Introduction to Composting

The composting process is a complex interaction between the waste and the microorganisms within the waste. The microorganisms that carry out this process fall into three groups: bacteria, fungi, and actinomycetes. Actinomycetes are a form of fungi-like bacteria that break down organic matter.

The first stage of the biological activity is the consumption of easily available sugars by bacteria, which causes a fast rise in temperature. The second stage involves bacteria and actinomycetes that cause cellulose breakdown. The last stage is concerned with the breakdown of the tougher lignins by fungi.

Compost_Schematic

Central solutions are exemplified by low-cost composting, as discussed here by GardenDIY, without forced aeration, and technologically more advanced systems with forced aeration and temperature feedback. Central composting plants are capable of handling more than 100,000 tons of biodegradable waste per year, but typically the plant size is about 10,000 to 30,000 tons per year.

Biodegradable wastes must be separated prior to composting: Only pure food waste, garden waste, wood chips, and to some extent paper are suitable for producing good-quality compost.

The methodology of composting can be categorized into three major segments—anaerobic composting, aerobic composting, and vermicomposting. In anaerobic composting, the organic matter is decomposed in the absence of air. Organic matter may be collected in pits and covered with a thick layer of soil and left undisturbed six to eight months. The compost so formed may not be completely converted and may include aggregated masses.

Aerobic composting is the process by which organic wastes are converted into compost or manure in presence of air and can be of different types. The most common is the Heap Method, where organic matter needs to be divided into three different types and to be placed in a heap one over the other, covered by a thin layer of soil or dry leaves. This heap needs to be mixed every week, and it takes about three weeks for conversion to take place. The process is same in the Pit Method, but carried out specially constructed pits. Mixing has to be done every 15 days, and there is no fixed time in which the compost may be ready.

Berkley Method uses a labor-intensive technique and has precise requirements of the material to be composted. Easily biodegradable materials, such as grass, vegetable matter, etc., are mixed with animal matter in the ratio of 2:1. Compost is usually ready in 15 days.

Vermicomposting involves use of earthworms as natural and versatile bioreactors for the process of conversion. It is carried out in specially designed pits where earthworm culture also needs to be done. Vermicomposting is a precision-based option and requires overseeing of work by an expert. It is also a more expensive option (O&M costs especially are high).

However, unlike the above two options, it is a completely odorless process making it a preferred solution in residential areas. It also has an extremely high rate of conversion, so quality of the end product is very high with rich macro and micronutrients. The end product also has the advantage that it can be dried and stored safely for a longer period of time.

The composting plants consist of some or all of the following technical units: bag openers, magnetic and/or ballistic separators, screeners (sieves), shredders, mixing and homogenization equipment, turning equipment, irrigation systems, aeration systems, draining systems, bio-filters, scrubbers, control systems, and steering systems.

The composting process occurs when biodegradable waste is piled together with a structure allowing for oxygen diffusion and with a dry matter content suiting microbial growth. The temperature of the biomass increases due to the microbial activity and the insulation properties of the piled material. The temperature often reaches 65 degrees C to 75 degrees C within a few days and then declines slowly. This high temperature hastens the elimination of pathogens and weed seeds.

Tagged , , , , , , . Bookmark the permalink.

About Salman Zafar

Salman Zafar is the Founder of EcoMENA, and an international consultant, advisor, ecopreneur and journalist with expertise in waste management, waste-to-energy, renewable energy, environment protection and sustainable development. His geographical areas of focus include Middle East, Africa, Asia and Europe. Salman has successfully accomplished a wide range of projects in the areas of biomass energy, biogas, waste-to-energy, recycling and waste management. He has participated in numerous conferences and workshops as chairman, session chair, keynote speaker and panelist. Salman is the Editor-in-Chief of EcoMENA, and is a professional environmental writer with more than 300 popular articles to his credit. He is proactively engaged in creating mass awareness on renewable energy, waste management and environmental sustainability in different parts of the world. Salman Zafar can be reached at salman@ecomena.org or salman@bioenergyconsult.com

7 Responses to Introduction to Composting

  1. Waste management and modern recycling technologies needs to be engineered to suit the type of climate in arid and semi-arid regions. This because production and use of freshwater in different as compared to temperate regions, e.g. those existing in Europe. It is not difficult to re-shape the technology in Europe to solve the problems in the MENA region. http://sustain-earth.com

  2. Aman Mishra says:

    Please give information about Biocomposting for 11th STD EVS project

  3. Pingback: Enumerating Advantages of RDF | Cleantech Solutions

  4. Pingback: Composting in Qatar

  5. Pingback: 5 Rules to Become a Zero-Waste College Student | EcoMENA

  6. Pingback: A Quick Glance at Composting Methods | EcoMENA

  7. Pingback: Digging Deeper Into Composting – Country Girl in a Small City World

Share your Thoughts

This site uses Akismet to reduce spam. Learn how your comment data is processed.