About Salman Zafar

Salman Zafar is a renowned consultant, advisor, entrepreneur and writer with expertise in waste management, waste-to-energy, renewable energy, environment protection and sustainable development. He is the Founder of EcoMENA, in addition to being the CEO of consultancy firm BioEnergy Consult. Salman has successfully accomplished a wide range of projects in the areas of biomass energy, biogas, waste-to-energy and waste management. He has participated in numerous conferences and workshops as chairman, session chair, keynote speaker and panelist. Salman is a professional writer and is proactively engaged in creating mass awareness on renewable energy, waste management and environmental sustainability. He can be reached at salman@ecomena.org or salman@bioenergyconsult.com

Methods for Aluminium Recycling

The demand for aluminium products is growing steadily because of their positive contribution to modern living. Aluminium is the second most widely used metal whereas the aluminum can is the most recycled consumer product in the world. Aluminium finds extensive use in air, road and sea transport; food and medicine; packaging; construction; electronics and electrical power transmission. The excellent recyclability of aluminium, together with its high scrap value and low energy needs during recycling make aluminium highly desirable to one and all. The global aluminum demand is forecasted to soar to nearly 70 million tons by 2020 from around 37 million tons currently.

Recycling of Aluminium

The contribution of recycled metal to the global output of aluminium products has increased from 17 percent in 1960 to 34 percent today, and expected to rise to almost 40 percent by 2020. Global recycling rates are high, with approximately 90 per cent of the metal used for transport and construction applications recovered, and over 60 per cent of used beverage cans are collected.

Aluminium does not degrade during the recycling process, since its atomic structure is not altered during melting. Aluminium recycling is both economically and environmentally effective, as recycled aluminium requires only 5% of the energy used to make primary aluminium, and can have the same properties as the parent metal. Infact, aluminium can be recycled endlessly without loss of material properties.

During the course of multiple recycling, more and more alloying elements are introduced into the metal cycle. This effect is put to good use in the production of casting alloys, which generally need these elements to attain the desired alloy properties.The industry has a long tradition of collecting and recycling used aluminium products.

Over the years, USA and European countries have developed robust separate collection systems for aluminium packaging with a good degree of success. Recycling aluminium reduces the need for raw materials and reduces the use of valuable energy resources. Recycled aluminium is made into aircraft, automobiles, bicycles, boats, computers, cookware, gutters, siding, wire and cans.

Recycling of Aluminium Cans

Aluminum can is the most recycled consumer product in the world. Each year, the aluminum industry pays out more than US$800 million for empty aluminum cans. Recycling aluminium cans is a closed-loop process since used beverage cans that are recycled are primarily used to make beverage cans. Recycled aluminium cans are used again for the production of new cans or for the production of other valuable aluminium products such as engine blocks, building facades or bicycles. In Europe about 50% of all semi-fabricated aluminium used for the production of new beverage cans and other aluminium packaging products comes from recycled aluminium. The major steps in aluminium can recycling are as followe:

Step 1: Aluminium cans are collected from recycling centers, community drop-off sites, curbside pick-up spots etc.

Step 2: Compressed into highly dense briquettes or bales at scrap processing facilities and shipped to aluminum companies for melting.

Step 3: Condensed cans are shredded, crushed and stripped of their inside and outside dyes. The potato chip-sized pieces are loaded into melting furnaces, where the recycled metal is blended with brand new aluminum.

Step 4: Molten aluminum is converted into ingots which are fed into rolling mills that reduce the thickness to about 1/100 of an inch.

Step 5: This metal is then coiled and shipped to can manufacturers. The cans are then delivered to beverage companies for filling.

Step 6: The new cans, filled with your favorite beverages, are then returned to store shelves in as little as 60 days … and the recycling process begins again!

