحشرات و الاعشاب مما يؤثر سلبا على مياه النهر. كذلك النفايات الصناعية السائله غالبا ما تكون شديدة السميه وتحتوي على معادن ثقيلة و التي يمكن ان تتحد مع المواد الصلبه العالقة في مياه الصرف الصحي لتشكل الوحل. كل هذه العوامل مجتمعه معا من شأنها ان تلوث نهر النيل و تنذر بشؤم للأجيال القادمة.

الاضطرابات الاقليميه

تسيطر مصر على غالبيه الموارد المائية المستخرجه من نهر النيل بمقتضى معاهدة الحقبه الاستعمارية التي تضمن حصة  ما نسبته 90 بالمئه من نهر النيل و تمنع الدول المجاوره لها من الحصول ولو على قطره واحده من النيل من دون الحصول على إذنها .وعلى الرغم من ذلك فان هذا لا يمنع  البلدان الواقعه على نهر النيل  مثل بوروندي و اثيوبيا من استغلال الاضطرابات السياسيه التي تعصف بمصر وكسب المزيد من السيطرة على حقوق  النيل. ورغم ان نهر النيل يزود مصر بما نسبته 95 بالمئه من المياه العذبة   فإن فقدان بعض الامدادات المائية يمكن ان يشكل متاعب إضافيه لمصر.

الختام

إن قضيه المياه في مصر تتصاعد بنسبه مثيره للقلق. بحلول عام 2020 ,سوف تستهلك مصر بما يقدَر 20 بالمئه اكثر  من المياه مما كانت عليه. مع فقدان قبضتها على النيل  فان شح المياه في مصر  من شأنه ان يهدد استقرار البلاد و الهيمنة الاقليميه. و هذا يحتم على الحكومة المصريه و جميع السكان التحرك بسرعة وبشكل حاسم للتخفيف من شح المياه  وتطبيق اساليب و تقنيات اكثر فاعليه للمحافظة على المياه و منع تلوثها  ووضع وتطوير خطط من شأنها السيطرة على تلوث المياه وجعل تقنيات الري اكثر فاعليه و كفاءة و ذلك لتجنب وقوع كارثة.

ترجمة

سلام عبدالكريم عبابنه

مهندسه مدنية في شركة المسار المتحده للمقاولات – مهتمه في مجال البيئه و الطاقة المتجدده

Republished by Blog Post Promoter

The Menace of Single-Use Plastic Bags

Single-use plastic bags are one of the most objectionable types of litter in urban areas. The sheer volume of plastic waste generated coupled with energy and material resources required for production, as well as emissions resulting from these processes paint a grim picture of the environmental havoc created by plastic bags. Single-use plastic bags are a huge threat to the environment as an estimated 1 trillion such bags are consumed worldwide every year. In the United Arab Emirates alone, nearly 12 billion plastic bags are used annually.

Major Hazards

Single-use plastic bags are notorious for their interference in natural ecosystems and for causing the death of aquatic organisms, animals and birds. In 2006, The United Nations Environment Programme (UNEP) estimated that there are 46,000 pieces of plastic litter floating in every square mile of ocean and upto 80 percent of marine debris worldwide is plastic which are responsible for the death of a more than a million seabirds and 100,000 marine mammals each year from starvation, choking or entanglement. Infact, there is a huge floating dump in the Pacific Ocean called the "Great Pacific Garbage Patch" which is hundreds of miles wide and consists mostly of plastic debris caught  in the ocean's currents. 

Plastic bags are mistakenly ingested by animals, like cows and camels, clogging their intestines which results in death by starvation. In addition, plastic bags clog urban drainage systems and contribute to flooding, as witnessed in Mumbai, Dhaka and Manila in recent decades. Moreover, toxic chemicals from single-use bags can enter the food chain when they are ingested by animals and birds.

Unfortunately only a small percentage of these bags are recycled each year, and most float about the landscape and create a tremendous expense in clean-up costs. Several countries, regions, and cities have enacted legislation to ban or severely reduce the use of disposable plastic shopping bags. Plastic bags litter serves as a floating transportation agent that enables alien species to move to new parts of the world thus threatening biodiversity.

Plausible Solutions

The hazards of single-use plastic bag can be mitigated by raising environmental awareness among communities. Many municipalities in the Gulf region are targeting shopping malls and grocery stores to reduce dependence on single-use plastic bags. Environmental education at workplaces, schools and residential areas is a vital tool in the fight against plastic bags. Empowering people to take proactive actions and encouraging them to be a part of the solution can also be helpful in reducing the reliance on single-use plastic bags.

Municipalities can make use of 5Rs of waste management – Rethink, Reduce, Reuse, Recycle and Recover – to encourage safe disposal of plastic bags which may be facilitated by mass deployment of plastic bag collection systems and recycling facilities at strategic locations. Some of the alternatives are cloth-based bags, such as jute and cotton, which biodegradable as well as reusable. Infact, the range of durable fabric shopping bags is growing each year in the Western countries, including those that can be conveniently folded up into a pocket.

The introduction of ‘plastic bags tax’ can also be a handy weapon in restricting use of single-use plastic bags in the Middle East. For example, Ireland introduced a plastic bag charge called PlasTax ten years ago which has virtually eliminated plastic bags in the country. 

Regional Initiatives

The Middle East region has been slow in gearing up to the challenges posed by single-use plastic bags, though governments have been trying to raise public awareness aimed at behavioral change. The Ministry of Environment and Water in UAE launched an initiative called “UAE free of plastic bags” in 2009 to maintain the health of the natural habitat and enhance the environmental standards of the state. The Dubai Municipality has also launched an ambitious “No to Plastic Bags” campaign to slash 500 million plastic bags. There are similar efforts, but small-scale, efforts in Saudi Arabia, Qatar and Kuwait to encourage clean-up campaigns in seas, deserts and citites. In Egypt, the Red Sea (Hurghada) is the first plastic bag free governorate having introduced a ban in 2009 which generated employment opportunities for women who have been charged with creating cloth bags in the place of plastic bags.

 

About the Authors

Eaman Abdullah Aman is MRLS graduate in Environmental and Natural Resources Law and Policy with a specialization certificate in Energy Law and Policy from Denver University, USA. Her expertise encompasses international petroleum transactions, petroleum contracts and agreements, international petroleum investment operations, energy policy and economics of natural resources law and policy. She has rich knowledge on issues related to climate change mitigation, environmental law and policy, environmental ethics, energy security, sustainable development etc.

