Solar Energy in Saudi Arabia: Perspectives

Saudi Arabia, the epicenter of global oil industry, has been showing keen interest in solar energy in recent years. Saudi Arabia has one of the world’s highest solar irradiation in the world, estimated at approximately 2,200 thermal kWh of solar radiation per m2. The country is strategically located near the Sun Belt, in addition to plentiful availability of empty stretches of desert that may accommodate infrastructure for solar power projects.

Vast deposits of sand can be used in the manufacture of silicon PV cells which makes Saudi Arabia an attractive location for solar industry. “The resource is stunning; land is abundantly available; the transmission grid system is relatively new, highly resilient and capable of accommodating intermittent loads; and the creditworthiness of KSA is unbeatable as demonstrated by response to the nation's first ever international bond offering”, explains Paddy Padmanathan, CEO of ACWA Power, one of the world’s leading solar developers.

Another important driver for solar energy deployment in Saudi Arabia is astonishingly high per capita primary energy consumption, four times higher than the global average. The total energy consumption in the Kingdom is rapidly rising at a rapid rate of 6 percent per annum which also presents a strong case for diversification of energy sources.

Slow Progress Yet Ambitious Goals

Despite its tremendous potential, solar energy sector in Saudi Arabia is still in early stages. “Saudi Arabia is yet to turn its huge solar potential into reality”, says Makio Yamada, Research Fellow at King Faisal Center for Research and Islamic Studies (Riyadh). In 2012, the government unveiled plans to invest more than $100 billion in clean energy projects till 2030 in order to generate 41GW, a third of its power requirements, from renewable resources, primarily solar energy.

However, the government drastically scaled back the program in January 2015 and set a more realistic renewables target 14% of current generating capacity (9.5GW) by 2030.  “The installed solar capacity is less than a fifth of that in the UAE which can be attributed to institutional fragmentation and lack of effective collaboration between relevant state and semi-state organizations”, adds Yamada.

The newly launched Vision 2030 document puts forward a strong regulatory and investment framework to develop Saudi solar energy sector, financed in part by $2 trillion sovereign fund. “Vision 2030 highlights renewable energy as a strategic priority for Saudi Arabian economy which would help in economic diversification away from oil revenues, increasing energy security, diversify energy mix, free up oil for export, enhance regulatory framework, and support development of renewable energy industry, thus paving the way for a low-carbon economy in the Kingdom”, say Eaman Abdullah Aman, a Saudi energy expert and writer.

Infact, Saudi Arabia’s long-term goal is to become the leading exporter of solar energy in Middle East and Vision 2030 is expected to play a key role in realizing this objective. “What makes Vision 2030 and King Salman Renewable Energy Initiative different from previous programs is that they represent the highest level commitment to renewable energy ever seen from the Kingdom”, emphasizes Nada.

Under the King Salman Renewable Energy Initiative, the government will review the legal and regulatory framework for private-sector investment in order to encourage public-private partnerships and promote local manufacture. “The new targets and strategy outlined in Vision 2030 and National Transformation Plan is very much in sync with fuel mix trends around the world”, observes Padmanathan.

Winds of Change

The first renewable energy initiative from the Saudi government was the establishment of King Abdullah City for Atomic and Renewable Energy (KA-CARE) in 2010, which is the official agency in-charge of promoting clean energy in the Kingdom. One of its major achievements has been the establishment of 3.5MW PV project at the King Abdullah Petroleum Studies and Research Center. 

Saudi Arabia’s long-term goal is to become a leading exporter of solar energy

Saudi Arabia’s first competitive global tender for utility-scale solar power projects was recently launched – two 50 MW solar power plants at Al-Jouf and Rafha. Though current installed solar capacity in the country is a measly 25MW, world’s leading solar energy companies are already active in the local market, mainly due to the promise and potential of Saudi solar sector. “We already have two pilot projects in place: the first is solar-powered irrigation project at Al-Jouf while the other one is a carport solar power plant for the Saudia Dairy and Foodstuff Company (SADAFCO) in Riyadh”, informs Ahmed Nada, Vice President and Region Executive – Middle East at First Solar.

In addition to solar PV, concentrated solar power (CSP) is an interesting option for Saudi Arabia due to its strong dependence on desalination plants to meet its water requirement. Waste heat of a CSP plant can be used to power seawater desalination projects. In 2015, Saudi Electric Company selected CSP to produce electricity with 550MW Duba 1 project, an integrated Solar Combined Cycle Power Plant located near Tuba. The plant, still in tendering phase, is designed to integrate a parabolic trough unit of around 20 to 30MW. 

Outlook for the Future

Due to its regional dominance, Saudi Arabia can play a vital role in the proliferation of solar energy in the entire Middle East. “The Kingdom needs to urgently move forward with its renewable energy plans and start the production of solar energy on a large-scale”, says Padmanathan. “The current focus is on increasing levels of efficiency, reducing subsidy and slashing government expenditure and on doing things that truly add value”, he adds.

“Vision 2030 target suggests that the country will grow its renewable energy capacity in increments, taking advantage of future cost declines and efficiency improvements, while also leaving the door open for emerging technologies”, says Nada. Under the new leadership of King Salman, the country is making a concerted effort to develop its renewable energy sector. “The reorganization of stakeholders and decision makers on energy policy and renewables, under one umbrella, should accelerate KSA’s renewable energy program”, observes Nada. The government restructuring in May 2016 placed necessary administrative functions under the newly-created super-ministry, the Ministry of Energy, Industry, and Mineral Resources which will eventually pave the way for implementation of solar projects.

However, there are several critical areas which Saudi Arabia should tackle for a smooth transition to renewables-focused energy mix. “Saudi Arabia should take a consultative approach on its renewable energy policy framework by leaning on capable, credible industry partners to share their expertise which will help the country avoid the steep learning curve that other markets have faced”, explains Nada. Lenders and financiers are an integral part of any industry, and they should be properly informed about green financing. “It will be particularly important for banks and lenders based in the Kingdom to better understand the solar energy industry, ensuring that they’re comfortable with providing competitive financing for the program”, stresses Nada.

It is also essential to adapt solar energy systems to meet specific energy-intensive applications. “Saudi Arabia could provide long-term solar energy targets for certain, energy-intensive industrial sectors such as cement, steel and petrochemicals”, says Nada.

Lastly, a well-trained and performing workforce is crucial for the development of solar market. “Saudi Arabia needs to invest wisely in technical education to overcome the skills mismatch between schools and the labour market and ensure the supply of rightly-trained human resources to the solar industry”, stresses Yamada.

البرك الشمسية في البحر الميت – حين يجد الشباب الأردني الحل لتوفير الطاقة

توالت الاقتراحات و الحلول لمشاكل توفير الطاقة عبر السنين العشر الماضية في الأردن , و كان العديد من المهتمين بهذا الموضوع في وضعية بحث غير منقطعة عن حلول جدية و احيانا جذرية , لكن كما يعلم الجميع ما زال موضوع " البدائل البيئية " و كيفية الحفاظ على البيئة و توفير الطاقة موضوعا يصنف تحت قائمة " الرفاهيات " و أن هناك ما هو أهم لتسليط الضوء عليه رغم وجود حوال 70 جمعية لحماية البيئة في الأردن .

لكن ليس من الضروري أحيانا  أن تصل التوعية لأعداد ضخمة أو مجتمعات كبيرة , ربما وصولها لأفراد سينعشها و يضخ الحياة فيها من جديد , و من أحد هؤلاء الأفراد الأردنيين الشباب طالب في كلية الهندسة " هشام البلاونة " , قرر أن يكون مشروع تخرجه بصمة جديدة  في سجل توفير الطاقة و حماية البيئة في الأردن , مشروعه كان تحت عنوان " البرك الشمسية في البحر الميت " بمساعدة أستاذه القديردكتور خلدون الوحوش  الذي يطمح دائماً لنقل مفهوم الطاقة النظيفة إلى مستويات أعلى , و هذا ما ساناقشه في مقالي هذا .

ما هي البرك الشمسية

البرك الشمسية , هي عبارة عن حفرة ثلاثية الأبعاد موضوعة في الهواء الطلق مملوءة بمياه ذات خصائص معينة .  تستقبل الطاقة الحرارية عن طريق العزل , ثم يتم استخراج الحرارة الكامنة فيها من المياه الواقعة في قاع البركة .

البرك الشمسية في البحر الميت

لغرض استخراج الحرارة من مياه البحر الميت , تم تصميم بركة شمسية تجريبية مربعة صغيرة الحجم  1.25 عمقها و عرضها 2.0 . بنيت هذه البركة في منطقة البحر الميت بإحداثيات 30 20 0 شمالا و 35 30 0 شرقا , انتقال الحرارة الموجودة في البركة بالحمل سيمنع عن طريق الملوحة الخاصة بمياه البحر الميت بجانب إضافة مجموعة من الأملاح  " كلوريد الصوديوم , كلوريد المغنيسيوم و بيكربونات الصوديوم "  NaCl , MgCl2 و  NaHCO3",  و التي استخلصت من نفس البحر " البحر الميت  " .

ألية عملها

البركة الشمسية هي عبارة عن مساحة كبيرة تقوم بجمع الطاقة الشمسية و تخزينها في نفس الوقت . حين تسقط الطاقة الشمسية على البركة سوف تقوم بتسخينها و تقسيمها إلى ثلاث أقسام القسم الأول هو الطبقة العلوية "  Surface Zone" ذات المياه العذبة و الملوحة القليلة تبعاً لحقيقة أن الأملاح تتركز في الأسفل , و القسم الثاني هو الطبقة المتوسطة و ما يسمى بطبقة العزل" Insulation Zone" حيث تكون درجة ملوحتها أكبر من طبقة السطح , أما الطبقة الأهم هي طبقة القعر أي الطبقة السفلى و التي تعرف بطبقة التخزينStorage Zone و هي التي تحتفظ بالحرارة الشمسية  وفيها تكمن عملية استخراج الطاقة . و تكون سماكة الطبقة المشبعة من متر إلى مترين تقريبا , أما البركة بشكل عام من مترين إلى أكثر من ذلك .


