About Salman Zafar

Salman Zafar is the Founder of EcoMENA, and an international consultant, advisor, ecopreneur and journalist with expertise in waste management, waste-to-energy, renewable energy, environment protection and sustainable development. His geographical areas of focus include Middle East, Africa, Asia and Europe. Salman has successfully accomplished a wide range of projects in the areas of biomass energy, biogas, waste-to-energy, recycling and waste management. He has participated in numerous conferences and workshops as chairman, session chair, keynote speaker and panelist. Salman is the Editor-in-Chief of EcoMENA, and is a professional environmental writer with more than 300 popular articles to his credit. He is proactively engaged in creating mass awareness on renewable energy, waste management and environmental sustainability in different parts of the world. Salman Zafar can be reached at salman@ecomena.org or salman@bioenergyconsult.com

Medical Waste Management in MENA

Healthcare sector in MENA region is growing at a very rapid pace, which in turn has led to tremendous increase in the quantity of medical waste generation by hospitals, clinics and other establishments. According to a recent Ministry of State for Environmental Affairs report, Egypt generated 28,300 tons of hazardous medical wastes in 2010. In the GCC region, more than 150 tons of medical waste is generated in GCC countries every day. Saudi Arabia leads the pack with daily healthcare waste generation of more than 80 tons. These figures are indicative of the magnitude of the problem faced by municipal authorities in dealing with medical waste disposal problem across the MENA region. 

Multitude of Problems

The growing amount of medical wastes is posing significant public health and environmental challenges in major cities of the region. The situation is worsened by improper disposal methods, insufficient physical resources, and lack of research on medical waste management. Improper management of medical wastes from hospitals, clinics and other facilities in MENA pose occupational and public health risks to patients, health workers, waste handlers, haulers and general public. It may also lead to contamination of air, water and soil which may affect all forms of life. In addition, if waste is not disposed of properly, ragpickers may collect disposable medical equipment (particularly syringes) and to resell these materials which may cause dangerous diseases.

Improper management of medical wastes from hospitals, clinics and other facilities in MENA pose occupational and public health risks to patients, health workers, waste handlers, haulers and general public. It may also lead to contamination of air, water and soil which may affect all forms of life. In addition, if waste is not disposed of properly, ragpickers may collect disposable medical equipment (particularly syringes) and to resell these materials which may cause dangerous diseases.

Medical waste management method in MENA is limited to either small-scale incineration or landfilling. The practice of landfilling of medical wastes is a matter of serious concern as it poses grave risks to public health, water resources, soil fertility as well as air quality. In many Middle East and North Africa countries, medical wastes is mixed with municipal solid wastes and/or industrial wastes which transforms medical wastes into a cocktail of dangerous substances. 

The WHO policy paper of 2004 and the Stockholm Convention, has stressed the need to consider the risks associated with the incineration of healthcare waste as a typical medical waste incinerator releases a wide variety of pollutants which may include particulate matter, heavy metals, acid gases, carbon monoxide and organic compounds. Sometimes pathogens may also be found in the solid residues and in the exhaust of poorly designed and badly operated incinerators. In addition, leachable organic compounds, like dioxins and heavy metals, are usually present in bottom ash residues. Due to these factors, many industrialized countries are phasing out healthcare incinerators and exploring technologies that do not produce any dioxins. Countries like United States, Ireland, Portugal, Canada and Germany have completely shut down or put a moratorium on medical waste incinerators. 

Promising Treatment Options

The alternative technologies for healthcare waste treatment are steam sterilization, advanced steam sterilization, microwave treatment, dry heat sterilization, alkaline hydrolysis, and biological treatment. Nowadays, steam sterilization (or autoclaving) is the most common alternative treatment method. Advanced autoclaves or advanced steam treatment technologies combine steam treatment with vacuuming, internal mixing or fragmentation, internal shredding, drying, and compaction thus leading to as much as 90% volume reduction. 

Microwave treatment is a promising technology in which treatment occurs through the introduction of moist heat and steam generated by microwave energy. Alkaline digestion is a unique type of chemical process that uses heated alkali to digest tissues, pathological waste, anatomical parts, or animal carcasses in heated stainless steel tanks. Biological processes, like composting and vermicomposting, can also be used to degrade organic matter in healthcare waste such as kitchen waste and placenta.

Republished by Blog Post Promoter

Earth Day 2017: Environmental and Climate Literacy

The campaign theme for Earth Day 2017 is Environmental & Climate Literacy, and conservationists, researchers and educators will be using this Earth Day to increase awareness about climate change and environmental issues. Earth Day has now grown into a global environmental tradition making it the largest civic observance in the world and is widely celebrated event in which over one billion people from over 190 countries will participate by taking suitable actions for saving our mother Earth.

Significance of Climate Literacy

Education is the foundation for progress. We need to build a global citizenry fluent in the concepts of climate change and aware of its unprecedented threat to our planet. We need to empower everyone with the knowledge to inspire action in defense of environmental protection.

The campaign hopes to not only educate and inspire but also advance policies geared towards defending our environment and accelerating green jobs and technologies. To achieve these aims, Earth Day 2017 encourages everyone to gather with their communities for an Environmental & Climate Literacy Teach-In.

“Education is the foundation for progress,” Earth Day Network said on their website. “We need to build a global citizenry fluent in the concepts of climate change and aware of its unprecedented threat to our planet. We need to empower everyone with the knowledge to inspire action in defense of environmental protection.”

Environmental and climate literacy is the engine not only for green growth and advancing environmental and climate laws and policies but also for accelerating green technologies and jobs.

Time for Action

Planting trees and enhancing forest cover is critical work because it has the potential to restore land, benefit local communities, and combat climate change. In fact, poverty is linked to deforestation, and without tackling sectors like agriculture and forestry, it will be nearly impossible to avoid the worst consequences of climate change.

Environmental education is the foundation for progress.

To help jumpstart Earth Day education efforts, the Earth Day Network has downloadable Earth Day Action Toolkits available that explain scientific and environmental crises caused by human actions. By providing this literature, the network is hoping to help enact change and take steps toward progress.

The Earth Day movement is continuing, entering the 47th year to inspire, challenge ideas, ignite passion, and motivate people to action. Let us contribute to the best of our capabilities. This initiative will make a significant and measurable impact on the Earth and will serve as the foundation of a cleaner, healthier and more sustainable planet for all.