Salman Zafar is the Founder of EcoMENA and a renowned expert in waste management, renewable energy, environment protection and sustainability. He is widely acknowledged as an authority on environment and sustainability sector in the Middle East and proactively engaged in creating mass awareness on clean energy, environment and sustainability through his websites, blogs, articles and projects. Salman can be contacted on salman@ecomena.org.

Republished by Blog Post Promoter

Sustainability Perspectives for Amman

amman-sustainabilityIs Amman a sustainable city? No, it is not. That isn't a very surprising statement if you've ever lived in or visited Amman. By all means, it's a beautiful city, with plenty to offer visitors and residents alike. It is a diverse city with a wide range of experiences to offer between East and West Amman or Downtown to Abdoun.

The fact remains however that it is not a very sustainable city. We as residents are not being kind to the city we call home. When I look at Amman I happen to see all the things I like, but also all the potential our city has to improve.

Below I examine only a few factors that contribute to the unsustainability of Amman. These are not the only issues we are facing as Ammanis but they are some of the factors affected by high level policy making in Greater Amman Municipality.

Transportation in Amman
"Amman is a city that is built for the convenience of cars and drivers". This is a statement I heard from a TEDxAmman speaker just weeks after I moved back to Jordan from abroad, and it was a shock to hear it phrased in that way. Although I was aware of the obvious lack of public transport and alternative means of getting around the city, I had never realized the extent of how true that statement is.

Any investment in the city’s transport infrastructure goes to build and improve the quality of our roads, bridges and tunnels with no consideration of public transport investment. The one time that Greater Amman Municipality (GAM) attempted to invest in a bus rapid transit (BRT) system, it turned into a very controversial topic, with accusations of corruption and mismanagement of resources all around with the project still not close to being completed.

Amman is also not a very pedestrian friendly city, with virtually no sidewalks found on the streets. Or even worse, the sidewalks we do have are in fact pots to plant trees which makes it very difficult for pedestrians to use it for what it's meant for; to walk. Additionally, there are barely any pedestrian crossings.

Amman is indeed a city built for the convenience of cars and their owners, with almost a 10% increase in car ownership annually in the city, even in low income families. 

Historically speaking, our current transportation system worked well up until the mid-1900s when the population of the city grew from a few hundred thousand people to 2 million. Recently the city has reached a little under 3 million inhabitants with the same road infrastructure minus a few improvements here and there. 

This is obviously a challenge that our 3 million Jordanians have to endure on a daily basis, whether it is by fighting traffic every day or by long waits on the very little number of buses that we have. 

Even less obvious is the environmental impact of such transport habits, with one estimate being that for each passenger in the city we need to plant 17 trees every year to cover our annual CO2 emissions of 1,464.4kgs. 51 million trees need to be planted every year in Amman to cover our transport emissions!

Waste Management in Amman

"Out of sight, out of mind" is probably best applied to our waste in Amman, or indeed in all of Jordan. We all know that we have garbage trucks passing around the neighborhoods collecting garbage once or twice a week. And we all remember the garbage collecting "crisis" Amman went through in 2012 when garbage was piling up and the out of maintenance trucks couldn't collect it all. 

However what we forget is what happens to all our waste once it's collected. If we had a developed recycling system, we could slightly reduce the amount of waste produced by residents of Amman. Since recycling is not an option we cannot ignore the 1,400 tons of waste produced every year by Ammanis. This translates to more than half of the waste produced in the country – the remaining cities across Jordan only produce 1.1 tons of waste.

This means that 1,400 tons of waste is transported to landfills outside of Amman, but very close to residents of other cities. Once the garbage in those landfills becomes too much to handle, they burn it to empty up space for even more trash. If you've ever been to Zarqa, you are very well aware of the smell from the burning garbage in the landfill along the way.

Urban Sprawl
In my opinion, urban sprawl in Amman is the most important issue Amman is facing. It is also an issue largely ignored by our officials and citizens alike. It has reached a very critical condition because large areas of previously agriculture land is now all converted to residential areas and the very little agricultural land we have left is under immediate threat to be converted to residential neighborhoods. 

I was actually very surprised to find out that areas such as Sweileh, Wadi Alseer, and Al Jubayha were separate towns in the early 1900s and not a part of Amman. Now however they're so urbanized that they're considered another district in the city.

There were actually some recommendations in the 1950s by a group of international experts to separate Amman from these towns by designating green belts around them to limit construction in those areas. All their recommendations were of course ignored. Now other areas are under the same threat of urbanization and loss of agricultural land especially on the road between 7th circle and the Airport.

Of course, till now GAM is licensing agricultural land around Amman for construction of residential areas with no consideration to its importance to our agriculture which is already suffering greatly. 

Ingredient of a Sustainable City

There are quite a few factors combined that affect the sustainability of a city, or lack thereof.  Based on the broad definition of Sustainability (meeting present needs while ensuring that resources are available to meet future needs), the definition of sustainable cities broadly would be cities that ensure that the current needs of its residents are meet without compromising on the needs of its future inhabitants.

Some of the criteria that help create sustainable cities are the following:

  • Resource recovery and waste management – collection and disposal of non-recyclable materials, frequent and adequate collection of bins as well as creating a broader waste management strategy
  • Litter prevention  – well placed litter bins in public areas and city centers, litter education and awareness programs and integration of litter management with a broader waste management strategy
  • Environmental innovation and protection – establishing partnerships between community, government and industry to protect environmental resources, establishing local conservation groups, develop and implement public/open space plans for local community, among many others.
  • Water Conservation – innovative water conservation and re-use initiatives. 
  • Energy Innovation – innovative energy efficiency measures, renewable energy, and addressing climate change issues.

How Can Amman Actually Become Sustainable?
Obviously there is quite a journey ahead of Amman, and Jordan as a whole in fact, in becoming sustainable. While GAM is the main entity able to create the needed environmental regulations, channel investments into sustainable public transport, allow innovations in renewable energy,  and guide the many other initiatives we cannot ignore the role of individual citizens. 