حين تكتسب  مياه أي بركة الحرارة , سوف تتمدد و تقل كثافتها و ترتفع , حالما تصل سطح البركة ستفقد حراراتها للهواء عن طريق البخار أو تيارات الحمل . أما المياه الأكثر برودة و التي تعتبر الأثقل و الأكثر كثافة سوف تحل محل المياه الدافئة التي صعدت للأعلى , ليخلق بذلك حركة حمل طبيعية تمزج الماء و تبدد الحرارة " الطاقة " .

لكن للبرك الشمسية في البحر الميت خاصية تجعلها تحتفظ بالحرارة " الطاقة " , وهي ازدياد درجة الملوحة مع ازدياد العمق , و بالتالي يزيد الكثافة مع العمق ايضا مما يجبر الماء الساخن أن يبقى في الأسفل بفعل الأملاح .

و بالتالي فإن الحرارة التي احتفظ بها في الطبقة الأخيرة المشبعة بالأملاح  و التي قد تصل إالى 85-90  درجة سيليسية ستقوم بتحريك توربينات  مولدةً بذلك طاقة كهربائية متجددة نظيفة و صديقة للبيئة , يوضح ذلك بالشكل التالي .

أهمية البرك الشمسية

البرك الشمسية توفر أبسط تقنية لتحويل الطاقة الشمسية إلى طاقة حرارية والتي يمكن استخدامها للعديد من الأغراض. فهي تتميز بقدرتها على جمع و تخزين الطاقة في ان معا . علماً بأن تكلفة البركة الشمسية لوحدة المساحة الواحدة أقل من تكلفة أي جامع حرارة " طاقة " متوفر حالياً . بالإضافة إلى  أن التذبذب المستمر لأسعار النفط في هذه الأيام دفع العديد من الأفراد و المؤسسات إلى البحث عن مصادر أخرى متجددة و أقل تكلفة .

كما أن  الماء الدافئ الذي حصلنا عليه بعد استخلاص حرارة البركة  يمكن استخدامه في العديد من الأغراض الصناعية  وأغراض تسخين البيوت الزجاجية خلال حدوث الإنجماد في الشتاء للمناطق المتواجدة أو القريبة من منطقة البحر الميت .

و يمكن استخدام البرك الشمسية في جميع المناخات طالما أن هناك أشعة شمسية متوافرة , و حتى لو تجمدت البركة تبقى البركة الشمسية المشبعة بالاملاح قادرة على انتاج الطاقة .


حتى يتم انشاء بركة شمسية فاعلة منتجة للطاقة الكهربائية , نحتاج إالى التالي :

تتطلب مساحة واسعة نسبياً من الأراضي ذات تكلفة منخفضة .

تتطلب مياه ذات محتوى ملحي عالي .

أن يكون الموقع ذو طاقة شمسية عالية .

وكل هذه المتطلبات أو المعطيات كانت متوافرة في منطقة البحر الميت , فهي أخفض مسطح مائي في العالم و أغناها أملاحاً .

لماذا علينا  تطبيق نظام البرك الشمسية في منطقة البحر الميت ؟

– تخزين الحرارة هائل .

– الطاقة يمكن استخراجها ليلاً و نهاراً .

– ممكن توفير بركة شمسية ذات مساحة كبيرة جداً و بتكلفة منخفضة .

– يمكن بناء البركة بسهولة سواءاً في نطاق صغير أو مساحات واسعة .

– توفير الطاقة الحرارية دون حرق الوقود و بالتالي هي مصدر نظيف قليل التلوث .

– ممكن لهذه التكنولوجيا أن تكون مصدراً حرارياً قوياً للصناعات حيث أن المياه المالحة و الأملاح متوافرة جنباً إلى جنب مع مساحة كافية من الأرض و نظام عزل جيد .

– و أهم سبب من الأسباب أنها مصدر فعال لإنتاج طاقة حرارية متجددة و مستدامة بيئياً .

إذن نظام جديد تمت دراسته و تطبيقه من قبل كادر تعليمي مهتم و واع لقضايا البيئة و أهمية إيجاد البدائل , تعتبر هذه خطوة سباقة في مجال إنتاج الطاقة و تطويرها في الأردن .

لكن السؤال الذي يطرح نفسه : هل سيصل مفهوم " الطاقة النظيفة " للأردنيين – أو سكان الشرق الأوسط على حد سواء –  ليدفعهم للدراسة و البحث و التنقيب بشكل جدي يحوّل الأمر إلى محور بدلاً من دراسة ورقية على مكتب  ؟

Republished by Blog Post Promoter

Introduction to Solar Pond

A solar pond is a three-dimensional, open-air pit, filled with water endowed with special properties. It receives solar energy through insulation, then the trapped heat is extracted from it from the water lying at the bottom of the pond. When solar energy falls onto the pond, it heats the water, splitting it into three sections: the first section is the uppermost layer, or Surface Zone, containing fresh water with a low level of salinity. This owes to the fact that salts gather at the bottom.

The second layer is the middle layer, called the insulating layer or Insulation Zone, whose salinity is greater than that of the surface level. The most important layer, though, is the bottom or lowest layer, known as the Storage Zone. This is the layer which retains solar energy and at which the extraction of energy is possible. This saturated layer is between approximately one and two metres thick, whereas the pond is generally two or more metres deep.

When the water of any Solar Pond gathers heat, it expands, becomes less dense, and rises. As soon as it reaches the pond’s surface, is loses its heat to the air as water vapour or by convection currents. The coolest water, which is considered the densest and heaviest, changes places with warm water which has risen to the surface, thus creating a natural carrying movement which mixes up the water and disperses the heat energy.

Solar Pond in the Dead Sea

In order to extract heat from the water of the Dead Sea, a small, square Solar Pond, 1.25 metres deep and 2.0 metres wide was designed as a test by Hashem al-Balawneh, an engineering student from Jordan, under the guidance of Dr. Khaldun al-Wahoosh. This solar pond was constructed in the Dead Sea region, at the coordinates 0 20 30 N, 0 30 35 E. Heat is prevented from escaping via convection by the Dead Sea water’s specific salinity, as well as by the addition of a group of Sodium Chloride, Magnesium Chloride and Sodium Bicarbonate salts (NaCl, MgCl₂ and NaHCO₃), which are also extracted from the Dead Sea.

Solar Ponds in the Dead Sea have a certain characteristic which allows them to keep heat energy, and that is the increase in salinity with increased depth. Accordingly, density also increases with depth, forcing the warm water to stay lower down because of the salts. Next, the heat which the water has absorbed in the last, salt-saturated layer whose temperature can reach between 85-90°C – moves turbines, thus generating clean, renewable, environmentally-friendly electrical energy.

Importance of Solar Ponds

Solar Ponds provide the simplest technique for transforming the sun’s energy into solar power, which can be extracted for different purposes. Solar Ponds are unique in their ability to gather and store energy simultaneously. It is known that the cost of Solar Ponds per unit area are less than any other current popular solar energy collector, as well as the fact that the continuous fluctuations in oil prices in recent times have pushed many individuals and organisations to look for other, cheaper, renewable sources of energy.

Similarly, the warm water which we get after extracting the pond’s heat can then be put to multiple industrial uses and to heating greenhouses in or around the Dead Sea region when the winter frosts set in. Solar Ponds can be used in all climates, as long as there is lots of sun, and even if the pond froze over, it would still be able to generate energy as it is saturated with salts. For an efficient, energy-generating Solar Pond to be set up, the following are needed: a relatively large area of low-cost land, water with high salinity and lots of sunshine. All these prerequisites are abundant in the Dead Sea region, which is the lowest and saltiest body of water in the world. Solar Pond system in the Dead Sea will help in large-scale energy storage and should be seen as an innovative step in the field of energy production and development in Jordan.


Translated by Katie Holland

Katie Holland graduated from Durham University in 2015 with a degree in Arabic and French, having also studied Persian. Currently working in London, she hopes to develop a career that uses her knowledge of Arabic and the Middle East, alongside pursuing her various interests in the arts. 

Republished by Blog Post Promoter

الطاقه المتجددة بالمغرب العربي

المغرب، كونها أكبر مستورد للطاقة في شمال أفريقيا، تبذل جهودا مركزة للحد من اعتمادها على الوقود الأحفوري المستورد. وتعتبر الطاقة المتجددة  مصدر موثوق في بلد مثل المغرب العربي التي لديها الاعتماد الكامل تقريبا على شركات الطاقة المستوردة.والمغرب تنفق سنويا  أكثر من 3 مليارات دولار على واردات الوقود والكهرباء في حين انها تشهد نمو الطلب على الطاقة بمعدل 6.5 في المئة سنويا.

وفقا لتقرير الوزارة المغربية للطاقة والتعدين، الطاقة الإجمالية المركبة للطاقة المتجددة (باستثناء الطاقة المائية) ما يقرب من 300ميجا وات في عام 2011. وقد حققت الحكومة المغربية بالفعل هدفها المتمثل في توفير حوالي 8٪ من إجمالي الطاقة الأولية من مصادر الطاقة المتجددة بحلول عام 2012 والذي يتضمن توليد الطاقة وتحويلها وتوزيعها.المغرب يخطط لاستثمار 13 مليار دولار لتوسيع مشاريع طاقة الرياح، والقدرة على توليد الطاقة الشمسية والكهرومائية التي من شأنها ايصال حصة مصادر الطاقة المتجددة في مزيج الطاقة إلى 42٪ بحلول عام 2020، مع الطاقة الشمسية وطاقة الرياح والطاقة المائية بمساهمة فردية من كلا علي حدي تصل الي 14٪.