 

Recycling of Aluminium Packaging

Aluminium packaging fits every desired recycling and processing route. Aluminium packaging needs to be separated from other packing material when intended for material recycling. A growing number of sorting facilities are equipped with eddy current separators which offer a comprehensive means of sorting the aluminium fraction.

Multi-material packaging systems may consist of plastics, tinplate, beverage cartons and paper packaging, apart from aluminium packaging, e.g. beverage cartons. A variety of systems have been developed to extract aluminium from complex packaging systems, such as repulping, mechanical separation and pyrolysis. In pyrolysis, the non-metallic components are removed from the aluminium by evaporation. A newer technology is the thermal plasma process where the three components – aluminium, plastic and paper – are separated into distinct fractions.

Aluminium from Urban Wastes

Aluminium exposed to fires at dumps can be a serious environmental problem in the form of poisonous gases and mosquito breeding. Recycled aluminium can be utilized for almost all applications, and can preserve raw materials and reduce toxic emissions, apart from significant energy conservation.

Aluminium can also be extracted from the bottom ashes of municipal solid waste incinerators as aluminium nodules. In many European countries, municipal solid waste is entirely or partly incinerated; in this case the contained thin gauge aluminium foil is oxidized and delivers energy while thicker gauges can be extracted from the bottom ash.

Republished by Blog Post Promoter

Renewable Energy Investment in Jordan

Jordan has tremendous wind, solar and biomass energy potential which can only be realized by large-scale investments. In 2007, the Government of Jordan developed an integrated and comprehensive Energy Master Plan. Renewable energy accounted for only 1% of the energy consumption in Jordan in 2007. However, ambitious targets have been set in the Master Plan to raise the share to 7% in 2015 and 10% in 2020. 

This transition from conventional fuels to renewable energy resources will require capital investments, technology transfer and human resources development, through a package of investments estimated at US $ 1.4 – 2.2 billion. The investment package includes Build-Operate-Transfer (BOT) deals for wind energy with a total capacity of 660 MW and solar energy plants of 600 MW. This will be paralleled with the reduction of energy produced from oil from 58% currently to 40% in 2020.

As most of the clean energy technologies require high capital cost, investments in wind, solar and waste-to-energy plants will be possible only with appropriate support from the Government. Notably, the Government has expressed its readiness to provide necessary support within the framework of available resources. The Ministry of Planning and International Cooperation (MOPIC), is responsible for coordinating and directing developmental efforts in coordination with the public and private sectors, and civil society organizations. MOPIC is actively seeking support for renewable energy and energy efficiency initiatives through continuous cooperation with international partners and donors.

Jordan has significant strengths in the form of renewable energy resources, a developed electricity grid, strong legal and intellectual property protections, a market-friendly economy and a skilled workforce. So it is well positioned to participate in the expanding cleantech industry. The best prospects for electricity generation in Jordan are as Independent Power Producers (IPPs).  This creates tremendous opportunities for foreign investors interested in investing in electricity generation ventures.

Jordan enacted a Renewable Energy Law in 2010 which provides for legislative framework for the cleantech sector. The main aim of the law is to facilitate domestic and international projects and streamline the investment process.  The Law permits and encourages the exploitation of renewable energy sources at any geographical location in the Kingdom. In April 2012, the Ministry of Energy and Mineral Resources announced that it has qualified 34 international and local companies for investment in renewable energy projects, with an overall capacity reaching 1000 MW. Of the qualified companies, 22 companies will invest in solar power projects and the rest in wind energy.

Keeping in view the renewed interest in renewable energy, there is a huge potential for international technology companies to enter the Jordan market.  There is very good demand for wind energy equipments, solar power units and waste-to-energy systems which can be capitalized by technology providers and investment groups from around the world.