In a micro level, each individuals behavior, regardless of how insignificant it may seem to them does indeed influence the overall sustainability of the city. Enumerating the various water conservation, energy efficiency, or waste management methods would probably be repetitive however one request I make of myself and other Ammanis is to be constantly thoughtful of our impact and try to reduce it as much as possible.

One way to remain thoughtful is to remain informed. We should all be aware what the impact of our actions is. Whether it pertain to CO2 emissions of our cars, or the lack of actual waste management. 

We should be informed to be able to influence decision making as well. There will come a day when we have proper communication channels with GAM and other government officials and we will be able to shape the decisions that will make our city more sustainable.

Till that day comes, don't ignore your responsibility as an aware, thoughtful citizen of our beautiful city.

References

  1. The Road Not Taken, Jordan Business, Hazem Zureiqat 
  2. Traffic in Amman, Jordan, Numbeo.com
  3. Municipal Solid Waste Landfills in Jordan – Current Conditions and Perspective Future, Mohammad Al Jaradin & Kenneth Persson
  4. Urban Sprawl, Center for the Study of the Built Environment (CSBE), Mohammad Al Asad
  5. Sustainable City Criteria, 2012

Republished by Blog Post Promoter

Guide to Green Hajj

The Hajj is one of the five pillars of Islam and is an annual pilgrimage to Makkah. It is a mandatory religious duty for Muslims which must be carried out at least once in lifetime by every adult Muslim who is physically and financially capable of undertaking the journey. The Hajj gathering is considered to be the largest gathering of people in the world whereby Muslims from many countries converge to do the religious rites.  Nearly three million Muslims perform Hajj each year. Making necessary arrangements each year for the growing number of pilgrims poses a gigantic logistic challenge for the Saudi Government and respective Authorities, as housing, transportation, sanitation, food and health care needs are to be provided to the pilgrims.

Environmental Footprint

The Hajj has an enormous environmental footprint. During Hajj, huge quantities of wastes are generated which needs to be appropriately collected, handled and managed. Other impacts are of water use and wastewater generation and treatment, transporting vehicles causing terrible air pollution damaging the health of the pilgrims, littering causing choking of public infrastructures, plastic bottles, used diapers, food packaging etc. are an eyesore. The problem is compounded due to ignorance, over enthusiasm, illiteracy of pilgrims and lack of commitment to handle the environmental resources.

Unfortunately, majority of the pilgrims are not aware of the innate nature of environmentalism within Islam and obligations of protecting the environment. According to the Quran, humans are entrusted to be the maintainers of the earth, its ecology and environment.The Hajj can be sustainable if the pilgrims behave in an environmental friendly manner and avoid different types of pollution.

A vast majority of Hajj pilgrims are not aware of the innate nature of environmentalism within Islam.

A vast majority of Hajj pilgrims are not aware of the innate nature of environmentalism within Islam.

Towards a Green Hajj

We need to understand that the respective authorities plan, spend and provide facilities to match with the number of pilgrims, but the irresponsible attitude of many people jeopardize the environmental resources. Following aspects will help the pilgrims in making their Hajj greener and help in conservation of resources:

  • Green purchasing, buy what is required and only environmentally–friendly products
  • Using minimum quantity of water for ablution, bath and personal use. Opening water gadgets and tap to allow limited flow. Washing clothes with minimum water.
  • Reporting any water leakages to the Authority.
  • Re-filling and reusing water bottles.
  • Buying food only what you can eat, surplus food should be avoided.
  • Avoiding food packaging.
  • Avoid disposable cutlery, plates, glasses etc.
  • Avoid littering, collecting all waste and disposing it at designated locations. 
  • Avoid using plastic shopping bags.
  • Moving and using group transport facilities.
  • Minimize electricity usage.
  • Avoid leaving lights on in empty rooms.
  • Switching off the chargers, once used.
  • Purchase energy efficient appliances, if required.
  • Avoid using electrical appliances on standby.

The recent Islamic declaration on climate change exhorts us to work steadfastly to minimize our ecological footrpint and make individual pledges to help our planet. Environment is Allah’s creation and has to be respected. Let us make our contribution to the Green Hajj and make a profound impact on the ecosystem, making it more sustainable and manageable and show that Islam is the ideal platform for ecological and environmental preservation.

Republished by Blog Post Promoter

CSP-Powered Desalination Prospects in MENA

Conventional large-scale desalination is cost-prohibitive and energy-intensive, and not viable for poor countries in the MENA region due to increasing costs of fossil fuels. In addition, the environmental impacts of desalination are considered critical on account of GHG emissions from energy consumption and discharge of brine into the sea. The negative effects of desalination can be minimized, to some extent, by using renewable energy to power the plants.

What is Concentrated Solar Power

The core element of Concentrated Solar Power Plant is a field of large mirrors reflecting captured rays of sun to a small receiver element, thus concentrating the solar radiation intensity by several 100 times and generating very high temperature (more than 1000 °C). This resultant heat can be either used directly in a thermal power cycle based on steam turbines, gas turbines or Stirling engines, or stored in molten salt, concrete or phase-change material to be delivered later to the power cycle for night-time operation. CSP plants also have the capability alternative hybrid operation with fossil fuels, allowing them to provide firm power capacity on demand. The capacity of CSP plants can range from 5 MW to several hundred MW.

Three types of solar collectors are utilized for large-scale CSP power generation – Parabolic Trough, Fresnel and Central Receiver Systems. Parabolic trough systems use parabolic mirrors to concentrate solar radiation on linear receivers which moves with the parabolic mirror to track the sun from east to west. In a Fresnel system, the parabolic shape of the trough is split into several smaller, relatively flat mirror segments which are connected at different angles to a rod-bar that moves them simultaneously to track the sun. Central Receiver Systems consists of two-axis tracking mirrors, or heliostats, which reflect direct solar radiation onto a receiver located at the top of a tower.

Theoretically, all CSP systems can be used to generate electricity and heat.  All are suited to be combined with membrane and thermal desalination systems. However, the only commercially available CSP plants today are linear concentrating parabolic trough systems because of lower cost, simple construction, and high efficiency

CSP-Powered Desalination Prospects in MENA

A recent study by International Energy Agency found that the six biggest users of desalination in MENA––Algeria, Kuwait, Libya, Qatar, Saudi Arabia, and United Arab Emirates––use approximately 10 percent of the primary energy for desalination. Infact, desalination accounted for more than 4 percent of the total electricity generated in the MENA region in 2010. With growing desalination demand, the major impact will be on those countries that currently use only a small proportion of their energy for desalination, such as Jordan and Algeria.