برنامج الطاقة الشمسية في المغرب

أطلق المغرب أحد أكبر وأكثر الخطط طموحا في مجال الطاقة الشمسية في العالم باستثمارات قدرها 9 مليارات دولار أمريكي. وتعتبر خطة الطاقة الشمسية المغربية كعلامة فارقة على طريق البلاد نحو إمدادات طاقة آمنة ومستدامة وايضا هي طاقة نظيفة وخضراء وبأسعار معقولة. الهدف من هذه الخطة هو توليد 2000 ميغاواط (أو 2 جيجاوات) من الطاقة الشمسية بحلول العام 2020 من خلال بناء مشاريع الطاقة الشمسية على نطاق ضخم في خمس موقع – العيون (الصحراء) وبوجدور (الصحراء الغربية)، طرفاية (جنوب أغادير )، عين بني مطهر (وسط) ورزازات – باستخدام تقنيات مختلفة للطاقة الشمسية من استخدامات مسخنات حرارية والخلايا الضوئية والمركزات الشمسية.

وسيكون اول مصنع، في إطار خطة الطاقة الشمسية المغربية، سيتم التكليف به في عام 2014، ومن المتوقع أن يكتمل في عام 2019 المشروع بأكمله. وبمجرد الانتهاء،فمن المتوقع لمشروع للطاقة الشمسية توفير ما يقرب من خمس توليد الكهرباء السنوي في المغرب.

المغرب، الدولة الافريقية الوحيدة التي لديها وصلة كابلات الطاقة إلى أوروبا، هو أيضا تلعب دورا رئيسيا في خطة الطاقة الشمسية لحوض البحر المتوسط والمعروفة بمبادرة ديزيرتيك الصناعية. يهدف مفهوم ديزيرتيك لبناء محطات الطاقة الشمسية لتزويد الطاقة المتجددة من منطقة الشرق الأوسط إلى الدول الأوروبية باستخدام كابلات الجهد العالي ذات التيار المباشر (HVDC).

في المرحلة الاولي لتوليد 500ميجاواط في ورزازات وهي أكبر محطة للطاقة الشمسية الحرارية في العالم. سيتم بناؤها باستثمار 2.3 مليار يورو تقديريا، و المشروع هو المرحلة الاولي ليتم تنفيذها في إطار خطة الطاقة الشمسية المغربية. مجمع للطاقة الشمسية ورزازات، بسعة إجمالية قدرها 500 ميغاواط، وسوف يدخل في خدمة شبكات التوزيع المغربية في عام 2015 ويبلغ حجم انتاجها تقريبا 1.2 تيراوات ساعه / سنويا لتلبية الطلب المحلي. وسوف تكون المرحلة الأولى تقنية القطع المكافئ بانتاجية 160 ميغاواط في حين سيتم استخدام الخلايا الضوئية و تقنية المجمعات الشمسية CSP في مراحل لاحقة.

ومحطة عين بني التكاملية بين النظام الشمسي كدورة مركبة مع المحطة البخارية هي واحدة من مشاريع الطاقة الشمسية الواعدة في أفريقيا. المحطة تجمع بين الطاقة الشمسية والطاقة الحرارية، ويتوقع أن يصل إلى الطاقة الإنتاجية من 250ميغاواط بحلول نهاية عام 2012. البنك الأفريقي للتنمية، بالتعاون مع مرفق البيئة العالمية وهيئة الكهرباء الوطنية المغربية (ONE)، تقوم بتمويل ما يقرب من الثلثين من تكلفة المحطة، أو حوالي 200 مليون يورو.

في عام 2010، تم تعيين الوكالة المغربية للطاقة الشمسية (MASEN)، وهي مشروع مشترك للقطاعين العام والخاص مخصصا لتنفيذ هذه المشاريع. وبهدف تنفيذ المشروع ككل ال التنسيق والإشراف على الأنشطة الأخرى المتصلة بهذه المبادرة. المعنيون واصحاب القرارات من المشروع جهات تشمل صندوق الحسن الثاني للتنمية الاقتصادية والاجتماعية، شركة الاستثمار الطاقوية وهيئة الكهرباء الوطنية المغربية (ONE). ويدعم خطة الطاقة الشمسية من ألمانيا، بتمويل تقدمها وزارة البيئة الألمانية (BMU) وبنك التنمية الألماني Entwicklungsbank بينما تعمل GIZ في المهارات وبناء القدرات اللازمة للصناعة.


برنامج المغرب لاستخدام طاقة الرياح

المغرب لديه إمكانات ضخمة لاستخدام طاقة الرياح نظرا لان لديها 3500 كم خط الساحل ومتوسط ​​سرعة الرياح بين 6 و 11 م / ث.

مناطق بالقرب من ساحل المحيط الأطلسي، مثل الصويرة وطنجة وتطوان (مع ​​متوسط ​​سرعة الرياح السنوية بين 9.5 و 11 م / ث في 40 مترا)

 وطرفاية والعيون والداخلة، وتازة (مع متوسط ​​سرعة الرياح السنوية بين 7.5 و 9.5 م / ث في 40 مترا) بسرعه رياح جيدة.

 وفقا لدراسة أجرتها CDER وGTZ، يقدر امكانية سواحل المغرب الكلية لطاقة الرياح بنحو 7963 تيراواط ساعة سنويا، وهو ما يعادل نحو 2600 غيغاواط. تم تثبيت مجموع طاقة الرياح في المغرب في نهاية عام 2010 مع أكثر من 286  ميجا واط و اكثر من 800 ميجاواط تحت الانشاء.

تم تثبيت أول مزرعة رياح في المغرب في عام 2000 مع قدرة 50.4 ميجاواط بمنطقه الكوتيا البيضاء (Tlat Taghramt – محافظة تطوان)، تقع علي بعد 17 كم من بلدة Fnidek. الإنتاج السنوي للمشروع حوالي 200 جيجاواط ساعة، وهو ما يمثل 1٪ من استهلاك الكهرباء القومية السنوية.

 في عام 2007، تم انشاء محطةAmogdoul بقدره انتاجية 60 ميجاواط كمزرعة الرياح، على كاب سيم جنوب الصويرة، وتم نشر تفاصيل المحطة على الانترنت. وقد تم تنفيذ وتشغيل المحطة من قبل هيئة الكهرباء الوطنية المغربية ONE، وتنتج حوالي 210 جيجاواط ساعة / السنة. مشروع آخر هو 140 ميغاواط ذو علامة واضحة في مجال استخدام طاقة الرياح في Allak، EL- Haoud وBeni Mejmel، بالقرب من طنجة وتطوان والذي دخل في الشبكة القومية المغربية في عام 2010 مع انتاج سنوية تبلغ 526 جيجا واط ساعة سنويا.

المغرب لديها خطة واضحة وتسعي لتحقيقها بتوفير 2 ميجا واط من طاقة الرياح بحلول عام 2020. وسوف تخرج عن قريب اكبر محطة طاقة رياح في افريقيا بمطقة Tarfaya بقدره انتاجية 300 ميجا واط وبتكلفة استثمارية بحوالي 350 مليون دولار.

هيئة الكهرباء الوطنية المغربية ONE تقوم بتطوير حوالي نص المشاريع المتفق عليها بينما النصف الاخر يستثمر بواسطة المنتــفعين والقطاع الخاص من خلال برنامج مباردة EnergiPro والذي يقوم بتشجيع المصنعين والمستثمرين لتقليل تكاليف الانتاج بانتاج طاقة محلية بقدره 50 ميجا واط . وججزء من المباردة (ONE) تضمن الدخول للشبكة القومية مع امكانية شراء الفائض من الكهرباء المنتجة بتعريفة وحوافز تختلف باختلاف المشروع القائم للانتاج.


ترجمه: هبة احمد مسلم- دكتور الهندسة البيئية. باحث في الشئون البيئية. معهد الدراسات والبحوث البيئيةجامعه عين شمس.

مدرس بالاكاديمية العربية للعلوم والتكنولوجيا والنقل البحري-  مصر.

التحكم في البيئة والطاقه داخل المباني.

هندسة الميكانيكة- وكيل محرك دويتس الالماني بمصر. 

للتواصل عبر   


Republished by Blog Post Promoter

Unleashing Solar Power in Saudi Arabia

Saudi Arabia is the largest consumer of petroleum in the Middle East, with domestic consumption reaching 4 million barrels per day in 2012 out of daily production of 10 million barrels. Saudi Arabia’s primary energy consumption per capita is four times higher than the world average. Strong industrial growth, subsidized oil prices, increasing energy demand for electricity and transportation is leading to a growing clamor for oil in the country. The total energy consumption in the Kingdom is rapidly rising at an average rate of about 6 percent per annum.

Solar Energy Prospects 

To meet the rising local energy demand, Saudi Arabia plans to increase generating capacity to 120 GW by 2020. Residential sector holds the biggest share of total energy consumption, accounting for as much as 80 percent of the electricity usage. Despite being the leading oil producer as well as consumer, Saudi Arabia is showing deep interest in the development of large projects for tapping its rich renewable energy potential, especially solar power. The country plans to invest more than $100 billion in clean energy projects to meet its objective of getting one-third of electricity requirements from alternative energy resources.

There is a growing Interest in utilization of solar energy in Saudi Arabia as the country is blessed with abundant solar flux throughout the year. Saudi Arabia has one of the highest solar irradiation in the world, estimated at approximately 2,200 thermal kWh of solar radiation per square meter. The country is strategically located near the Sun Belt, not to mention wide availability of empty stretches of desert that may accommodate solar power generating infrastructure. Moreover, vast deposits of sand can be used in the manufacture of silicon PV cells which makes Saudi Arabia an attractive location for both CSP and PV power generation. 