You can also get involved by making small green changes in your lifestyle:

  • Walk to work, cycle or take public transport
  • Cut back on single use plastics
  • Recycle
  • Go paperless
  • Go meat or dairy free at least once a week
  • Plant a tree
  • Buy local produce

 

Energy Efficiency Perspectives for UAE

With Abu Dhabi alone on track to generate more than 10,000 megawatts of electricity for the first time, discussion about improving energy efficiency in the United Arab Emirates is taking on a more critical tone. Daytime energy use in the hot summer months is still experiencing rampant year-on-year growth, with peak demand this year growing by 12 per cent. Lying at the heart of these consumption levels is the need for air conditioning, which accounts for about half of total electricity demand.

Business and Government Action

At the commercial level, considerable steps are being taken to reduce the Emirate’s carbon footprint. A building insulation program in Dubai has resulted in claims that all buildings there have become twice as energy efficient since completion of the program. Further steps are also underway in other ecological areas such as water efficiency and waste management with the intention of ensuring the green credentials of every building meet international environmental standards and expectations.

At the official level the Emirates’ Authority for Standardization and Metrology continues to implement its Energy Efficiency Standardization and Labelling (EESL) program. This introduced specific efficiency and labelling requirements for non-ducted room air-conditioners in 2011.

These measures were joined this year by requirements under the same program for many other household electrical goods including lamps, washing machines and refrigerating appliances. The labelling requirements under this program will become mandatory by 2013 enabling consumers to see which machines are the most efficient and make sound environmental choices that will also save them money on running costs. The EESL programme will be further extended in 2013 to include ducted air-conditioners and chillers.

The UAE’s oil and gas sector also is recognising the importance of the energy efficiency agenda. It might seem counterintuitive that a sector with oil reserves of about 97 billion barrels and natural gas reserves of six trillion cubic meters should be thinking about how to save energy. The issue is that these reserves, despite their size, are not finite and that oil for export produces greater revenue generation than oil for the domestic market. It is, therefore, in the oil and gas sector’s interest to work with those trying to drive down domestic consumption, as it will maximise the sector’s longer term sustainability.  

The Emirates Energy Award was launched in 2007 to recognize the best implemented practices in energy conservation and management that showcase innovative, cost effective and replicable energy efficiency measures. Such acknowledged practices should manifest a sound impact on the Gulf region to stir energy awareness on a broad level and across the different facets of society.

Significance of Behavioural Change

As much as formal initiatives and programmes have their place in the battle for a more energy efficient UAE, there also needs to be a general shift in culture by the public. Improving public perception of green issues and encouraging behaviours that support energy efficiency can contribute significantly towards the overall goal. As fuel prices increase in the domestic market, the UAE’s citizens are already adding more weight to fuel efficiency when considering what cars they will buy.

SUVs and 4x4s might still be the biggest sellers but household budgets are becoming increasingly stretched and many ordinary citizens are looking for smaller more efficient cars. Perhaps for the first time, the entire running costs of cars are being considered and the UAE’s car dealers and their suppliers are looking to accommodate this change in their customers’ attitudes. This trend is so significant that some car dealerships are seeing large year-on-year increases in sales of their smaller, more efficient models.

Car rental companies are seeing this trend also and in Dubai, at least one is making hiring a car with green credentials more appealing to a wider cross-section of the public – offering everything from the more familiar Chevrolet Volts and Nissan Leafs to the most exotic hybrid and fully electric cars available to hire or lease.

Capitalising on these trends makes both environmental and business sense but economic drivers cannot alone be left to change public behaviour. There are really simple measures that government and business should be encouraging people to take. Some may argue that switching-off computers, lights and air-conditioning at the end of the working day may save energy but is not sufficiently worthwhile promoting – voluntary measures of this sort will not impact on overall energy trends.

There is evidence however that if these behaviours are added to measures like installing energy efficient lighting, lowering thermostats and optimising EESL five-star rated air-conditioners, the energy savings really do become significant – potentially halving a building’s energy consumption.

Conserving energy may not yet be a way of life in the UAE but the rapid changes being seen there are an indicator of what is to come. Formal energy efficiency programs and voluntary measures combined will help the UAE maintain its economic strength in the region and because of this it is one agenda that will not be going away.

Republished by Blog Post Promoter

CSP-Powered Desalination Prospects in MENA

Conventional large-scale desalination is cost-prohibitive and energy-intensive, and not viable for poor countries in the MENA region due to increasing costs of fossil fuels. In addition, the environmental impacts of desalination are considered critical on account of GHG emissions from energy consumption and discharge of brine into the sea. The negative effects of desalination can be minimized, to some extent, by using renewable energy to power the plants.

What is Concentrated Solar Power

The core element of Concentrated Solar Power Plant is a field of large mirrors reflecting captured rays of sun to a small receiver element, thus concentrating the solar radiation intensity by several 100 times and generating very high temperature (more than 1000 °C). This resultant heat can be either used directly in a thermal power cycle based on steam turbines, gas turbines or Stirling engines, or stored in molten salt, concrete or phase-change material to be delivered later to the power cycle for night-time operation. CSP plants also have the capability alternative hybrid operation with fossil fuels, allowing them to provide firm power capacity on demand. The capacity of CSP plants can range from 5 MW to several hundred MW.

Three types of solar collectors are utilized for large-scale CSP power generation – Parabolic Trough, Fresnel and Central Receiver Systems. Parabolic trough systems use parabolic mirrors to concentrate solar radiation on linear receivers which moves with the parabolic mirror to track the sun from east to west. In a Fresnel system, the parabolic shape of the trough is split into several smaller, relatively flat mirror segments which are connected at different angles to a rod-bar that moves them simultaneously to track the sun. Central Receiver Systems consists of two-axis tracking mirrors, or heliostats, which reflect direct solar radiation onto a receiver located at the top of a tower.

Theoretically, all CSP systems can be used to generate electricity and heat.  All are suited to be combined with membrane and thermal desalination systems. However, the only commercially available CSP plants today are linear concentrating parabolic trough systems because of lower cost, simple construction, and high efficiency

CSP-Powered Desalination Prospects in MENA

A recent study by International Energy Agency found that the six biggest users of desalination in MENA––Algeria, Kuwait, Libya, Qatar, Saudi Arabia, and United Arab Emirates––use approximately 10 percent of the primary energy for desalination. Infact, desalination accounted for more than 4 percent of the total electricity generated in the MENA region in 2010. With growing desalination demand, the major impact will be on those countries that currently use only a small proportion of their energy for desalination, such as Jordan and Algeria.