The MENA region has tremendous wind and solar energy potential which can be effectively utilized in desalination processes. Concentrating solar power (CSP) offers an attractive option to power industrial-scale desalination plants that require both high temperature fluids and electricity.  CSP can provide stable energy supply for continuous operation of desalination plants based on thermal or membrane processes. Infact, several countries in the region, such as Jordan, Egypt, Tunisia and Morocco are already developing large CSP solar power projects.

Concentrating solar power offers an attractive option to run industrial-scale desalination plants that require both high temperature fluids and electricity.  Such plants can provide stable energy supply for continuous operation of desalination plants based on thermal or membrane processes. The MENA region has tremendous solar energy potential that can facilitate generation of energy required to offset the alarming freshwater deficit. The virtually unlimited solar irradiance in the region will ensure large-scale deployment of eco-friendly desalination systems, thereby saving energy and reducing greenhouse gas emissions.  

Several countries in the MENA region – Algeria, Egypt, Jordan, Morocco and Tunisia – have joined together to expedite the deployment of concentrated solar power (CSP) and exploit the region's vast solar energy resources. One of those projects is a series of massive solar farms spanning the Middle East and North Africa. Two projects under this Desertec umbrella are Morocco’s Ouarzazate Concentrated Solar Power plant, which was approved in late 2011, and Tunisia’s TuNur Concentrated Solar Power Plant, which was approved in January 2012. The Moroccan plant will have a 500-MW capacity, while the Tunisia plant will have a 2 GW capacity. Jordan is also making rapid strides with several mega CSP projects under development in Maa’n Development Area. 

Conclusions

Seawater desalination powered by concentrated solar power offers an attractive opportunity for MENA countries to ensure affordable, sustainable and secure freshwater supply. The growing water deficit in the MENA region is fuelling regional conflicts, political instability and environmental degradation. It is expected that the energy demand for seawater desalination for urban centres and mega-cities will be met by ensuring mass deployment of CSP-powered systems across the region. Considering the severe consequence of looming water crisis in the MENA region it is responsibility of all regional governments to devise a forward-looking regional water policy to facilitate rapid deployment and expansion of CSP and other clean energy resources for seawater desalination.

Republished by Blog Post Promoter

Vanishing Aquifers in MENA

aquifer-menaAquifers are of tremendous importance for the MENA as world's most water-stressed countries are located in the region, including Kuwait, Qatar, UAE, Palestine, Saudi Arabia, Oman, Iran, Lebanon and Yemen. However, aquifers in MENA are coming under increasing strain and are in real danger of extinction. Eight aquifers systems, including those in MENA, are categorized as ‘over stressed’ aquifers with hardly any natural recharge to offset the water consumed.

Aquifers in MENA

Aquifers stretched beneath Saudi Arabia and Yemen ranks first among ‘overstressed’ aquifers followed by Indus Basin of northwestern India-Pakistan and then by Murzuk-Djado Basin in North Africa. The Nubian Sandstone Aquifer in the Eastern end of Sahara deserts (parts of Sudan, Chad, Libya and most of Egypt) is the world’s largest known ‘fossil’ aquifer system and Bas Sahara basin (most of Algeria-Tunisian Sahara, Morocco and Libya) encloses whole of the Grand Erg Oriental. The non-renewable aquifers in the Middle East are the Arabian Aquifer and The Mountain Aquifer between Israel and Palestine. Some parts in MENA like Egypt and Iraq rely on major rivers (Nile, Tigris and Euphrates) but these surface water flows does not reach the ocean now. Needless to say, water demand in arid and dry MENA countries is met primarily by aquifers and seawater desalination.

MENA region is the most water-scarce region of the world. The region is home to 6.3 percent of world’s population but has access to measly 1.4 percent of the world’s renewable fresh water. The average water availability per person in other geographical regions is about 7,000 m3/year, whereas water availability is merely 1,200 m3/person/year in the MENA region. The region has the highest per capita rates of freshwater extraction in the world (804 m3/year) and currently exploits over 75 percent of its renewable water resources.

Primarily global exploitation of groundwater is for agricultural irrigation. In Saudi Arabia, during 1970’s, landowners were given free subsidies to pump the aquifers for improvisation of agricultural sectors. Soon the country turned out to be world’s premium wheat exporters. But as years passed, water consumption was high in such a rate that the aquifers approached total depletion. Government announced peoples demand to be met by desalination, which is an expensive approach to meet agricultural sector requirement. By end of 1990’s agricultural land declined to less than half of the country’s farm land. Saudi Arabia is no more a wheat exporter rather relies almost entirely on imported crop from other countries. Unfortunately, country has exploited nonrenewable and ancient ‘fossil’ aquifers which could not be recharged by any form of precipitation.

Key Issues

Stress on a country’s agricultural and water resources majorly cause problems in human health as well as instability and conflicts over shared resources. Climate change has also exacerbated water availability in the Middle East. Infact, water stresses has triggered brutal civil war in Syria and worsened the Palestine-Israel conflicts over sharing aquifers. The key issues, according to World Bank, in water utilization in MENA are as follows:

  • Unsustainable and inefficient use: Middle East countries have the highest per capita consumption of domestic water in the world with 40-50% leakage in the urban systems. And 50% water withdrawn for agriculture does not reach as intended.
  • Ineffective policies: the countries diverts 85% of water to grow crops which would be better importing.
  • Deteriorating water quality: contaminated water systems due to insufficient sanitation infrastructure has caused negative impacts on environment and health issues. Like, in Iran where issues associated with inadequate waste water collection and treatment cost estimated 2.2% of GDP.
  • Excessive reliance on the public investment on water accounts for 1-5 percent of GDP.

In MENA an unexpected climate change is likely to bring 20% rainfall reduction and high rate of evaporation which intensifies water stress. And proportionate climate initiated human behavior, more it gets dry, less water in the river, more tendencies to substitute by groundwater. Also depletion of water below the ground will rise to other disasters like sea water intrusion, land subsidence, especially in Arabian Peninsula, in turn destroys the constructions, infrastructures and developments of the country made-up till date.