Promising Developments

The first initiative from the government was the establishment of King Abdullah City for Atomic and Renewable Energy (KA-CARE) which is the official agency in-charge of promoting clean energy in the Kingdom. The kingdom is planning to add an additional 41 GW of solar power by 2032, with 16 GW to be generated by photovoltaics and 25 GW by solar thermal power plants. One of the major achievements was the establishment of 3.5MW PV project at the King Abdullah Petroleum Studies and Research Center. 

Concentrated solar power is another interesting option for Saudi Arabia due to its strong dependence on desalination plants to meet its water requirement. Waste heat of a CSP power plant can be used to power seawater desalination projects. Recently Saudi Electric Company has selected CSP to produce electricity with 550MW Duba 1 project, an integrated Solar Combined Cycle Power Plant located 50km north of Duba near Tuba. The plant is designed to integrate a parabolic trough unit of around 20 to 30MW. 

Keeping in view its regional dominance, Saudi Arabia can play a vital role in the popularization of solar energy in the MENA region. Solar energy program may not only augment oil-wealth of the Kingdom, but also transform Saudi Arabia into a net solar power exporter in the near future. 

Republished by Blog Post Promoter

CSP-Powered Desalination Prospects in MENA

Conventional large-scale desalination is cost-prohibitive and energy-intensive, and not viable for poor countries in the MENA region due to increasing costs of fossil fuels. In addition, the environmental impacts of desalination are considered critical on account of GHG emissions from energy consumption and discharge of brine into the sea. The negative effects of desalination can be minimized, to some extent, by using renewable energy to power the plants.

What is Concentrated Solar Power

The core element of Concentrated Solar Power Plant is a field of large mirrors reflecting captured rays of sun to a small receiver element, thus concentrating the solar radiation intensity by several 100 times and generating very high temperature (more than 1000 °C). This resultant heat can be either used directly in a thermal power cycle based on steam turbines, gas turbines or Stirling engines, or stored in molten salt, concrete or phase-change material to be delivered later to the power cycle for night-time operation. CSP plants also have the capability alternative hybrid operation with fossil fuels, allowing them to provide firm power capacity on demand. The capacity of CSP plants can range from 5 MW to several hundred MW.

Three types of solar collectors are utilized for large-scale CSP power generation – Parabolic Trough, Fresnel and Central Receiver Systems. Parabolic trough systems use parabolic mirrors to concentrate solar radiation on linear receivers which moves with the parabolic mirror to track the sun from east to west. In a Fresnel system, the parabolic shape of the trough is split into several smaller, relatively flat mirror segments which are connected at different angles to a rod-bar that moves them simultaneously to track the sun. Central Receiver Systems consists of two-axis tracking mirrors, or heliostats, which reflect direct solar radiation onto a receiver located at the top of a tower.

Theoretically, all CSP systems can be used to generate electricity and heat.  All are suited to be combined with membrane and thermal desalination systems. However, the only commercially available CSP plants today are linear concentrating parabolic trough systems because of lower cost, simple construction, and high efficiency

CSP-Powered Desalination Prospects in MENA

A recent study by International Energy Agency found that the six biggest users of desalination in MENA––Algeria, Kuwait, Libya, Qatar, Saudi Arabia, and United Arab Emirates––use approximately 10 percent of the primary energy for desalination. Infact, desalination accounted for more than 4 percent of the total electricity generated in the MENA region in 2010. With growing desalination demand, the major impact will be on those countries that currently use only a small proportion of their energy for desalination, such as Jordan and Algeria.

The MENA region has tremendous wind and solar energy potential which can be effectively utilized in desalination processes. Concentrating solar power (CSP) offers an attractive option to power industrial-scale desalination plants that require both high temperature fluids and electricity.  CSP can provide stable energy supply for continuous operation of desalination plants based on thermal or membrane processes. Infact, several countries in the region, such as Jordan, Egypt, Tunisia and Morocco are already developing large CSP solar power projects.

Concentrating solar power offers an attractive option to run industrial-scale desalination plants that require both high temperature fluids and electricity.  Such plants can provide stable energy supply for continuous operation of desalination plants based on thermal or membrane processes. The MENA region has tremendous solar energy potential that can facilitate generation of energy required to offset the alarming freshwater deficit. The virtually unlimited solar irradiance in the region will ensure large-scale deployment of eco-friendly desalination systems, thereby saving energy and reducing greenhouse gas emissions.  

Several countries in the MENA region – Algeria, Egypt, Jordan, Morocco and Tunisia – have joined together to expedite the deployment of concentrated solar power (CSP) and exploit the region's vast solar energy resources. One of those projects is a series of massive solar farms spanning the Middle East and North Africa. Two projects under this Desertec umbrella are Morocco’s Ouarzazate Concentrated Solar Power plant, which was approved in late 2011, and Tunisia’s TuNur Concentrated Solar Power Plant, which was approved in January 2012. The Moroccan plant will have a 500-MW capacity, while the Tunisia plant will have a 2 GW capacity. Jordan is also making rapid strides with several mega CSP projects under development in Maa’n Development Area. 


Seawater desalination powered by concentrated solar power offers an attractive opportunity for MENA countries to ensure affordable, sustainable and secure freshwater supply. The growing water deficit in the MENA region is fuelling regional conflicts, political instability and environmental degradation. It is expected that the energy demand for seawater desalination for urban centres and mega-cities will be met by ensuring mass deployment of CSP-powered systems across the region. Considering the severe consequence of looming water crisis in the MENA region it is responsibility of all regional governments to devise a forward-looking regional water policy to facilitate rapid deployment and expansion of CSP and other clean energy resources for seawater desalination.

Republished by Blog Post Promoter

Solar Energy Prospects in Tunisia

Tunisia is an energy-dependent country with modest oil and gas reserves. Around 97 percent of the total energy is produced by natural gas and oil, while renewables contribute merely 3% of the energy mix. The installed electricity capacity at the end of 2015 was 5,695 MW which is expected to sharply increase to 7,500 MW by 2021 to meet the rising power demands of the industrial and domestic sectors. Needless to say, Tunisia is building additional conventional power plants and developing its solar and wind capacities to sustain economic development.

Wind Energy Outlook

Wind power represents the main source of renewable energy in Tunisia. Since 2008, wind energy is leading the energy transition of Tunisia with a growth of the production up to 245 MW of power installed in 2016. Two main wind farms have been developed until now: Sidi-Daoud and Bizerte. 

The first wind power project of Tunisia started in 2000, with the installation of the Sidi-Daoud’s wind farm in the gulf of Tunis. The station has been developed in three steps before reaching its current power capacity of 54 MW. The operation of two wind power facilities in Bizerte – Metline and Kchabta Station – was launched in 2012. The development of those stations has conducted to a significant increase of electricity generated by wind power, totalizing a production of 94 MW for Kchabta and 95MW in Metline in 2016


Solar Energy Potential

Tunisia has good renewable energy potential, especially solar and wind, which the government is trying to tap to ensure a safe energy future. The country has very good solar radiation potential which ranges from 1800 kWh/m² per year in the North to 2600kWh/m² per year in the South. The total installed capacity of grid-connected renewable power plant was around 342 MW in 2016 (245 MW of wind energy, 68 MW of hydropower and 15 MW of PV), which is hardly 6% of the total capacity. 

In 2009, the Tunisian government adopted “Plan Solaire Tunisien” or Tunisia Solar Plan to achieve 4.7 GW of renewable energy capacity by 2030 which includes the use of solar photovoltaic systems, solar water heating systems and solar concentrated power units. The Tunisian solar plan is being implemented by STEG Énergies Renouvelables (STEG RE) which is a subsidiary of state-utility STEG and responsible for the development of alternative energy sector in the country. 

The total investment required to implement the Tunisian Solar Program plan have been estimated at $2.5 billion, including $175 million from the National Fund, $530 million from the public sector, $1,660 million from private sector funds, and $24 million from international cooperation, all of which will be spent over the period of 2012 – 2016. Around 40 percent of the resources will be devoted to the development of energy export infrastructure.

Tunisian Solar Program (PROSOL)

Tunisian Solar Programme, launched in 2005, is a joint initiative of UNEP, Tunisian National Agency for Energy Conservation, state-utility STEG and Italian Ministry for Environment, Land and Sea. The program aims to promote the development of the solar energy sector through financial and fiscal support. PROSOL includes a loan mechanism for domestic customers to purchase Solar Water Heaters and a capital cost subsidy provided by the Tunisian government of 20% of system costs. The major benefits of PROSOL are:

  • More than 50,000 Tunisian families get their hot water from the sun based on loans
  • Generation of employment opportunities in the form of technology suppliers and installation companies.
  • Reduced dependence on imported energy carriers
  • Reduction of GHGs emissions.

The Tunisian Solar Plan contains 40 projects aimed at promoting solar thermal and photovoltaic energies, wind energy, as well as energy efficiency measures. The plan also incorporates the ELMED project; a 400KV submarine cable interconnecting Tunisia and Italy.

In Tunisia, the totol solar PV total capacity at the end of 2014 was 15 MW which comprised of mostly small-scale private installations (residential as well as commercial) with capacity ranging from 1 kW and 30 kW. As of early 2015, there were only three operational PV installations with a capacity of at least 100 kW: a 149 kWp installation in Sfax, a 211 kWp installation operated by the Tunisian potable water supply company SONEDE and a 100 kWp installation in the region of Korba, both connected to the medium voltage, and realized by Tunisian installer companies. The first large scale solar power plant of a 10MW capacity, co-financed by KfW and NIF (Neighbourhood Investment Facility) and implemented by STEG, is due 2018 in Tozeur.