The MENA region has tremendous wind and solar energy potential which can be effectively utilized in desalination processes. Concentrating solar power (CSP) offers an attractive option to power industrial-scale desalination plants that require both high temperature fluids and electricity.  CSP can provide stable energy supply for continuous operation of desalination plants based on thermal or membrane processes. Infact, several countries in the region, such as Jordan, Egypt, Tunisia and Morocco are already developing large CSP solar power projects.

Concentrating solar power offers an attractive option to run industrial-scale desalination plants that require both high temperature fluids and electricity.  Such plants can provide stable energy supply for continuous operation of desalination plants based on thermal or membrane processes. The MENA region has tremendous solar energy potential that can facilitate generation of energy required to offset the alarming freshwater deficit. The virtually unlimited solar irradiance in the region will ensure large-scale deployment of eco-friendly desalination systems, thereby saving energy and reducing greenhouse gas emissions.  

Several countries in the MENA region – Algeria, Egypt, Jordan, Morocco and Tunisia – have joined together to expedite the deployment of concentrated solar power (CSP) and exploit the region's vast solar energy resources. One of those projects is a series of massive solar farms spanning the Middle East and North Africa. Two projects under this Desertec umbrella are Morocco’s Ouarzazate Concentrated Solar Power plant, which was approved in late 2011, and Tunisia’s TuNur Concentrated Solar Power Plant, which was approved in January 2012. The Moroccan plant will have a 500-MW capacity, while the Tunisia plant will have a 2 GW capacity. Jordan is also making rapid strides with several mega CSP projects under development in Maa’n Development Area. 

Conclusions

Seawater desalination powered by concentrated solar power offers an attractive opportunity for MENA countries to ensure affordable, sustainable and secure freshwater supply. The growing water deficit in the MENA region is fuelling regional conflicts, political instability and environmental degradation. It is expected that the energy demand for seawater desalination for urban centres and mega-cities will be met by ensuring mass deployment of CSP-powered systems across the region. Considering the severe consequence of looming water crisis in the MENA region it is responsibility of all regional governments to devise a forward-looking regional water policy to facilitate rapid deployment and expansion of CSP and other clean energy resources for seawater desalination.

Republished by Blog Post Promoter

MSW Generation in the Middle East

The high rate of population growth, urbanization and economic expansion in the Middle East is not only accelerating consumption rates but also increasing the generation rate of all  sorts of waste. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita solid waste generation. The gross urban waste generation quantity from Middle East countries has crossed 150 million tons per annum.The world’s dependence on Middle East energy resources has caused the region to have some of the largest carbon footprints per capita worldwide. The region is now gearing up to meet the challenge of global warming, as with the rapid growth of the waste management sector. During the last few years, UAE, Qatar and Saudi Arabia have unveiled multi-billion dollar investment plans to Improve waste management scenario in their respective countries. 

Solid Waste Generation Statistics

Saudi Arabia produce more than 15 million tons of garbage each year. With an approximate population of about 28 million, the country produces approximately 1.3 kilograms of waste per person every day. More than 5,000 tons of urban waste is generated in the city of Jeddah alone. 

The per capita MSW generation rate  in the United Arab Emirates ranges from 1.76 to 2.3 kg/day. According to a recent study, the amount of solid waste in UAE totaled 4.892 million tons, with a daily average of 6935 tons in the city of Abu Dhabi, 4118 tons in Al Ain and 2349 tons in the western region.

Qatar's annual waste generation stands at 2.5 million tons while Kuwait produces 2 million tons MSW per annum. Bahrain generates more than 1.5 million tons of municipal waste every year. Countries like Kuwait, Bahrain and Qatar have astonishingly high per capita waste generation rate, primarily because of high standard of living and lack of awarness about sustainable waste management practices.

Country

MSW Generation

(million tons per annum)

Saudi Arabia

13

UAE

5

Qatar

2.5

Kuwait

2

Bahrain

1.5

In addition, huge quantity of sewage sludge is produced on daily basis which presents a serious problem due to its high treatment costs and risk to environment, human health and marine life. On an average, the rate of municipal wastewater generation in the Middle East is 80-200 litres per person per day. Cities in the region are facing increasing difficulties in treating sewage, as has been the case in Jeddah where 500,000 cubic metre of raw sewage is discarded in Buraiman Lake daily. Sewage generation across the region is rising by an astonishing rate of 25 percent every year which is bound to create major headaches for urban planners. 

Waste-to-Energy for the Middle East

Municipal solid waste in the Middle East is comprised of organic fraction, paper, glass, plastics, metals, wood etc which can be managed by making use of recycling, composting and/or waste-to-energy technologies. The composting process is a complex interaction between the waste and the microorganisms within the waste. Central composting plants are capable of handling more than 100,000 tons of biodegradable waste per year, but typically the plant size is about 10,000 to 30,000 tons per year.

Municipal solid waste can be converted into energy by conventional technologies (such as incineration, mass-burn and landfill gas capture) or by modern conversion systems (such as anaerobic digestion, gasification and pyrolysis). The three principal methods of thermochemical conversion are combustion (in excess air), gasification (in reduced air), and pyrolysis (in absence of air). The most common technique for producing both heat and electrical energy from urban wastes is direct combustion. Combined heat and power (CHP) or cogeneration systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity. 

At the landfill sites, the gas produced by the natural decomposition of MSW can be collected from the stored material and scrubbed and cleaned before feeding into internal combustion engines or gas turbines to generate heat and power. In addition, the organic fraction of MSW can be anaerobically stabilized in a high-rate digester to obtain biogas for electricity or steam generation. 

Anaerobic digestion is the most preferred option to extract energy from sewage, which leads to production of biogas and organic fertilizer. The sewage sludge that remains can be incinerated or gasified/pyrolyzed to produce more energy. In addition, sewage-to-energy processes also facilitate water recycling. Infact, energy recovery from MSW is rapidly gaining worldwide recognition as the 4th R in sustainable waste management system – Reuse, Reduce, Recycle and Recover.