Tips to Save Aquifers

We do not know how much water is remaining beneath, but we must understand it is vanishing at a very high rate. MENA must treasure aquifers and natural water resource as same as oil reserves are valued. Individual can play a significant role in saving aquifers in MENA by adopting these simple water conservation guidelines

  • Do not drain cooking oil or grease into sink; use adequate amount, reuse like as a shovel cleaner, polish or donate to machinery shops.
  • Effective use of tap; do not run water while brushing. During winters, store the initial cold water that runs out of the tap prior to the hot water from heater. And also know the convenient tap adjustments.
  • Maintain healthy, hygienic and sanitation practices.
  • Replace conventional water pumps and home appliances with advanced water conservative ones.
  • Avoid unnecessary products, food materials and reduce wastage; water consumed in a diet account’s 92% of water footprint of an individual.
  • Avoid sprinklers for irrigation and in garden use to avoid water loss by evaporation and substitute with efficient water distribution system.

By nature, water is definite in this ‘blue planet’. But when there is no right quantity of water at right quality and time it is called ‘Crisis’.

 

Republished by Blog Post Promoter

Leakage Control: Effective Tool for Water Conservation

water-leakageWater is a basic need of our life and is amply provided by the Governmental agencies. However, we as consumers do not prioritize on water wastage and leakages issue due to the subsidized water cost. The leakages from taps, valves and appurtenant are often noticed but the invisible leakages under the sink often goes un-noticed and drips occurring are not taken seriously and addressed till the leakage get larger and leak get worse.

The Menace of Water Leaks

Water leaks from pipes, plumbing fixtures, faucets, valves and fittings are a common sight in buildings and structures and is a significant source of water wastage.  Only a small drip from a worn faucet washer can waste around 75 liters of water per day. Thus, we need to check all the water pipes and fittings regularly to assess their operational status and any leak occurring should be urgently repaired or replaced.

Leaks from pipes, plumbing fixtures and fittings are a significant source of water wastage for many households.  Research has shown that the typical home can lose 7.6 m3 to 76 m3 of water per year due to leaks. Some leaks are obvious, such as dripping faucets and leaking water heaters. Unfortunately, many leaks go undetected for years because the source of the leak is not visible. Faucet leaks are a common occurrence and usually simple to repair.  A faucet dripping slowly at only one drop every two seconds will waste more than 1,000 gallons or 3.7 m3 per year.   

Toilets are another common source of leaks in the home, and usually go unnoticed because the leaks are often silent and out of view.  Several research studies have found 20% to 35% of all residential toilets leak to some degree. Large toilet leaks can be detected when the valve constantly emits a hissing or gurgling sound when the toilet is not in use.

Detection of Water Leakages

We frequently see dripping and leaking water gadgets, pipes and toilets but do not take any action for its correction, mainly because of our attitude and lack of awareness. It is now important to inspect our water gadgets, pipes and fittings in our home, dwelling and place of work or study and take corrective actions. For checking the water leakages, first note water meter reading. Re-check again after two hours with all water gadgets are shut. If the meter does not read exactly the same, you probably have a leak in the system whereby water is being wasted for which you have to pay the cost which will be increasing with time. 

If your toilet is leaking, the cause is often an old, faulty rubber packing/ washer which decay with number of uses or minerals build up on it. Replacing the damaged rubber packing is inexpensive and can be done easily. Another way to find out if you have a toilet leak is to place a drop of color dye in the toilet tank. If the color shows up in the bowl within 15 minutes without flushing, you have a leak. Make sure to flush water immediately after this experiment to avoid staining the tank and toilet.

Conclusion

Potable water is supplied to our homes, offices and institutions after abstraction, treatment and through long distribution and pumping network and entails huge cost which is heavily subsidized by the Government. It is high time that we consider water conservation as a priority step and avoid any water wastage and leakages at home, offices and institutions.  

The time is now to deal with our water leaks promptly and giving it a priority. Remember- fixing leaks will save money, is good for the environment and will save our limited water resources.  

Republished by Blog Post Promoter

Say ‘No’ to Disposables

The waste quantities in all parts of the world are increasing many folds. In the past three decades, the waste quantities have almost been doubled. The per capita waste generation is alarmingly high especially in GCC countries. The municipal and governmental authorities have to spend huge resources in collection, storage, transportation, treatment and disposal of these wastes. With limited recycling facilities and absence of reusing culture, more quantities of the waste is now to be managed.

Major part of our municipal waste is still heading towards our landfill sites where it is being dumped, compacted and covered. The landfills are in quarries areas which are becoming soon filled up with the waste. In Bahrain almost 1.7 cum of space is required to accommodate 1 tons of waste.

Use of disposable cutlery has been increasing exponentially in developing countries

Despite a growing push to recycle and reuse, we must try to correct not the symptoms but the disease, and to do that, we should all avoid and reduce. The use of ‘disposables’ in the Middle East has increased exponentially in recent years and the items and quantities are increasing with each passing day. Here are few suggestions to avoid the use of disposables in our daily lives:

  • Avoid Paper Cups and Plates as paper manufacturing consume trees and are bleached white with chlorine, a process that releases dioxin, one of the most toxic chemicals on the planet, and emit methane, a greenhouse gas when trashed and thrown in a landfill.
  • Avoid Polystyrene & Styrofoam which are hazardous, carcinogens, cause air pollution and can cause nervous system impairments among workers. Styrene can leach from containers into our food. Polystyrene cannot be recycled and never biodegrades; it only breaks down into smaller pieces, polluting the environment and harming the animals that mistake it for food.
  • Avoid Bottled Water and use reusable containers for water storage and drinking.
  • Avoid Plastic and Paper Shopping Bags. Keep your own cloth bag ready for all occasions.
  • Avoid Plastic Utensils, paper napkins, plastic cutlery, forks, spoons and knives. Use chinaware or glassware instead.
  • Avoid Use rechargeable batteries instead of single use batteries. •Avoid using disposable diapers and use cloth diapers.
  • Using ink pen rather than ball points and getting a refillables. •Using handkerchief rather than tissue and paper towels.
  • Avoid using disposable stirrers and individually packaged sugar, milk and creamer. Use a spoon for stirring and place the sugar and milk in reusable containers or jugs.
  • Avoid using individual sachets of chilly, mayonnaise or ketchup sauce. Store the sauce in reusable bottles and dispensers instead.
  • Avoid Gift Wrapping and put the gift in a reusable bag instead..