TuNur Concentrated Solar Power Project

TuNur CSP project is Tunisia's most ambitious renewable energy project yet. The project consists of a 2,250 MW solar CSP (Concentrated Solar Power) plant in Sahara desert and a 2 GW HVDC (High-Voltage Direct Current) submarine cable from Tunisia to Italy. TuNur plans to use Concentrated Solar Power to generate a potential 2.5GW of electricity on 100km2 of desert in South West Tunisia by 2018. At present the project is at the fund-raising stage.

Future Perspectives

The Tunisian government has recetly announced plans to invest US $1 billion towards renewable energy projects including the installation of 1,000 megawatts (MW) of renewable energy this year. According to the Energy General Direction of the Tunisian Ministry of Energy and Mines, 650 MW will come from solar photovoltaic, while the residual 350 MW will be supplied by wind energy.

At the same time, the private sector plans to invest an additional US $600 million into the development of renewable energy capacity in 2017. Under new plans, Tunisia has dedicated itself to generating 30 per cent of its electrical energy from renewable energy sources in 2030.

Republished by Blog Post Promoter

سوق الطاقة المتجدد في منطقة الشرق الأوسط

تعد منطقة الشرق الأوسط من أفضل المناطق حول العالم للإستفادة من موارد الطاقة الشمسية وطاقة الرياح. إذ وفقا لتقرير (إيرينا) الأخير، فإن منطقة الشرق الأوسط ستحظى بإستثمارات في مشاريع الطاقة المتجددة ب 35مليار دولار وذلك مع حلول عام 2020م. ومؤخرا حظي قطاع الطاقة المتجددة بأسعار تنافسية لتركيب الألواح الشمسية الكهروضوئية ومراوح الرياح.

التطورات الإقليمية

وعلى صعيد منطقة الشرق الأوسط، تبرز المملكة المغربية كمثل رائد يحتدى به في تطوير المشاريع الشمسية لتوليد الطاقة الكهربائية. حيث جعلت الحكومة المغرية تحقيق 2 جيجا من الطاقة الشمسية و 2 جيجا واط من طاقة الرياح هدفا لها بحلول العام 2020م. ويطلق على مشروع الطاقة الشمسية في المغرب إسم (نور). ويأتي بعد المغرب دول عربية أخرى شهدت تقدما واضحا في مشاريع الطاقة الشمسية مثل الأردن ومصر. وفي دول منطقة الخليج العربي، نجد هناك إهتمام جاد لتطوير مشاريع للطاقة الشمسية. ففي الإمارات العربية المتحدة، في العاصمة ابوظبي، محطة (شمس) للطاقة الشمسية المركزة التي تم تدشينها عام 2014م، بقدرة 100 ميغاواط. وفي مدينة دبي تم الإنتهاء من 13 ميغاواط كمرحلة أولى من المحطة الشمسية. أما في المملكة العربية السعودية، فقد أخذت الطاقة الشمسية وطاقة الرياح حصتها من إهتمام رؤية السعودية 2030م، التي أكدت على ضرورة إعتماد خيار الطاقة المتجددة لتنويع مصادر الطاقة في السعودية.

نعمة الطاقة المتجددة

تتعدد مزايا الطاقة المتجددة التي يمكن لدول منطقة الشرق الأوسط الإستفادة منها في أشكال عديدة منها: أمن الطاقة، تحسين نوعية الهواء، والمساهمة في الحد من إنبعاثات الغازات الدفيئة الملوثة في الهواء، فرص العمل و تحقيق للأمن المائي الغذائي.

ويعزز وفرة مصادر الطاقة المتجددة على مدار العام من جدوى نشرها في منطقة الشرق الأوسط، وأيضا ساعد إنخفاض أسعار تكنلوجيا الطاقة الشمسية الكهروضوئية إلى زيادة الإعتماد عليها فمثلا: سجل إنخفاض تكاليف توليد الطاقة المتجددة في مشروع دبي الشمسي لمحمد بن راشد آل مكتوم إلى 5,85 سنت أمريكي لكل كيلوواط ساعة، حيث تعتبر من أدنى المعدلات في الكلفة حول العالم.

تأثير الإنخفاض في الأسعار

سيكون للإنخفاض المتسارع الأثر الكبير في حياة عشرات الملايين من الناس الذين مازلوا يفتقرون إلى إمدادات رخيصة وحديثة للطاقة. حيث سيكون لخفض التكاليف الدور الكبير في مساعدة دول الشرق الأوسط ودول مجلس التعون الخليجي خاصة، لتحقيق هدف التحول نحو مصادر الطاقة المتجددة وبالتالي الحد من الإعتماد على الوقود الأحفوري لتوليد الكهرباء وتحلية مياه البحر. وسيساعد الإنخفاض السعري كذلك، الأسواق الناشئة في الدول النامية لتلبية الطلب على المتزايد للطاقة في دولها.

الاتجاهات الجديدة

توفر تقنيات خارج الشبكة للطاقة الشمسية فرصة ممتازة لنشر الطاقة النظيفة خصوصا في المناطق النائية والبعيدة عن الشبكة الرئيسة. حيث ستضمن التغطية خارج الشبكة للمناطق النائية من الحصول على طاقة نظيفة وموثوقة ورخيصة وستساعد في تغيير حياة الملايين في الدول النامية حول العالم.

وسيساهم المضي في تطوير بطاريات تخزين الطاقة من التوسع في إعتماد مشاريع الطاقة الشمسية، والتوسع في غعتمادها كمصدر متجدد وذو كلفة معقولة. وتتصدر شركات عالمية في البحث والتطوير في مجال تقنيات تخزين الطاقة مثل شركتي تسلا و نيسان، حيث سيساعد تخزين الطاقة إلى التغلب على تحدي التقطع في مصادر الكاقة المتجددة بكافة أشكالها.

وتعد تقنية الطاقة الشمسية المركزة إحدى التقنيات الشمسية المناسبة لدول منطقة الشرق الأوسط، خصوصا فيما يتعلق بتحلية مياه البحر التي ستقلل من هدر إحراق الوقود الأحفوري في عمليات التحلية. حيث توفر هذه التقنية إمدادات مستقرة للطاقة بشكل مستمر من محطات تحلية المياه وستساهم التطورات التقني السريع من إزدياد الإهتمام بخيار الطاقة الشمسية المركزة في منطقة الشرق الأوسط.

مصاعب تواجه إعتماد الطاقة الشمسية

تواجه الطاقة الشمسية في منطقة الشرق الأوسط عدد من التحديات منها: غياب الإطار التنظيمي القوي و إرتفاع الرسوم الجمركية وغياب الدعم المؤسسي للطاقة الشمسية و إنخفاض المردود الإقتصادي نتيجة لعدد من العوامل مثل الدعم الكبير للنفط والغاز.
والجدير بالذكر أن قطاع الطاقة في منطقة الشرق الأوسط، يقبع تحت سيطرة الدولة والحكومة المركزية التي تحد من تنافسية منتجي الطاقة المستقلين و دخول القطاع الخاص من المستثمرين ومطوري المشاريع إلى الأسواق المحلية. وتتصدر الأردن والمغرب دول المنطقة في وجود الإطار التشريعي لدعم مشاريع الطاقة المتجددة تليها المملكة العربية السعودية ودولة الإمارات العربية المتحدة.

نصائح للمستثمرين الجدد في مشاريع الطاقة الشمسية

إن سوق الطاقة الشمسية في منطقة الشرق الأوسط، يعد معقدا نظرا لطبيعة هيكلة سوق الكهرباء ولذلك تنشأ تحديات لاتعد ولا تحصى في كل بلد. لذلك ينبغي على الدول التي تطمح بالتوسع في الإسستفادة من مصدر الطاقة الشمسية، أن تعمل على البنية التحتية و سهولة الوصول إلى الشبكة و إعتماد خطط التراخيص بشكل واضح وشفاف و إعتماد بيانات الأرصاد الجوية ذات الجودة العالية وقضايا أخرى تتعلق بتحسين تقنيات الألواح الشمسية.


إيمان أمان
متخصصة وباحثة في شؤون الطاقة وتغير المناخ

Desertec: What Went Wrong?

A plan to power Europe from solar power plants in Sahara desert, popularly known as Desertec, seems to have stalled, but several large North African solar projects are still going ahead despite local concerns. Where did the Desertec project go wrong, and can desert solar power yet play a role in a democratic and sustainable future?

If you use social media, you may well have seen a graphic going around, showing a tiny square in the Sahara desert with the caption: ‘This much solar power in the Sahara would provide enough energy for the whole world!’

Can this really be true? It is based on data from a research thesis written by Nadine May in 2005 for the Technical University of Braunschweig in Germany. According to May, an area of 3.49 million km² is potentially available for concentrating solar power (CSP) plants in the North African countries Morocco, Algeria, Tunisia, Libya and Egypt. She argues that an area of 254 kilometres x 254 kilometres (the biggest box on the image) would be enough to meet the total electricity demand of the world. The amount of electricity needed by the EU-25 states could be produced on an area of 110 kilometres x 110 kilometres (assuming solar collectors that could capture 100 per cent of the energy). A more realistic estimation by the Land Art Generator Initiative assumed a 20-per-cent capture rate and put forward an area approximately eight times bigger than the May study for meeting the world’s energy needs. Nevertheless, the map is a good illustration of the potential of solar power and how little space would be needed to power the entire planet.

This isn’t a new idea. Back in 1913, the American engineer Frank Shuman presented plans for the world’s first solar thermal power station to Egypt’s colonial elite, including the British consul-general Lord Kitchener. The power station would have pumped water from the Nile River to the adjacent fields where Egypt’s lucrative cotton crop was grown, but the outbreak of the First World War abruptly ended this dream.