Republished by Blog Post Promoter

مستقبل تحلية المياة لمنطقة الشرق الأوسط وشمال أفريقيا

تحلية المياه هي عملية معالجة للمياه يتم فيها فصل الأملاح من المياه المالحة لانتاج مياه صالحة للشرب. عملية التحلية تستهلك كمية كبيرة من الطاقة لانتاج الماء العذب من مصادر المياة المالحة. يتم ضخ الماء المالح في عملية التحلية وتكون المخرجات عبارة عن خط ماء عذب بالاضافة لخط أخر من المياة عالية الملوحه جداً.

يوجد أكثر من 15000 وحدة تنقية مياه على المستوى الصناعي في العالم، بطاقة اجمالية تزيد على 8.5 مليار جالون يومياً. يتفوق أسلوب الترشيح بالأغشية في هذا المجال حيث تبلغ نسبته حوالي 44% من اجمالي الطاقة الاجمالية، يليه التحلية بالتسخين MSF بنسبة حوالي 40 %. وبالنسبة للمصادر، تمثل مياة البحار حوالي 58 % والمياه الجوفية المالحة نسبة 23 % والباقي من مصادر أخرى كالانهار والبحيرات المالحة.

مشاكل المياة في منطقة الشرق الأوسط وشمال افريقيا

الحصول على الماء العذب يعد من أكبر مجالات الاهتمامات الصحية اليوم. فمنطقة الشرق الأوسط وشمال افريقيا من أكثر مناطق العالم جفافا. وتؤدي معدلات زيادة السكان العالية بالاضافة للتمدن والزيادة الصناعية مع ندرة المصادر الطبيعيه للماء العذب الي عجز حقيقي في الماء العذب في هذه المنطقة. مصادر المياه العذبه في منطقة الشرق الأوسط وشمال افريقيا يساء استغلالها دائماً مما يؤدي حتما الي زيادة الطلب على المياه المحلاه للحفاظ على مستوى مقبول من امدادات المياه.

ان محطات التحلية التقليديه كبيرة الحجم عالية التكلفة وشديدة الاستهلاك للطاقة، وليست مناسبة للبلدان الفقيرة في منطقة الشرق الأوسط وشمال افريقيا للزيادة في تكاليف الوقود الأحفوري. بالاضافة لذلك، التأثير البيئي لهذه المحطات يعد خطراً على مستوى الانبعاثات الناتجة من استهلاك الطاقة وصرف المحلول الملحي في البحر. المحلول الملحي الناتج له كثافة ملح عالية جدا ويحتوي ايضاً على بقايا لكيماويات ومعادن ناتجه من عملية التحلية مما يهدد الحياة البحرية.

التأثير السلبي لعمليات التحلية يمكن تقليله الي حد ما عن طريق استخدام الطاقة المتجددة لتغذية المحطات بالطاقة. فالمحطات المداره بالطاقة المتجددة تقدم طريقة مستدامة لزيادة توريد المياه العذبة لدول المنطقة، فدول المنطقة لديها امكانيات كبيرة في طاقة الرياح والطاقة الشمسية، والتي يمكن استخدامها بكفاءة في عمليات التحلية مثل التناضح العكسي، والفصل الكهربي وعمليات الفلتره. ان المحطات المداره بالطاقة المتجددة ستزداد جاذبيتها مع تقدم التكنلوجيات وزيادة اسعار الماء العذب والوقود الأحفوري.

محطات التحلية المدارة بالطاقة الشمسية

يمكن استخدام الطاقة الشمسية مباشرة او بشكل غير مباشر في عملية التحلية. أنظمة التجميع التي تستخدم الطاقة الشمسية للتجميع مباشرة في المجمعات الشمسيه تسمى نظم مباشرة، بينما العمليات التي تستخدم مزيج من الطاقة الشمسية مع الطاقة التقليدية  للتحلية تسمى نظم غير مباشرة. العقبة الرئيسية في استخدام الطاقة الحرارية الشمسية على نطاق محطات التحلية الكبيرة هي قلة معدل الانتاجية، وقلة الكفاءة الحرارية واحتياجها لمساحات واسعة. محطات التحلية المعتمدة على الطاقة الحرارية الشمسية تناسب الاحتياجات الصغيره خصوصا في المناطق البعيده والقاحلة والجزر التي تعاني فقرا في مصادر الطاقة التقليدية.

تقدم الطاقة الشمسية المركزة (CSP) خياراً جذاباً لتزويد مجال التحلية على المستوى الصناعي بالطاقة اللازمة والتي تحتاج الي سوائل عالية الحرارة وطاقة كهربائية. وتوفر الطاقة الشمسية المركزة طاقة مستقرة للاستخدام المستمر لعمليات محطات التحلية المعتمدة على التسخين او الأغشية في عمليتها. في الواقع، بدأت دول كثيرة في المنطقة كالأردن ومصر والمملكة العربية في تطوير مشاريع تحلية ضخمه معتمدة على الطاقة الشمسية المركزة تبشر بعهد جديد في منطقة الشرق الأوسط.

ان منطقة الشرق الأوسط وشمال افريقيا لديها امكانيات ضخمة في مجال الطاقة الشمسية والتي تسهل عملية توليد الطاقة اللازمة لتعويض العجز الظاهر في الماء الصالح للشرب. قد تتعرض المنطقة لأزمة مياه شديدة مع عدد السكان الذي من المتوقع ان يتضاعف بحلول عام 2050. يمكن لمحطات التحلية التي تعمل بالطاقة الشمسية مع الاستعمال السليم لمخزون المياه واعادة استعمال مياه الصرف ان تساعد في التقليل من الأزمة المائية في المنطقة. وسوف تقلل ايضاً من الاعباء المادية على حكومات المنطقة من قطاع المياه والكهرباء، ومن ثم توجيه هذه المخصصات المالية في قطاعات أهم كالتعليم والصحة والقطاع الصناعي.

ترجمة: طه واكد – مهندس مدني مهتم بشؤون البيئة – مصر

شريك مؤسس في مشروع دقيقة خضراء  –  معد وكاتب حلقات دقيقة خضراء عاليوتيوب

للتواصل عبر taha.waked@gmail.com   أو admin@green-min.com

Republished by Blog Post Promoter

Solar Energy Prospects in Tunisia

Tunisia is an energy-dependent country with modest oil and gas reserves. Around 97 percent of the total energy is produced by natural gas and oil, while renewables contribute merely 3% of the energy mix. The installed electricity capacity at the end of 2015 was 5,695 MW which is expected to sharply increase to 7,500 MW by 2021 to meet the rising power demands of the industrial and domestic sectors. Needless to say, Tunisia is building additional conventional power plants and developing its solar and wind capacities to sustain economic development.