Each time you throw something in the trash, please consider that you have paid its cost and are contributing towards more waste at the landfill.

Please avoid disposables. Be wise and environmental friendly.

Water Resource Management in GCC – Issues and Challenges

GCC countries are suffering from a huge deficit in their water resources reaching more than 20 billion cubic meter, being met mainly by an intensive over-drafting of renewable and non-renewable groundwater resources for the agricultural sector, and by the extensive installation of highly expensive desalination plants for the municipal sector, and by reusing a small percentage of treated wastewater in the agricultural and municipal sector. Furthermore, conflict between the agricultural and domestic sectors on the limited water resources in the region are rising, and as a result, groundwater over-exploitation and mining is expected to continue in order to meet growing demand in these two sectors.

If current population growth rates, water management approach, water use practices and patterns continue, annual water demand may reach more than 50 billion cubic meter (Bcm) by the year 2030.  With the anticipated future limited desalination capacity and wastewater reuse, this demand will have to be met mainly by further mining of groundwater reserves, with its negative impacts of fast depletion and loss of aquifer reserves and the deterioration of water quality and salinization of agricultural lands, of which these resources usefulness is questionable with the expected deterioration of their quality. Under these circumstances, water will become an increasingly scarce commodity, and would become a limiting factor for further social, agricultural and industrial development, unless major review and shifts in the current policies of population and adopted food self-sufficiency are made, and an appropriate and drastic measures in water conservation are implemented.

A diagnosis of the water sector in Gulf Cooperation Council countries indicated that the main problems and critical issues in these countries are:

  1. Limitation of water resources and increasing water scarcity with time due to prevailing aridity, fast population growth, and agricultural policies;
  2. Inefficient water use in the agriculture (traditional irrigation practices), and municipal/domestic sectors (high per capita water use, high rates of unaccounted-for-water);
  3. Rising internal water allocation conflicts between the agricultural and municipal sector;
  4. Rapid depletion and groundwater quality deterioration due to their over-exploitation, with multiple impacts on agricultural productivity and ecosystems;
  5. Inferior quality of water services in large cities due to fast pace of urbanization; and
  6. Weak water institutions due to fragmentation of water authorities and lack of coordination and inadequate capacity development.

Currently, there are two main challenges of water resources management in the GCC countries. These are the unsustainable use of groundwater resources with its ramification on these countries socio-economic development, and the escalating urban water demands and its heavy burden on their national budget and negative impacts on the environment.

As the quality of groundwater deteriorates, either by over-exploitation or direct pollution, its uses diminishes, thereby reducing groundwater supplies, increasing water shortages, and intensifying the problem of water scarcity in these countries. It is expected that the loss of groundwater resources will have dire consequences on the countries’ socio-economic development, increases health risks, and damages their environment and fragile ecosystem regimes.  Moreover, the development of many GCC countries is relying heavily on non-renewable fossil groundwater, and the issue of “sustainability” of non-renewable resources is problematic, and requires clear definition.

Sustainability of these resources need to be interpreted in a socio-economic rather than a physical context, implying that full considerations must be given not only to the immediate benefits and gains, but also to the “negative impacts” of development and to the question of “what comes after?” An “exit strategies” need to be identified, developed, and implemented by the time that the aquifer is seriously depleted. An exit strategy scenario must include balanced socio-economic choices on the use of aquifer storage reserves and on the transition to a subsequent less water-dependent economy, and the replacement water resource.

Despite their relatively enormous cost and heavy burden on the national budged, limited operational life (15-25 years), their dependence on depleting fossil fuel, and their negative environmental impacts on the surrounding air and marine environment, the GCC countries are going ahead with desalination plant construction and expansion in order to meet the spiralling domestic water demands – a function of population and urbanization growth.  The rapid increase in urban water demands in the GCC can be explained by two factors, rapid population growth and the rise in per capita consumption; per capita average daily consumption in the domestic sector ranges between 300-750 liters, which ranks the highest in the world. This is due mainly to the reliance on the supply side of management with little attention given to the demand management and the non-existence of price-signaling mechanism to consumers.

The other strategic issue is that, despite the current and anticipated future dependence of the GCC countries on desalination to meet its domestic/drinking water supply, desalination remains an imported technology for the GCC countries with limited directed R&D towards these technologies. Furthermore, desalination industry have limited added value to the GCC countries economies (e.g., localizing O&M, plant refurbishment, fabrication, manufacturing of Key Spare Parts, qualifying local labor to work in desalination industry, etc..).

Republished by Blog Post Promoter

The Menace of Plastic Water Bottles

During the holy month of Ramadan, the use of drinking water increases many folds as water bottles are supplied and provided especially at ‘Fatoor’ and dinner at religious places, hotels, Ramadan tents and private homes. The main consumption is however, at the religious places due to longer stay of people in offering special night prayers (taraweeh and Qiyam ul Lail). These water bottles are provided in bulk by philanthropists, sponsors and people at religious places to quench the thirst of people who gather for the long prayers.

In the Middle East, it is common to see people greatly misuse this resource considering it free, taking a bottle, sipping it half and leaving it at the venue. These used and partially consumed water bottles are then collected and thrown away in municipal garbage bins from where  it is collected and transported to Askar municipal landfill site located some 25 km away from the city center. These water bottles thus have a high carbon footprint and represent enormous wastage of precious water source and misuse of our other fragile resources. In many cases, these water bottles are being littered around the commercial and religious places.

Plastic water bottles are a common feature in our urban daily life. Bottled water is widely used by people from all walks of life and is considered to be convenient and safer than tap water. A person on an average drinks around 2.0 liters of water a day and may consume 4-6 plastic bottles per day. UAE is considered as the highest per capita consumer of bottled water worlwide. 

We need to understand that plastic is made from petroleum.  24 million gallons of oil is needed to produce a billion plastic bottles. Plastic takes around 700 years to be degraded. 90% of the cost of bottled water is due to the bottle itself. 80% of plastic bottles produced are not recycled.

Globally, plastic recycling rate is very low and major quantities of plastics are being disposed in the landfills, where they stay for hundreds of years not being naturally degraded. Recycling one ton of plastic saves 5.74 cubic meters of landfill space and save cost of collection and transportation.