The idea was explored again in the 1980s by German particle physicist Gerhard Knies, who was the first person to estimate how much solar energy was required to meet humanity’s demand for electricity. In 1986, in direct response to the Chernobyl nuclear accident, he arrived at the following remarkable conclusion: in just six hours, the world’s deserts receive more energy from the sun than humans consume in a year. These ideas laid the groundwork for Desertec.

What is Desertec?

For the sake of clarity, it is worth differentiating between the Desertec Foundation and the Desertec Industrial Initiative. The non-profit Desertec Foundation was founded in January 2009 by a network of scientists, politicians and economists from around the Mediterranean. Its aim is to supply as many people and businesses as possible with renewable energy from the world’s deserts. This should, they hope, provide opportunities for prosperity and help protect the climate.

In the autumn of 2009, an ‘international’ consortium of companies formed the Desertec Industrial Initiative (Dii), with weighty players such as E.ON, Munich Re, Siemens and Deutsche Bank all signing up as ‘shareholders’. It was formed as a largely German-led private-sector initiative with the aim of translating the Desertec concept into a profitable business project, by providing around 20 per cent of Europe’s electricity by 2050 through a vast network of solar- and windfarms stretching right across the Middle East and North Africa (MENA) region. These generators would be connected to continental Europe via special high voltage, direct current transmission cables. The tentative total cost of this project has been estimated at €400 billion ($472 billion).

To understand the thinking behind Desertec, we need to consider some history. Between 1998 and 2006, a set of Euro-Mediterranean Association Agreements were formed between the EU and Algeria, Egypt, Jordan, Israel, Lebanon, Morocco, Palestine and Tunisia. Their stated aim was the ‘gradual liberalization of trade’ in the region and the establishment of a Mediterranean free trade area. A project with similar goals called the Union for the Mediterranean (UfM) was championed by the French President Nicolas Sarkozy from 2008, to strengthen the ‘interdependence’ between the EU and the southern Mediterranean.

This goal of ‘interdependence’ is reminiscent of previous French prime minister Edgar Fouré’s famous coinage back in 1956, ‘L’indépendance dans l’interdépendance’, (independence in interdependence), a strategy promoted by successive French governments to maintain control and domination of the new ‘independent’ African countries. The UfM is designed to follow in their footsteps, furthering EU economic interests and reducing the need for energy imports from Russia. Promoting a renewable energy partnership was seen as a priority core project towards achieving these goals.

It is within this context of pro-corporate trade deals and a scramble for influence and energy resources that we should understand the Desertec project and especially its industrial arm, the Dii. Desertec could play a role in diversifying energy sources away from Russia as well as contributing to EU targets of reducing carbon emissions – and what better region to achieve these aims than MENA, an area well-endowed with natural resources, from fossil fuels to sun and wind. It seems that a familiar ‘colonial’ scheme is being rolled in front of our eyes: the unrestricted flow of cheap natural resources from the Global South to the rich industrialized North, maintaining a profoundly unjust international division of labour.

This is a genuine concern given the language used in different articles and publications describing the potential of the Sahara in powering the whole world. The Sahara is described as a vast empty land, sparsely populated; constituting a golden opportunity to provide Europe with electricity so it can continue its extravagant consumerist lifestyle and profligate energy consumption. This is the same language used by colonial powers to justify their civilizing mission and, as an African myself, I cannot help but be very suspicious of such megaprojects and their ‘well-intentioned’ motives that are often sugar-coating brutal exploitation and sheer robbery. Such sentiments were also raised by Daniel Ayuk Mbi Egbe of the African Network for Solar Energy in 2011. ‘Many Africans are sceptical about Desertec,’ he said. ‘Europeans make promises, but at the end of the day, they bring their engineers, they bring their equipment, and they go. It’s a new form of resource exploitation, just like in the past.’ The Tunisian trade unionist Mansour Cherni made similar points at the World Social Forum 2013 (WSF) held in Tunis when he asked: ‘Where will the energy produced here be used?…Where will the water come from that will cool the solar power plants? And what do the locals get from it all?’

Sustainable Development or Status quo?

There is nothing inherently wrong or dishonest in the Desertec idea. On the contrary, the goal of providing sustainable energy for the planet to fight global warming is to be applauded. But like any other idea, the questions of who uses it, how it is implemented, for what agenda and in which context it is being promoted, are of great importance.

Desertec was presented as a response to the issues of climate change, the Russian-Ukrainian gas conflicts in 2006 and 2009, fears of peak oil, and the global food crisis of 2009. However, if Desertec is really serious about addressing those crises, it needs to target their structural causes. Being an apolitical techno-fix, it promises to overcome these problems without fundamental change, basically maintaining the status quo and the contradictions of the global system that led to these crises in the first place. Moreover, by presenting the Euro-Med region as a unified community (we are all friends now and we need to fight against a common enemy!), it masks the real enemy of the MENA region, which is oppressive European hegemony and Western domination.

Big engineering-focused ‘solutions’ like Desertec tend to present climate change as a shared problem with no political or socio-economic context. This perspective hides the historical responsibilities of the industrialized West, the problems of the capitalist energy model, and the different vulnerabilities between countries of the North and the South. The MENA region is one of the regions hardest hit by climate change, despite producing less than 5 per cent of global carbon emissions, with water supplies in the area being particularly affected. The spread of solar energy initiatives that further plunder these increasingly-scarce water resources would be a great injustice. Desertec also provides PR cover to major energy businesses and oil and gas-fuelled regimes. Supporting big ‘clean energy’ projects lets them present themselves as environmental protectors rather than climate culprits.

The website of the foundation (which came up with the concept and gave it its name) states: ‘Desertec has never been about delivering electricity from Africa to Europe, but to supply companies in desert regions with energy from the sun instead of oil and gas.’ Despite this, the Dii consortium of (mainly European) companies was openly geared towards delivering energy from Africa to Europe. Eventually, however, the fall in the price of solar panels and wind turbines in the EU led the consortium to concede in 2013 that Europe can provide for most of its clean energy needs indigenously. The tensions between the foundation and Dii culminated in a divorce between the two in July 2013 as the former preferred to distance itself from the management crisis and disorientation of the industrial consortium. As a result of these developments, Dii shrank from 17 partners to only three by the end of 2014 (German RWE, Saudi Acwa Power and China State Grid).

Where is Desertec now?

For some people, the shrinking of Dii signalled the demise of Desertec. However, with or without Dii, the Desertec vision is still going ahead with projects in Tunisia, Morocco and Algeria. Despite its stated ideals about powering Africa, the Desertec foundation is backing the Tunur project in Tunisia, a joint venture between Nur Energy, a British-based solar developer and a group of Maltese and Tunisian investors in the oil and gas sector. It explicitly describes itself as a large solar power export project linking the Sahara desert to Europe that will dispatch power to European consumers starting in 2018. Given that Tunisia depends on its neighbour Algeria for its energy needs and that it faces increasingly frequent power cuts, it would be outrageous (to say the least) to proceed with exports rather than producing for the local market. According to Med Dhia Hammami, a Tunisian investigative journalist working in the energy sector, the project seeks to take advantage of new Tunisian legislation allowing the liberalization of green energy production and distribution, breaking the monopoly of the state company STEG (Société Tunisienne d’Electricité et de Gaz) and opening the way to direct export of electricity by private companies. He describes it as ‘state prostitution’ and a confirmation of the Tunisian government’s submission to corporate diktats that go against the national interest.

Meanwhile, the Moroccan government, with help from Dii consortium members, has attracted funding from international lenders to develop the world’s largest concentrating solar power (CSP) plant at Ourzazate. It was originally envisioned as an export project, but failed to secure Spanish government support for an undersea cable; the project is now promoted as a means for Morocco to increase its own renewable energy supply. However, the role of transnational companies in the project is still attracting criticism. M Jawad, a campaigner from ATTAC/CADTM Morocco, is concerned about the increasing control exerted by transnationals on electrical energy production in his country. He sees projects like Ourzazate as a threat to national sovereignty in the clean energy sector, because crucial decisions that affect the whole population are being taken by a handful of technocrats, far from any democratic process or consultation.

A Community-centred Approach

The assumption that economic liberalization and ‘development’ necessarily lead to prosperity, stability and democracy – as if neoliberalism and the (under)development agenda of the West had nothing to do with the Arab Uprisings – is preposterous. Any project concerned with producing sustainable energy must be rooted in local communities, geared towards providing and catering for their needs and centred around energy and environmental justice.

This is even more important when we think about the issue in the context of the Arab Uprisings and the demands of the revolutions: bread, freedom, social justice and national sovereignty. Projects involving large transnationals tend to take a top-down approach, increasing the risk of displacement, land-grabbing and local pollution. Without community involvement, there is no guarantee that such schemes will help with alleviating poverty, reducing unemployment or preserving a safe environment.

This has been a major failing of the Desertec initiative. Only a few actors from the South of the Mediterranean were involved in its development, and most of them represented public institutions and central authorities, not the local communities who would be affected by the project.

The Desertec foundation did publish a set of criteria to ensure that large-scale solar projects in desert regions are implemented in an environmentally and socially responsible way. However, in the absence of democratic control, transparency and citizen participation in decision making in the MENA region, those criteria will remain ink on paper.

Another important question is: will these projects transfer the knowledge, expertise and designs of the renewable technology to the countries in this region? This seems unlikely given the transnationals’ usual reticence in doing so and questions of intellectual property around such technologies. As an example, the glass troughs (solar thermal collectors) for North African CSP plants are all made in Germany, and the patents for the glass tube receivers are held by German companies. Without fair access to such technologies, MENA countries will remain dependent on the West and transnationals for future renewable development.

Solar Energy, a new Tool for Authoritarian Regimes?