Wind Energy Outlook

Wind power represents the main source of renewable energy in Tunisia. Since 2008, wind energy is leading the energy transition of Tunisia with a growth of the production up to 245 MW of power installed in 2016. Two main wind farms have been developed until now: Sidi-Daoud and Bizerte. 

The first wind power project of Tunisia started in 2000, with the installation of the Sidi-Daoud’s wind farm in the gulf of Tunis. The station has been developed in three steps before reaching its current power capacity of 54 MW. The operation of two wind power facilities in Bizerte – Metline and Kchabta Station – was launched in 2012. The development of those stations has conducted to a significant increase of electricity generated by wind power, totalizing a production of 94 MW for Kchabta and 95MW in Metline in 2016

 

Solar Energy Potential

Tunisia has good renewable energy potential, especially solar and wind, which the government is trying to tap to ensure a safe energy future. The country has very good solar radiation potential which ranges from 1800 kWh/m² per year in the North to 2600kWh/m² per year in the South. The total installed capacity of grid-connected renewable power plant was around 342 MW in 2016 (245 MW of wind energy, 68 MW of hydropower and 15 MW of PV), which is hardly 6% of the total capacity. 

In 2009, the Tunisian government adopted “Plan Solaire Tunisien” or Tunisia Solar Plan to achieve 4.7 GW of renewable energy capacity by 2030 which includes the use of solar photovoltaic systems, solar water heating systems and solar concentrated power units. The Tunisian solar plan is being implemented by STEG Énergies Renouvelables (STEG RE) which is a subsidiary of state-utility STEG and responsible for the development of alternative energy sector in the country. 

The total investment required to implement the Tunisian Solar Program plan have been estimated at $2.5 billion, including $175 million from the National Fund, $530 million from the public sector, $1,660 million from private sector funds, and $24 million from international cooperation, all of which will be spent over the period of 2012 – 2016. Around 40 percent of the resources will be devoted to the development of energy export infrastructure.

Tunisian Solar Program (PROSOL)

Tunisian Solar Programme, launched in 2005, is a joint initiative of UNEP, Tunisian National Agency for Energy Conservation, state-utility STEG and Italian Ministry for Environment, Land and Sea. The program aims to promote the development of the solar energy sector through financial and fiscal support. PROSOL includes a loan mechanism for domestic customers to purchase Solar Water Heaters and a capital cost subsidy provided by the Tunisian government of 20% of system costs. The major benefits of PROSOL are:

  • More than 50,000 Tunisian families get their hot water from the sun based on loans
  • Generation of employment opportunities in the form of technology suppliers and installation companies.
  • Reduced dependence on imported energy carriers
  • Reduction of GHGs emissions.

The Tunisian Solar Plan contains 40 projects aimed at promoting solar thermal and photovoltaic energies, wind energy, as well as energy efficiency measures. The plan also incorporates the ELMED project; a 400KV submarine cable interconnecting Tunisia and Italy.

In Tunisia, the totol solar PV total capacity at the end of 2014 was 15 MW which comprised of mostly small-scale private installations (residential as well as commercial) with capacity ranging from 1 kW and 30 kW. As of early 2015, there were only three operational PV installations with a capacity of at least 100 kW: a 149 kWp installation in Sfax, a 211 kWp installation operated by the Tunisian potable water supply company SONEDE and a 100 kWp installation in the region of Korba, both connected to the medium voltage, and realized by Tunisian installer companies. The first large scale solar power plant of a 10MW capacity, co-financed by KfW and NIF (Neighbourhood Investment Facility) and implemented by STEG, is due 2018 in Tozeur.

TuNur Concentrated Solar Power Project

TuNur CSP project is Tunisia's most ambitious renewable energy project yet. The project consists of a 2,250 MW solar CSP (Concentrated Solar Power) plant in Sahara desert and a 2 GW HVDC (High-Voltage Direct Current) submarine cable from Tunisia to Italy. TuNur plans to use Concentrated Solar Power to generate a potential 2.5GW of electricity on 100km2 of desert in South West Tunisia by 2018. At present the project is at the fund-raising stage.

Future Perspectives

The Tunisian government has recetly announced plans to invest US $1 billion towards renewable energy projects including the installation of 1,000 megawatts (MW) of renewable energy this year. According to the Energy General Direction of the Tunisian Ministry of Energy and Mines, 650 MW will come from solar photovoltaic, while the residual 350 MW will be supplied by wind energy.

At the same time, the private sector plans to invest an additional US $600 million into the development of renewable energy capacity in 2017. Under new plans, Tunisia has dedicated itself to generating 30 per cent of its electrical energy from renewable energy sources in 2030.

Republished by Blog Post Promoter

سوق الطاقة المتجدد في منطقة الشرق الأوسط

تعد منطقة الشرق الأوسط من أفضل المناطق حول العالم للإستفادة من موارد الطاقة الشمسية وطاقة الرياح. إذ وفقا لتقرير (إيرينا) الأخير، فإن منطقة الشرق الأوسط ستحظى بإستثمارات في مشاريع الطاقة المتجددة ب 35مليار دولار وذلك مع حلول عام 2020م. ومؤخرا حظي قطاع الطاقة المتجددة بأسعار تنافسية لتركيب الألواح الشمسية الكهروضوئية ومراوح الرياح.