Water bottles manufacturing, transportation, distribution and again collection and disposal after its use create enormous pollution in terms of trash generation, global warming and air pollution. The transportation of bottled water from its source to stores alone releases thousands of tons of carbon dioxide. In addition to the millions of gallons of water used in the plastic-making process, two gallons of water are wasted in the purification process for every gallon that goes into the plastic bottles.

The first step is that once you open a water bottle, you need to complete consume it to fully utilize the resource. Do not throw the plastic bottles as litter. The solution to the plastic bottles usage lies in its minimum use and safe disposal. Alternatively, a flask, thermos or reusable water bottle can be used which can be refilled as required. It is suggested that religious places, hotels and malls should have efficient water treatment plants to reduce the use of plastic water bottles.

Republished by Blog Post Promoter

Food Security Strategy in Qatar

Qatar is a water-scarce and arid region which has its own share of demographic and socio-economic problems. The cultivation of food crops is a difficult proposition for Qatar due to scarcity of water supply and limited availability of arable land. The country is vulnerable to fluctuations in international commodity markets because of heavy dependence on imported grains and food items. The increasing dependence on foreign food imports is leading to a growing sense of food insecurity in Qatar.

Understanding Food Security

Food security is the condition in which all people at all times have a physical and economic access to safe, adequate and nutritious food to satisfy their daily calorific intake and allow them to lead an active and healthy life. Individuals who are food secure have an access to a sufficient quantity of food and do not live in fear of hunger and starvation. On the other hand, food insecurity exists simultaneously and inhibits certain groups of individuals from gaining access to nutritionally adequate and safe food. In the case of Middle East and North Africa (MENA) countries, food insecurity is related to poor quality diets rather than calorie-deficient diets. A typical diet in MENA region is high in saturated fats, sugar and refined foods which is a major cause for increase in chronic diseases in the region.

There are a multitude of factors which may challenge a nation from achieving food security. Some of these factors include; the global water crisis and water deficits which spur heavy grain imports in smaller countries ultimately leading to cutbacks in grain harvests. Similarly, intensive agriculture and farming drastically influence soil fertility and cause a decline in crop yield. Another notable factor limiting food security includes the adverse effects of climate change such as droughts and floods which greatly affect the agricultural sector.

The impacts of declining crop yields will include a change in productivity, livelihood patterns as well as economic losses due to declining exports. According to the Global Food Security Index, countries which are on top of the food security index include USA, Norway and China. The countries suffering from greatest food insecurity include, Democratic Republic of Congo, Togo and Chad.

Food Security Strategy in Qatar

Being one of the fastest growing economies in the world, Qatar is facing large-scale influx of expatriate workers which has resulted in tremendous increase in population in recent years. Limited land availability, chronic water scarcity and constraints in agricultural growth have led to growing concerns about food security. Agriculture plays a strategic role in the nation’s food security. Qatar imports over 90% of its food requirements due to the scarcity of irrigation water, poor quality soils and the inhibitions due to climatic conditions. Infact, the country is facing an agricultural trade deficit of QR. 4.38 billion equivalent to $1.2 billion. 

In response, Qatar has begun to address the situation by aiming to efficiently utilize ‘cutting edge technology’ to establish a sustainable approach to food security for dry land countries. The Qatar National Food Security Program (QNFSP) was established in 2008 and aims to reduce Qatar’s reliance on food imports through self sufficiency. The program will not only develop recommendations for Food Security policy but intends to join with international organizations and other NGOs to develop practices to utilize resources efficiently within the agricultural sector.

Qatar has established a nation-led National Food Security Program to encourage domestic production which will lead to scientific and technological development in two specific areas to increase domestic production. These areas include development in agricultural enhancement and food processing. QNFSP’s approach to expanding the agricultural sector aims to introduce the best practices and establishing a sector which considers its economic efficiency, optimal usage of scarce resources with limited impact on the environment as well as profitable and sustainable agriculture. A key element of this approach will include the deployment of advanced crop production technologies and advanced irrigation systems. The QNFSP will require well managed stakeholder participation, revised agricultural possibilities and of course a comprehensive strategy for agricultural research.

The nation’s second approach to increase domestic production includes regulations and implementations on food processing. Food processing increases the shelf-life of food, reduces raw food losses and enables the continuity of product availability. By enhancing the shelf-life of food and reducing the amount of food being wasted improves a nation’s food security. The QNFSP aims to develop the nation’s food processing industry by taking advantage of the new industry being established in Qatar which will allow the country to sell its own processed goods on the global market. To meet this objective the nation will need to implement international quality assurance mechanism to be capable of producing high quality products as well as to expand their food reserves and storage facilities.

Sahara Forest Project

In addition to the trenchant efforts being made by the Qatar National Food Security Program, an interesting and promising pilot project named Sahara Forest Project is being rigorously pursed in Qatar. The Sahara Forest Project allows for sustainable production of food, water and energy while revegetating and storing carbon in arid areas.

A one hectare site outside Doha, Qatar, hosts the Sahara Forest Project Pilot Plant. It contains a unique combination of promising environmental technologies carefully integrated in a system to maximize beneficial synergies. A cornerstone of the pilot is greenhouses utilizing seawater to provide cool and humid growing conditions for vegetables, The greenhouses themselves produce freshwater and are coupled with Qatar’s first Concentrated Solar Power plant with a thermal desalination unit.

An important part of the pilot is to demonstrate the potential for cultivating desert land and making it green. Outdoor vertical evaporators will create sheltered and humid environments for cultivation of plants. There are ponds for salt production and facilities for experimentation with cultivation of salt tolerant plants, halophytes. Additionally, the facility also contains a state of the art system for cultivation of algae.

References

Sahara Forest Project. "Sahara Forest Project in Food Security Program on Qatar TV." Sahara Forest Project. N.p., 2012. Web. 10 Dec. 2013. <http://www.goo.gl/ICjuKN>.

QNFSP. "Qatar Steps up to Food Security and World Hunger." Qatar National Food Security Programme. QNFSP, 2011. Web. 9 Dec. 2013. <http://www.qnfsp.gov.qa>.

Farhad Mirzadeh. "Qatar’s Seeks Solutions to Food Insecurity." American Security Project. N.p., 28 Oct. 2013. Web. 9 Dec. 2013. < http://www.goo.gl/LvY2em />

Bonnie James. "Qatar Food Security Plans Get a Boost." Gulf Times. N.p., 4 Nov. 2013. Web. 10 Dec. 2013. <http://www.goo.gl/wSc27F>.

