Waste-to-Energy Pathways

Waste-to-energy is the use of modern combustion and biological technologies to recover energy from urban wastes. The conversion of waste material to energy can proceed along three major pathways – thermochemical, biochemical and physicochemical. Thermochemical conversion, characterized by higher temperature and conversion rates, is best suited for lower moisture feedstock and is generally less selective for products. On the other hand, biochemical technologies are more suitable for wet wastes which are rich in organic matter. Thermochemical Conversion The three principal methods of thermochemical conversion are combustion (in excess air), gasification (in reduced air), and pyrolysis (in absence of air). The most … Continue reading

Introduction to Biorefinery

A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and value-added chemicals from biomass. Biorefinery is analogous to today’s petroleum refinery, which produces multiple fuels and products from petroleum. By producing several products, a biorefinery takes advantage of the various components in biomass and their intermediates, therefore maximizing the value derived from the biomass feedstock. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol. At the same time, it can generate electricity and process heat, … Continue reading

  • Subscribe to our Knowledge Bank

    Enter your email address to subscribe to our interesting articles

    Join 11,883 other subscribers