التطورات الإقليمية

وعلى صعيد منطقة الشرق الأوسط، تبرز المملكة المغربية كمثل رائد يحتدى به في تطوير المشاريع الشمسية لتوليد الطاقة الكهربائية. حيث جعلت الحكومة المغرية تحقيق 2 جيجا من الطاقة الشمسية و 2 جيجا واط من طاقة الرياح هدفا لها بحلول العام 2020م. ويطلق على مشروع الطاقة الشمسية في المغرب إسم (نور). ويأتي بعد المغرب دول عربية أخرى شهدت تقدما واضحا في مشاريع الطاقة الشمسية مثل الأردن ومصر. وفي دول منطقة الخليج العربي، نجد هناك إهتمام جاد لتطوير مشاريع للطاقة الشمسية. ففي الإمارات العربية المتحدة، في العاصمة ابوظبي، محطة (شمس) للطاقة الشمسية المركزة التي تم تدشينها عام 2014م، بقدرة 100 ميغاواط. وفي مدينة دبي تم الإنتهاء من 13 ميغاواط كمرحلة أولى من المحطة الشمسية. أما في المملكة العربية السعودية، فقد أخذت الطاقة الشمسية وطاقة الرياح حصتها من إهتمام رؤية السعودية 2030م، التي أكدت على ضرورة إعتماد خيار الطاقة المتجددة لتنويع مصادر الطاقة في السعودية.

نعمة الطاقة المتجددة

تتعدد مزايا الطاقة المتجددة التي يمكن لدول منطقة الشرق الأوسط الإستفادة منها في أشكال عديدة منها: أمن الطاقة، تحسين نوعية الهواء، والمساهمة في الحد من إنبعاثات الغازات الدفيئة الملوثة في الهواء، فرص العمل و تحقيق للأمن المائي الغذائي.

ويعزز وفرة مصادر الطاقة المتجددة على مدار العام من جدوى نشرها في منطقة الشرق الأوسط، وأيضا ساعد إنخفاض أسعار تكنلوجيا الطاقة الشمسية الكهروضوئية إلى زيادة الإعتماد عليها فمثلا: سجل إنخفاض تكاليف توليد الطاقة المتجددة في مشروع دبي الشمسي لمحمد بن راشد آل مكتوم إلى 5,85 سنت أمريكي لكل كيلوواط ساعة، حيث تعتبر من أدنى المعدلات في الكلفة حول العالم.

تأثير الإنخفاض في الأسعار

سيكون للإنخفاض المتسارع الأثر الكبير في حياة عشرات الملايين من الناس الذين مازلوا يفتقرون إلى إمدادات رخيصة وحديثة للطاقة. حيث سيكون لخفض التكاليف الدور الكبير في مساعدة دول الشرق الأوسط ودول مجلس التعون الخليجي خاصة، لتحقيق هدف التحول نحو مصادر الطاقة المتجددة وبالتالي الحد من الإعتماد على الوقود الأحفوري لتوليد الكهرباء وتحلية مياه البحر. وسيساعد الإنخفاض السعري كذلك، الأسواق الناشئة في الدول النامية لتلبية الطلب على المتزايد للطاقة في دولها.

الاتجاهات الجديدة

توفر تقنيات خارج الشبكة للطاقة الشمسية فرصة ممتازة لنشر الطاقة النظيفة خصوصا في المناطق النائية والبعيدة عن الشبكة الرئيسة. حيث ستضمن التغطية خارج الشبكة للمناطق النائية من الحصول على طاقة نظيفة وموثوقة ورخيصة وستساعد في تغيير حياة الملايين في الدول النامية حول العالم.

وسيساهم المضي في تطوير بطاريات تخزين الطاقة من التوسع في إعتماد مشاريع الطاقة الشمسية، والتوسع في غعتمادها كمصدر متجدد وذو كلفة معقولة. وتتصدر شركات عالمية في البحث والتطوير في مجال تقنيات تخزين الطاقة مثل شركتي تسلا و نيسان، حيث سيساعد تخزين الطاقة إلى التغلب على تحدي التقطع في مصادر الكاقة المتجددة بكافة أشكالها.

وتعد تقنية الطاقة الشمسية المركزة إحدى التقنيات الشمسية المناسبة لدول منطقة الشرق الأوسط، خصوصا فيما يتعلق بتحلية مياه البحر التي ستقلل من هدر إحراق الوقود الأحفوري في عمليات التحلية. حيث توفر هذه التقنية إمدادات مستقرة للطاقة بشكل مستمر من محطات تحلية المياه وستساهم التطورات التقني السريع من إزدياد الإهتمام بخيار الطاقة الشمسية المركزة في منطقة الشرق الأوسط.


مصاعب تواجه إعتماد الطاقة الشمسية

تواجه الطاقة الشمسية في منطقة الشرق الأوسط عدد من التحديات منها: غياب الإطار التنظيمي القوي و إرتفاع الرسوم الجمركية وغياب الدعم المؤسسي للطاقة الشمسية و إنخفاض المردود الإقتصادي نتيجة لعدد من العوامل مثل الدعم الكبير للنفط والغاز.
والجدير بالذكر أن قطاع الطاقة في منطقة الشرق الأوسط، يقبع تحت سيطرة الدولة والحكومة المركزية التي تحد من تنافسية منتجي الطاقة المستقلين و دخول القطاع الخاص من المستثمرين ومطوري المشاريع إلى الأسواق المحلية. وتتصدر الأردن والمغرب دول المنطقة في وجود الإطار التشريعي لدعم مشاريع الطاقة المتجددة تليها المملكة العربية السعودية ودولة الإمارات العربية المتحدة.

نصائح للمستثمرين الجدد في مشاريع الطاقة الشمسية

إن سوق الطاقة الشمسية في منطقة الشرق الأوسط، يعد معقدا نظرا لطبيعة هيكلة سوق الكهرباء ولذلك تنشأ تحديات لاتعد ولا تحصى في كل بلد. لذلك ينبغي على الدول التي تطمح بالتوسع في الإسستفادة من مصدر الطاقة الشمسية، أن تعمل على البنية التحتية و سهولة الوصول إلى الشبكة و إعتماد خطط التراخيص بشكل واضح وشفاف و إعتماد بيانات الأرصاد الجوية ذات الجودة العالية وقضايا أخرى تتعلق بتحسين تقنيات الألواح الشمسية.

ترجمة

إيمان أمان
متخصصة وباحثة في شؤون الطاقة وتغير المناخ

Plastic Upcycling Initiative in Egypt

The sheer volume of plastic waste generated coupled with energy and material resources required for production, as well as emissions resulting from these processes paint a grim picture of the environmental havoc created by plastic bags. Single-use plastic bags are a huge threat to the environment as an estimated 1 trillion such bags are consumed worldwide every year.