To come back to the Arab uprisings, Desertec presented itself as a possible way out of the crisis, by bringing new opportunities to the region. This is baffling given that the project co-operated with corrupt elites and authoritarian regimes, some of which have since been overthrown, and others of which continue to oppress their populations.

Instead of providing a route to ‘develop’ away from repressive governments, the centralized nature of large CSP plants makes them an ideal source of income for corrupt and authoritarian regimes in the region (such as Algeria, Egypt and Morocco) and thus could help to keep them in power. To illustrate this risk, let’s take Algeria as an example.

Oil and gas have provided income for the Algerian regime for decades, and are used to buy social peace and maintain its grip on power. As the brutal Algerian civil war (a war against civilians, to be more accurate) was raging, with systematic violence from both the state and Islamist fundamentalists, BP finalized a contract worth $3 billion in December 1995, giving it the right to exploit gas deposits in the Sahara for the next 30 years. Total completed a similar deal worth $1.5 billion one month later, and in November 1996 a new pipeline supplying gas to the EU was opened, the Maghreb-Europe Gas Pipeline through Spain and Portugal. These contracts undoubtedly bolstered the regime as it exerted systematic violence across the country and at a time of international isolation.

Tied to Algeria through huge investments, these companies and the EU had a clear interest in making sure that the repressive regime did not go under and acquiesced to the Algerian regime’s ‘Dirty War’ of the 1990s. A renewable megaproject like Desertec that ties European economies to corrupt MENA governments would create exactly the same kind of problems.

Parting Shot

Whether fossil fuelled or renewable, energy schemes that don’t benefit the people where the energy is extracted, that serve to prop up authoritarian and repressive regimes or only enrich a tiny minority of voracious elites and transnationals are scandalous and must be resisted.

Advocates for benign-sounding clean energy export projects like Desertec need to be careful they’re not supporting a new ‘renewable energy grab’: after oil, gas, gold, diamonds and cotton, is it now the turn of solar energy to maintain the global imperial dominance of the West over the rest of the planet?

Rather than embracing such gargantuan projects, we should instead support decentralized small-scale projects that can be democratically managed and controlled by local communities that promote energy autonomy. We don’t want to replicate the fossil fuel tragedy and therefore we must say: Leave the sunlight in the desert for its people!

Note: This article was originally published in March 2015 issue of New Internationalist and can be found at this link.

Republished by Blog Post Promoter

الطاقة الشمسية في سلطنة عُمان: الإمكانيات والتقدم

solar-project-omanالطاقة الشمسية هي الحل الحيوي والاستراتيجي لتوفير الطاقة الكهربائية في سلطنة عمان. وبالنظر إلى الأراضي الواسعة الغير مستغلة وموارد الطاقة الشمسية المتاحة, عمان لديها إمكانات ممتازة لتطوير الطاقة الشمسية والتوسع فيها. الطاقة الشمسية خيارا قابلا للتطبيق في عمان ولا يمكن فقط أن تلبي الحاجة المتزايدة لتنويع مصادر الطاقة ولكن أيضا من شأنه أن يساعد في التنويع الاقتصادي.

مع الاعتماد الكلي على الوقود الأحفوري وزيادة عدد السكان جنبا إلى جنب مع المناطق الصناعية في المدن مثل الدقم وصحار وصلالة والبنية التحتية للطاقة والنفط والغاز احتياطيات عمان تشكل تحديا على النمو الاقتصادي. الأهمية الاستراتيجية والموقع الجغرافي لعمان يجعلها قابلة لتطبيق و لتسخير تكنولوجيات الطاقة المتجددة على حد سواء، لزيادة تطوير اقتصادها. أنها تساعد ليس فقط في الحد من الاعتماد على الوقود الأحفوري ولكن يساعد في خلق بيئة أنظف ومستدامة أيضا. خدمات الأبحاث والتطوير والتكنولوجيا العالية المتعلقة بالطاقة المتجددة يمكن أن تخلق الأعمال الجديدة والتوظيف في سلطنة عمان، ويمكن أن تجلب تغييرا جذريا في تنويع الاقتصاد العماني.
وضع الطاقة الشمسية في سلطنة عمان
عمان تستقبل كميات هائلة من الإشعاع الشمسي على مدار العام والتي هي من بين أعلى المعدلات في العالم، و هناك مجالا كبيرا لتسخير وتطوير موارد الطاقة الشمسية في جميع أنحاء السلطنة. قيم متوسط ​​مدة سطوع الشمس اليومية والإشعاع الشمسي  في 25 موقعا في عمان كبيرة، إذ أن أعلى إشعاع شمسي في السلطنة يوجد في منطقة مرمول تليها فهود وصحار و قيرون حيريتي. وكذلك أعلى تشمس للطاقة الشمسية لوحظ في المناطق الصحراوية بالمقارنة مع المناطق الساحلية حيث أنها الأقل.

وقد قام إيرينا إعداد تقرير تقييم جاهزية مصادر الطاقة المتجددة و في تعاون وثيق مع حكومة سلطنة عمان ممثلة في الهيئة العامة للكهرباء والمياه (PAEW)، لدراسة إمكانات استخدام الطاقة المتجددة. وتسعى الحكومة إلى استخدام كمية كبيرة من الطاقة الشمسية لتلبية الاحتياجات من الكهرباء الداخلية للبلاد، ووضع بعض منه للتصدير. وقد بدأت شركة تنمية نفط عمان (PDO) في الحفاظ على موارد الغاز الطبيعي في سلطنة عمان في إنتاج النفط الثقيل من خلال تسخير الطاقة الشمسية لإنتاج البخارلتعزيز النفط المستخرج (EOR).

كشفت دراسة بتكليف من الهيئة العامة للكهرباء والمياه (PAEW) أن ضوئية (PV) أنظمة مثبتة على المباني السكنية في السلطنة يمكن أن توفر ما يقدر ب 1.4 جيجاوات من الكهرباء. وتشير التقديرات إلى أن محافظة مسقط وحدها يمكن أن تولد 450 ميجاوات، على غرار محطة لتوليد الطاقة متوسطة الحجم التي تعتمد على الغاز.

التطورات الرئيسية
السلطة للكهرباء اللائحة عمان (آي إي آر) – منظم قطاع الطاقة في سلطنة عمان تتخذ خطوات لتمهيد الطريق لأصحاب المنازل لتثبيت الألواح الشمسية على السطح مع أي الكهرباء فائض أرسلت مرة أخرى إلى الشبكة الوطنية. بعض الشركات البارزة، بما في ذلك شركة كهرباء مجان، واحة المعرفة مسقط (واحة المعرفة مسقط) وجامعة السلطان قابوس قد اعتمدت بالفعل خطط تجريبها لتوليد الطاقة الشمسية.

نظرا لانخفاض تكاليف الضوئية (PV) لوحات، وأصبح إنتاج الطاقة الشمسية خيارا جذابا لعملية تحلية المياه. ويجري حاليا اختبار عمليات التحلية الحرارية الشمسية باستخدام تجميع الطاقة الشمسية في مشاريع رائدة، ومن المتوقع أن تصبح متوفرة مع الحلول التجارية قريبا.

مرآه مشروع للطاقة الشمسية الحرارية  يسعى لتسخير الطاقة الشمس لانتاج بخار يستخدم في إنتاج النفط. ومن المرجح أن يتم نشرها للتنمية في محافظة المنطقة الداخلية التي تعد واحدة من أكبر مشاريع الطاقة الشمسية في الاستراتيجية الوطنية للطاقة في سلطنة عمان عام 2040.

وقد توجت عمان بالفعل في جذب المستثمرين من القطاع الخاص إلى السلطنة وإنتاج المياه من خلال تقديم اتفاقيات شراء الطاقة. وقد شرعت الحكومة في مهمة فتح سوق أقوى والمستدام و إعطاء شركات النفط فرصة لتعزيز موطئ قدم لها في البلاد لمواجهة خطر استنفاد موارد النفط.

و مع ذلك، هناك تحديات ناشئة عن عدم إشراك أصحاب المصلحة في سياسات تأطير وفي صنع القرار؛ وعدم وجود سياسات التنظيمية في قطاع الطاقة المتجددة و الذي يعيق وتيرة التنمية. هناك حاجة لتقييم الموارد المحددة من أجل تحديد إمكانيات السوق وينبغي أن تكون مجالاً من مجالات البحث الرئيسية.

الآفاق المستقبلية 

ومن المتوقع أن تصبح الطاقة الشمسية في سلطنة عمان أرخص تدريجيا في المستقبل القريب، ويمكن أن يكون أفضل عائد للاستثمارات. ويتحدد نجاحها بمجرد السياسات التنظيمية والحوافز الحكومة المالية والتمويل العام. التحديات التي تواجهها صناعة الطاقة الشمسية تدخل إلى السوق التي كانت أساسا تهيمن عليها صناعة النفط. وينبغي توفير الإعانات والحوافز من قبل الحكومة في شكل تغذية في التعريفات وذلك لطمأنة سعر سند للكهرباء بيعها إلى الشبكة الوطنية خلال دمج تقنيات الطاقة الشمسية في توليد الطاقة.


هناك حاجة ماسة للدعم السياسي للطاقة المتجددة لتأخذ المنافسة في السوق الحرة. يجب أن تكون القوانين التي تحكم تنظيم توليد الطاقة أن توفر المزيد من المرونة لمصادر الطاقة المتجددة ويجب أن تكون وجهة حافزة لجذب أصحاب المصلحة. البيئة الإيجابية للاستثمار وحقوق الملكية قوية وأنظمة ضريبية منخفضة و مشاركة الشركات العالمية الرائدة المختصة في قطاع الطاقة كل هذه بالتأكيد تساعد في تعزيز تطبيقات الطاقة الشمسية. وتحتاج البلاد إلى وضع خطط استراتيجية واضحة للمستقبل في مجال تطوير الطاقة الشمسية.