Republished by Blog Post Promoter

Understanding Qatar’s Ecological Footprint

Qatar’s environmental impact remains worryingly high. The country’s per capita ecological footprint is now the second highest in the world, as another Gulf state, Kuwait, has overtaken it to become the worst offender of the 152 countries that were measured, according to the World Wildlife Fund (WWF) Living Planet Report 2014. The third country in the list is the UAE, with Saudi Arabia, the world’s largest oil producer, in 33rd position. By comparing the total footprint with the planet’s biocapacity – its capacity to generate an ongoing supply of renewable resources and to absorb waste -the report, based on 2010 data, concludes that the average human’s per capita footprint exceeds the planet’s capacity by 1.5. Most MENA countries’ ecological footprints also exceed their biocapacity in terms of their global rankings.

Qatar’s footprint, measured in global hectares (gha), is 8.5 – the second highest in the world, but down from 11.6 in the 2012 report. Only Kuwait fared worse, with a footprint of over 10gha. According to the WWF report, if all people on the planet had the footprint of the average resident of Qatar, we would need 4.8 planets. If we lived the lifestyle of a typical resident of the USA, we would need 3.9 planets. The figure for a typical resident of South Africa or Argentina would be 1.4 or 1.5 planets respectively. The world’s average footprint per person was 2.6gha, but the global average biocapacity per person was 1.7gha in 2010. This is based on the Earth’s total biocapacity of approximately 12 billion gha, which has to support all humans and the 10 million or more wild species.

Salman Zafar, founder of EcoMENA, a voluntary organisation that promotes sustainable development in the Arab world, attributes the Qatari situation on lack of environmental awareness among the local population, lavish lifestyles and a strong dependence on fossil fuels. “The huge influx of workers from across the world has put tremendous strain on already stressed natural resources. Migrant workers, who make up a huge chunk of the population, remain in the country for a limited period of time and are not motivated enough to conserve natural resources and protect the environment,” he adds. As for Kuwait, he says the growing ecological footprint may be attributed to its flourishing oil and gas industry, an increase in desalination plants, the presence of hundreds of landfills, excessive use of water, energy and goods, a huge expatriate population and the absence of concrete environmental conservation initiatives.

Of the 25 countries with the largest per capita ecological footprint, most were high-income nations. For virtually all of these, carbon was the biggest component, in Qatar’s case 70%. Carbon, specifically the burning of fossil fuels, has been the dominant component of humanity’s footprint for more than half a century, says the WWF report – in 1961, carbon had been 36% of the total footprint, but by 2010 it had increased to 53%. In 2013, the concentration of carbon dioxide in the atmosphere above Mauna Loa, Hawaii – the site of the oldest continuous carbon dioxide measurement station in the world – reached 400 parts per million (ppm) for the first time since measurements began in 1958. This is higher than they have been for more than a million years, and climate science shows major risks of unacceptable change at such concentrations. Furthermore, 2014 has globally been the hottest year since measurements started, and the World Meteorological Organisation predicts that this upward trend will continue.

The world’s total population today is already in excess of 7.2 billion, and growing at a faster rate than previously estimated. The dual effect of a growing human population and high per capita footprint will multiply the pressure humans place on ecological resources, the report states. As agriculture accounts for 92% of the global water footprint, humanity’s growing water needs, combined with climate change, are aggravating water scarcity. The authors also make it clear that in the long term water cannot be sustainably taken from lakes and groundwater reservoirs faster than they are recharged. Desalination of seawater also leads to brine (with a very high concentration of salt and leftover chemicals and metals), which is discharged into the sea where it poses a danger to marine life.  In terms of biodiversity, the report shows an overall decline of 52 percent between 1970 and 2010. Falling by 76 percent, population of freshwater species declined more rapidly than marine and terrestrial (both 39 percent) population.

With regards to Qatar’s biocapacity, its fishing grounds make up 92% of the total, while the country ranks 66th globally in terms of its biocapacity per capita. Like other Gulf states, it can operate with an ecological deficit by importing products, and thus using the biocapacity of other nations; and/or by using the global commons, for instance, by releasing carbon dioxide emissions from fossil fuel burning into the atmosphere, says the report.

Although Qatar has initiated plans to reduce its footprint and live less unsustainably, the latest electricity demand figures from Qatar General Electricity and Water Company (Kahramaa) show a 12% rise in demand for power over the previous year. This is in line with the country’s population growth, meaning that there has been no reduction in the per capita consumption, which is still under the top 15 countries in the world. Its water consumption per capita is also one of the highest in the world.

Qatar’s heavy reliance on gas and oil, its subsidised water and electricity, and the huge amount of energy needed for water desalination and air-conditioning make it unlikely that the country’s per capita standing in terms of the ecological footprint will improve anytime soon, but given the country’s small size its total impact is still relatively small.

Salman Shaban from the metal recycling company Lucky Star Alloys, regards the report as only highlighting Qatar’s current rapid development. “It is not fair to come to any conclusions at this stage when the construction, transport system and population boom is taking place. Any place that will go through such a fast development will initially have its impact on the ecological systems.” He foresees a gradual carbon footprint reduction once the construction and development phase is completed.“ Having said that, it is still every resident and citizen moral responsibility to conserve energy and protect the environment,” he adds. “Recycling should be a standard part of every household culture.”

According to Salman Zafar, grass-root level environmental education, removal of subsidies on water and energy, sustainable waste management practices, effective laws, awareness programs and mandatory stakeholder participation are some of the measures that may improve the environmental scenario in Qatar.

Although it makes for some disturbing reading, the report makes it clear that many individuals, communities, businesses, cities and governments are making better choices to protect natural capital and reduce their footprint, with environmental, social and economic benefits. But given that these exhaustive reports are based on data that is four years old, any current changes for better and worse will only become clear in the near future.

Note:

  • WWF is one of the world’s largest independent conservation organizations; its mission is to stop the degradation of the planet’s natural environment and to build a future in which humans live in harmony with nature. The full report is available at this link.
  • An edited version of this article first appeared in The Edge, Qatar’s Business Magazine. 

Republished by Blog Post Promoter