Plastic bags are notorious for their interference in natural ecosystems and for causing the death of aquatic organisms, animals and birds. In 2006, The United Nations Environment Programme estimated that there are 46,000 pieces of plastic litter floating in every square mile of ocean and upto 80 percent of marine debris worldwide is plastic which are responsible for the death of a more than a million seabirds and 100,000 marine mammals each year from starvation, choking or entanglement.

Re: Genuine Plastic Bags

The problems associated with single-use plastic bags forced two Egyptian youngsters – Yara Yassin and Rania Rafie – to think of a way of reusing plastic bags. Their upcycling venture, Re: Genuine Plastic Bags, makes innovative handbags sewn from throwaway plastic.  Re: Genuine plastic bag is a start up business that aims to recollect existing plastic bags and re-design them in a form of fashionable bags that can be used in day-to-day life, in order to prolong the life of plastic bags, thus producing lesser amount of wastes. They endeavor to create bags that are self-designed and meant for various kinds of stores, brand names, graphical elements and different lifestyles of consumers

The models are produced through a new technique of fusing plastic bags together. The new fused material becomes dryer and more firm, when left to dry, which takes maximum 40 seconds. The outcome is based on the thickness and type of plastic bags fused; if the plastic bag is too thin (LDPE), then it needs several layers to be fused without completely melting. The outcome is also imprecise, as it may shrink from the heat, and maintaining a straight line is almost impossible.

Yara and Rania feel that the eco-friendly bags are a great way to motivate people towards behavioral change, especially in the Middle East. More information about Re: Genuine Plastic Bags can be found at this link

Republished by Blog Post Promoter

فوائد اعاده التدوير

 

إعادة التدوير هي عملية تستخدم فيها مواد من النفايات اليومية يتم تحويلها إلى منتجات جديدة. وتشمل الم يمكن إعادة تدويرها ؛ الزجاج والورق والبلاستيك والمعادن المختلفة.  ان عملية إعادة التدوير تنطوي على فصل النفايات بعد جمعها ومعالجة النفايات القابله للتدوير و تصنيع منتجات جديدة.

الحاجه لاعاده التدوير

ان عمليه تصنيع المنتجات تنطوي على الحصول على المواد الخام من مصادر مختلفة. هذه المواد قد تكون من الغابات أو المناجم. حيث يتم نقلها إلى مكان الصنع عادة" عن طريق البر أو البحر، وهي عملية مستهلكة للطاقة.

 ان عمليه شراء المواد الخام ونقلها تسبب التلوث بالإضافة إلى استخدام الموارد الشحيحة مثل الأشجار وأنواع الوقود الأحفوري. كل هذا بدوره  يؤدي الى الاحتباس الحراري من خلال إطلاق الغازات وتآكل طبقة الأوزون التي تحمي الأرض من الأشعة الضارة من الشمس. ويلقى باللوم على ظاهرة الاحتباس الحراري تغير المناخ وعواقبه الكارثية منها هطول الأمطار في غير موسمها أو الجفاف مما يتسبب في  حدوث الفيضانات والمجاعة.

عادة" ما يتم التخلص من النفايات بدفنها في مكبات  أو حرقها.هذه الطريقه تأخذ حيزا شاسعا من  مساحات الأراضي ويمكن أن تلوث المياه ألجوفية في حين أن حرقها يسهم في زيادة ظاهرة الاحتباس الحراري.

مزايا إعادة التدوير

إعادة تدوير النفايات يقلل من الطلب على المواد الخام . كما أنه يقلل من عمليه التخلص من النفايات عن طريق طمرها في المكبات او حرقها ، وبالتالي يساعد في تقليل التلوث والاحتباس الحراري. وتعتبر عمليه  إعادة التدوير على أنها مفيدة للغاية لأنها لا تقلل فقط من كمية النفايات المنزلية التي يتم إرسالها إلى المكبات و المحارق التي   بدورها تلوث البيئة  بل هي أيضا وسيلة لتحقيق التنمية المستدامة حيث يمكننا أن نساعد بالحفاظ على البيئة للأجيال القادمة.

عمليه التدوير بدورها أيضا  تقلل التلوث  وذلك بالحد من الحاجه لجمع المواد الخام . إذا لم يتم إعادة تدوير المواد المستخدمة فان تصنيع منتجات جديدة  سوف يتم باستخدام مواد خام جديدة  من الغابات و استخدام عمليه التعدين. وبذلك فان التدوير يساعد في الحفاظ على الموائل الطبيعية . إعادة التدوير أيضا توفر الطاقة حيث ان الطاقة  تستخدم لاستخراج المواد الخام فضلا عن عمليات الصقل والنقل والتشييد.

قامت كل من جنوب أفريقيا والمملكة المتحدة بتنفيذ مشاريع إعادة تدوير ذات كفاءة عاليه و التي تم تنفيذها من قبل المنظمات غير الحكومية . وقد نفذت هذه المشاريع على اختلاف مسمياتها في جميع  أنحاء البلاد . وقد تم تجهيز أماكن مثل المراكز التجارية و المدن والمطاعم بحاويات ذات الوان  مرمزه بحيث يرمز كل لون لنوع نفايات محدد.  المملكة المتحدة نفذت عمليه فصل النفايات المنزلية تحت إشراف و توجيهات السلطات البلدية .

 يجب على  السكان والشركات فصل القمامة ووضعها في أكياس منفصلة  ليتم جمعها. غالبا ما يتم تمرير غرامة إذا لم يتم تنفيذ عمليه الفصل.

بعض الامثلة

نوع المواد المقبولة لإعادة التدوير تختلف من مدينة و بلد. كل مدينة و بلد لديها برامج إعادة تدوير مختلفة و التي يمكن ان تتعامل  مع أنواع مختلفة من المواد القابلة لإعادة التدوير.على سبيل المثال ،يعد الألمنيوم من المنتجات الاستهلاكية الأكثر معاد تدويرها في العالم. كل عام،صناعة الألمنيوم تدفع أكثر من 800 مليون دولار أمريكي لعلب الألمنيوم الفارغة.

إعادة تدوير علب الألمنيوم هو عملية حلقة مغلقة حيث ان علب المشروبات المستخدمه  التي يتم إعادة تدويرها تستخدم في المقام الأول لصنع علب المشروبات.علب الألمنيوم المعاد تدويرها  تستخدم مرة أخرى لإنتاج علب جديدة أو لإنتاج منتجات المنيوم اخرى  ذات قيمة مثل كتل ألمحركات وو اجهات المباني و الدراجات. في أوروبا حوالي 50٪ من الألمنيوم شبه المصنع والذي يستخدم لإنتاج علب المشروبات الجديدة وغيرها من منتجات التعبئة والتغليف يأتي من الألمنيوم المعاد تدويره.