مع موارد الطاقة الشمسية القوية والجامعات القائمة، عمان لديها فرصة مهنية ظاهرة وقدرة على الرصد باعتبارها مزود تكنولوجي دولي و قيامها بدور نشط في إقامة قاعدة المهارات المهنية متقدمة في مجال العلوم والهندسة وتوسيع مناطقها بالعمارة الحديثة مستخدمة الطاقة الشمسية وإدارة الطاقة.
ولكن يبقى السؤال: هل يمكن للطاقة الشمسية إحداث ثورة التغييرفي سلطنة عمان؟



بدرية الكيومي- بكالوريوس علوم بيئية

Solar Energy in Oman: Potential and Progress

Oman-renewable-energySolar energy is a vital and strategic solution for the provision of electric power in the Sultanate of Oman. Given the vast unused land and available solar energy resources, Oman has an excellent potential for solar energy development and deployment. Solar energy is a viable option in Oman and could not only cater to the growing need for energy diversification but also would help in economic diversification.

With a total dependence on fossil fuels and increasing population combined with rapid industrialization in cities such as Duqm, Sohar and Salalah, Oman’s power infrastructure and hydrocarbon reserves pose a challenge on the economic growth. The strategic importance and geographical location of Oman makes it viable to harness renewable energy technologies on both, smaller and larger scales, for further development of its economy. It not only helps in reducing dependence in fossil fuels but also helps in creating a cleaner and sustainable environment.  Research and development and high-technology services related to renewable energy could create new business and employment in Oman and could bring about a paradigm change in diversification of Oman’s economy.

Solar Power Potential in Oman

Oman receives a tremendous amount of solar radiation throughout the year which is among the highest in the world, and there is significant scope for harnessing and developing solar energy resources throughout the Sultanate.  The global average daily sunshine duration and solar radiation values for 25 locations in Oman are tremendous, with Marmul having the highest solar radiation followed by Fahud, Sohar and Qairoon Hairiti. The highest insolation of solar energy is observed is in the desert areas as compared to the coastal areas where it is least.

A Renewables Readiness Assessment report was prepared by IRENA in close collaboration with the Government of Oman, represented by the Public Authority for Electricity and Water (PAEW), to study potential usage of renewable energy. The government seeks to utilize a sizeable amount of solar energy to meet the country’s domestic electricity requirements and develop some of it for export. The Petroleum Development of Oman (PDO) has initiated to conserve Oman’s natural gas resources in the production of heavy oil by harnessing solar energy to produce steam for Enhanced Oil Recovery (EOR).

A study commissioned by the Public Authority for Electricity and Water (PAEW) revealed that Photovoltaic (PV) systems installed on residential buildings in the Sultanate could offer an estimated 1.4 gigawatts of electricity. It is estimated that Muscat Governorate alone could generate a whopping 450 megawatts, similar to a mid-sized gas-based power plant.

Major Developments

The Authority for Electricity Regulation Oman (AER) – Oman’s power sector regulator is taking steps to pave the way for homeowners to install rooftop solar panels with any surplus electricity sent back into the national grid. Some prominent companies, including Majan Electricity Company, Knowledge Oasis Muscat (KOM) and Sultan Qaboos University have already adopted piloted schemes to generate solar power.

Due to declining costs of photovoltaic (PV) panels, production of solar energy has become an attractive option for the process of water desalination. Solar thermal desalination processes using solar collectors are being tested in pilot projects and expected to soon become available as commercial solutions.

Miraah solar thermal project will harness the sun’s energy to produce steam used in oil production.

Miraah solar thermal project will harness the sun’s energy to produce steam used in oil production.

A combination of concentrated solar power and photovolatic technologies are likely to be deployed for the development in Dakhiliyah Governorate which is one of the largest solar energy projects in Oman's National Energy Strategy 2040 with a plant capacity of 200MW.

Oman has already geared up in attracting private investors to power and water production by offering Power Purchase Agreements (PPAs).  The government has embarked on a mission of opening a stronger and sustainable market giving oil companies a chance to strengthen their footing in the country to tackle with the jeopardy posed by depleting oil resources.

However, there  are challenges arising out of the lack of involvement from stakeholders in framing polices and in decision making; and lack of regulatory policies, in the sector of renewable energy, is hindering its pace of development. Specific resource assessments are needed in order to determine the market potential and should be the key research areas.

Future Perspectives

Solar energy in Oman is expected to become progressively cheaper in the near future and could be a best return for investments.  Its success is merely determined by the government’s regulatory policies, fiscal incentives and public financing.  The challenges that the solar industry faces are entering into a market that has essentially been dominated by oil industry. Subsidies and incentives should be provided by the government in the form of feed in tariffs so as to reassure a guaranteed price for electricity sold to the national grid by merging solar power technologies in power generation.

There is a dire need for political support for renewable energy to take its competition, economically, in the free market. Laws governing power generation regulation should provide more flexibility for renewables and should be incentive-oriented to attract the stake holders.  

A positive investment environment, strong property rights and low tax regimes, with established participation in the power sector from leading international firms, will certainly boost solar energy applications. The country needs to develop clear strategic plans for future in the development of solar energy. If a quick and appropriate regulatory framework is not accelerated, neighboring countries, such as the United Arab Emirates (UAE), would take the benefits of becoming regional revolutionary leaders in the use of solar energy.

Parting Shot

With its strong solar resources and existing universities, Oman has an opportunity to pioneer professional demonstration and monitoring capability as an international technology provider and take an active role to establish advanced professional skills base in science and engineering and expand its arenas in modern solar-efficient architecture and energy management.

But the question still remains: Can the solar power bring about a revolutionary change to power most of Oman?

References – Volume: 02 Issue: 07 | Jul-2013, Available @

Renewable Energy Prospects in Kuwait

shagaya-renewable-energy-parkRenewable energy is in nascent stages in Kuwait, however there has been heightened activity in recent years mainly on account of the need for diversification of energy resources, climate change concerns and greater public awareness. The oil-rich State of Kuwait has embarked on a highly ambitious journey to meet 15 per cent of its energy requirements (approximately 2000 MW) from renewable resources by 2030. One of the most promising developments is the kick-starting of the initial phase of 2GW Shagaya Renewable Energy Park in 2015. Al-Abdaliyah integrated solar project is another promising solar venture currently at pre-qualification stage, which will have a total capacity of 280 MW, out of which 60 MW will be contributed by solar thermal systems.

Potential of Renewables

In Kuwait, the predominant renewable energy resource is available in the form of solar and wind. The country has one of the highest solar irradiation levels in the world, estimated at 2100 – 2200 kW/m2 per year. The average insolation of 5.2 kWh/m2/day and maximum annual sun hours of around 9.2 hours daily makes Kuwait a very good destination for solar power plant developers.

Wind energy also has good potential in the country as the average wind speed is relatively good at around 5m/s in regions like Al-Wafra and Al-Taweel. Infact, Kuwait already has an existing 2.4MW Salmi Mini-windfarm, completed in 2013, which mainly serves telecommunication towers in remote areas and the fire brigade station in Salmi. As far as biomass energy is concerned, it has very limited scope in Kuwait due to arid climate and lack of water resources.

Kuwait's Renewable Energy Program

Interestingly, Kuwait has been one of the earliest advocates of renewable energy in the Middle East with its involvement dating back to mid-1970s; however the sector is still in its early stages. The good news is that renewable energy has now started to move into development agenda and political discourse in Kuwait. The Kuwait Institute of Scientific Research (KISR) and the Kuwait Authority for Partnership Projects (KAPP) are playing an important role in Kuwait’s push towards low-carbon economy. KISR, in particular, has been mandated by the government to develop large-scale alternative energy systems in collaboration with international institutions and technology companies.

Kuwait’s renewable energy program, with the aim to generate 2GW renewable energy by 2030, has been divided into three stages. The first phase involves the construction of 70 MW integrated renewable energy park (solar PV, solar thermal and wind) at Shagaya which was scheduled to be completed by the end of 2016. The second and third phases are projected to produce 930 MW and 1,000 MW, respectively.

The Kuwait Institute for Scientific Research (KISR), founded in 1967, is one of the earliest research institutions in GCC to undertake commercial-scale research on potential applications and socio-economic benefits of renewable energy systems in Kuwait as well as GCC.

Shagaya Renewable Energy Park

Shagaya Renewable Energy Park comprises of solar thermal, solar photovoltaic and wind power systems, being built on a 100 km2 area in Shagaya, in a desert zone near Kuwait’s border with Saudi Arabia and Iraq. The $385 million first phase, scheduled to be operational by the end of 2016, will include 10MW of wind power, 10MW of solar PV, and 50MW of solar thermal systems. The project’s thermal energy storage system, based on molten salt, will have nine hours of storage capacity, one of the few projects worldwide with such a large capacity.

Shagaya is to Kuwait as Masdar is to Abu Dhabi.

Shagaya is to Kuwait as Masdar is to Abu Dhabi.

Future Perspectives

The major driving force behind Kuwait’s renewables program is energy security and diversification of energy mix. The country has one of the world’s highest per capita consumption of energy which is growing with each passing year. In recent years, the Middle East has received some of the lowest renewable-energy prices awarded globally for both photovoltaic and wind power which seems to have convinced Kuwait to seriously explore the option of large-scale power generation from renewable resources. However, Kuwait has a long way to go before renewable energy can make a real impact in its national energy mix.

Another key driver for Kuwait’s transition to low-carbon economy is its carbon and ecological footprints, which is among the highest worldwide. Widespread use of renewable power will definitely help Kuwait in putting forward a ‘green’ and ‘eco-friendly’ image in the region and beyond. The business case for green energy proliferation in Kuwait is strengthened by widespread availability of solar and wind resources and tumbling costs of alternative energy systems.