من بين اللدائن تعد زجاجات التيريفثاليت و البولي اثيلين عالي الكثافة الاكثر اعاده للتدوير وتشكل جزءا لا يتجزأ من برامج إعادة التدوير ولها استخدامات كثيرة وأسواق راسخة. . ولقد زاد نمو  إعادة تدوير الزجاجات من خلال تطوير تكنولوجيات التجهيز التي تزيد من درجات نقاء المنتج وتقليل التكاليف التشغيلية.

ترجمة

سلام عبدالكريم عبابنه

مهندسه مدنية في شركة المسار المتحده للمقاولات – مهتمه في مجال البيئه و الطاقة المتجدده

 

Republished by Blog Post Promoter

What is Waste-to-Energy

Energy is the driving force for development in all countries of the world. The increasing clamor for energy and satisfying it with a combination of conventional and renewable resources is a big challenge. Accompanying energy problems in different parts of the world, another problem that is assuming critical proportions is that of urban waste accumulation.

The quantity of waste produced all over the world amounted to more than 12 billion tons in 2006, which increased to 13 billion tons in 2011. The rapid increase in population coupled with changing lifestyle and consumption patterns is expected to result in an exponential increase in waste generation of upto 18 billion tons by the year 2020.

Waste generation rates are affected by socio-economic development, degree of industrialization, and climate. Generally, the greater the economic prosperity and the higher percentage of urban population, the greater the amount of solid waste produced.

GCC countries are well-known for being the world’s top-ranked per capita waste generators. Reduction in the volume and mass of solid waste is a crucial issue especially in the light of limited availability of final disposal sites in the MENA countries. Millions of tons of waste are generated each year in the Middle East with the vast majority disposed of in open fields or burnt wantonly.

What is Waste to Energy

Waste-to-Energy (or WTE) is the use of modern combustion and biochemical technologies to recover energy, usually in the form of electricity and steam, from urban wastes. These new technologies can reduce the volume of the original waste by 90%, depending upon composition and use of outputs. The main categories of waste-to-energy technologies are physical technologies, which process waste to make it more useful as fuel; thermal technologies, which can yield heat, fuel oil, or syngas from both organic and inorganic wastes; and biological technologies, in which bacterial fermentation is used to digest organic wastes to yield fuel.

 

The three principal methods of thermochemical conversion corresponding to each of these energy carriers are combustion in excess air, gasification in reduced air, and pyrolysis in the absence of air. The most common technique for producing both heat and electrical energy from wastes is direct combustion. Combined heat and power (CHP) or cogeneration systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity. 

Biochemical processes, like anaerobic digestion, can also produce clean energy in the form of biogas which can be converted to power and heat using a gas engine. In addition, wastes can also yield liquid fuels, such as cellulosic ethanol, which can be used to replace petroleum-based fuels. Cellulosic ethanol can be produced from grasses, wood chips and agricultural residues by biochemical route using heat, pressure, chemicals and enzymes to unlock the sugars in biomass wastes. 

Conclusions

Waste-to-energy systems offer two important benefits of environmentally safe waste management and disposal, as well as the generation of clean electric power in the Middle East. Waste-to-energy is not only a solution to reduce the volume of waste that is and provide a supplemental energy source, but also yields a number of social benefits that cannot easily be quantified. The use of waste-to-energy as a method to dispose of solid and liquid wastes and generate power can significantly reduce environmental impacts of municipal solid waste management in the Middle East. 

Republished by Blog Post Promoter

Waste-to-Energy Pathways

Waste-to-energy is the use of modern combustion and biological technologies to recover energy from urban wastes. The conversion of waste material to energy can proceed along three major pathways – thermochemical, biochemical and physicochemical. Thermochemical conversion, characterized by higher temperature and conversion rates, is best suited for lower moisture feedstock and is generally less selective for products. On the other hand, biochemical technologies are more suitable for wet wastes which are rich in organic matter.

Thermochemical Conversion

The three principal methods of thermochemical conversion are combustion (in excess air), gasification (in reduced air), and pyrolysis (in absence of air). The most common technique for producing both heat and electrical energy from wastes is direct combustion. Combined heat and power (CHP) or cogeneration systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity.

Combustion technology is the controlled combustion of waste with the recovery of heat to produce steam which in turn produces power through steam turbines. Pyrolysis and gasification represent refined thermal treatment methods as alternatives to incineration and are characterized by the transformation of the waste into product gas as energy carrier for later combustion in, for example, a boiler or a gas engine. Plasma gasification, which takes place at extremely high temperature, is also hogging limelight nowadays.

Biochemical Conversion

Biochemical processes, like anaerobic digestion, can also produce clean energy in the form of biogas which can be converted to power and heat using a gas engine. Anaerobic digestion is the natural biological process which stabilizes organic waste in the absence of air and transforms it into biofertilizer and biogas. Anaerobic digestion is a reliable technology for the treatment of wet, organic waste.  Organic waste from various sources is biochemically degraded in highly controlled, oxygen-free conditions circumstances resulting in the production of biogas which can be used to produce both electricity and heat.

In addition, a variety of fuels can be produced from waste resources including liquid fuels, such as ethanol, methanol, biodiesel, Fischer-Tropsch diesel, and gaseous fuels, such as hydrogen and methane. The resource base for biofuel production is composed of a wide variety of forestry and agricultural resources, industrial processing residues, and municipal solid and urban wood residues. Globally, biofuels are most commonly used to power vehicles, heat homes, and for cooking.

Physico-chemical Conversion

The physico-chemical technology involves various processes to improve physical and chemical properties of solid waste. The combustible fraction of the waste is converted into high-energy fuel pellets which may be used in steam generation. The waste is first dried to bring down the high moisture levels. Sand, grit, and other incombustible matter are then mechanically separated before the waste is compacted and converted into pellets or RDF. Fuel pellets have several distinct advantages over coal and wood because it is cleaner, free from incombustibles, has lower ash and moisture contents, is of uniform size, cost-effective, and eco-friendly.

Republished by Blog Post Promoter