Republished by Blog Post Promoter

Asbestos Waste Management in MENA

Each year countries from the Middle East and North Africa import large amount of asbestos for use in the construction industry. As per the last known statistics, the Middle East and Africa accounted for 20% of world demand for the material. Iran and the United Arab Emirates are among the biggest consumers of the material. Infact, the entire Middle East has been steadily increasing their asbestos imports, except for Egypt and Saudi Arabia, which are the only two countries that have placed bans on asbestos but with questionable effectiveness. Iran alone has been reported to order 30,000 tons of asbestos each year. More than 17,000 tonnes of asbestos was imported and consumed in the United Arab Emirates in 2007. 

Fallouts from Wars and Revolutions

Asbestos is at its most dangerous when exposed to people who are not protected with masks and other clothing. In times past, such considerations were not thought about. At the moment, most people think of asbestos exposure as part of the construction industry. This means demolition, refurbishment and construction are the prime times that people can be exposed to the fibres.

In the Middle East and North Africa, however, turbulent times have increased the danger of exposure for people across the region. Since 2003, there has been the Iraq War, revolutions in Egypt, Libya and Tunisia, plus the uprising in Syria. Not to mention a raft of conflicts in Lebanon, Palestine and Israel. The upshot of this is that a building hit by an explosive, which contains asbestos, is likely to put the material in the local atmosphere, further endangering the lives of nearby.

Asbestos Waste Management

In many countries around the world companies, institutions and organizations have a legal responsibility to manage their waste. They are banned from using substances that are deemed hazardous to the general public. This includes a blanket ban on the use of asbestos. Where discovered it must be removed and dealt with by trained individuals wearing protective clothing. In the Middle East and North Africa, it is vitally important for there to be the development of anti-asbestos policies at government and business levels to further protect the citizens of those countries.

Not a single Middle East country has ratified International Labour Organization Law Number 162, which was instituted at the 1986 Asbestos Convention. The ILO No. 162 outlines health and safety procedures related to asbestos, including regulations for employers put forth in an effort to protect the safety of all workers. Asbestos waste management in the MENA region needs to take in several distinct action phases. Education and legislation are the first two important steps followed by actual waste management of asbestos. 

Largely speaking, the MENA region has little or no framework systems in place to deal with this kind of problem. Each year more than 100,000 people die worldwide due to asbestos-related diseases and keeping in view the continuous use of asbestos use in the region, it is necessary to devise a strong strategy for phasing out of asbestos from the construction industry.

Future Strategy

Many may argue that there is still a philosophical hurdle to overcome. This is why education must go in tandem with legislation. As of 2006, only Egypt and Saudi Arabia had signed up to a ban on asbestos. Even then, there is evidence of its continued use. Whether as part of official pronouncements or in the papers, on the TVs or in schools, it is vitally important that bans are backed up with information so the general public understand why asbestos should not only be banned, but removed. It is important that other countries consider banning the material and promoting awareness of it too.

Governments have the resources to open up pathways for local or international companies to begin an asbestos removal programme. In many places education will be required to help companies become prepared for these acts. Industrial asbestos removal begins with a management survey to identify what asbestos materials are in a building and where. This is followed up by a refurbishment and pre-demolition survey to best see how to remove the asbestos and replace it with better materials. These come in tandem with risk assessments and fully detailed plans.

Asbestos management cannot be completed without such a survey. This may prove to be the most difficult part of implementing widespread asbestos waste management in the Middle East and North Africa. Doing so will be expensive and time consuming, but the alternative is unthinkable – to rip out the asbestos without taking human safety into account. First, therefore, the infrastructure and training needs to be put into place to begin the long work of removing asbestos from the MENA region.

Republished by Blog Post Promoter

Agricultural Biomass in MENA

 

Agriculture plays an important role in the economies of most of the countries in the Middle East and North Africa region.  Despite the fact that MENA is the most water-scarce and dry region in the world, many countries in the region, especially those around the Mediterranean Sea, are highly dependent on agriculture.  The contribution of the agricultural sector to the overall economy varies significantly among countries in the region, ranging, for example, from about 3.2 percent in Saudi Arabia to 13.4 percent in Egypt.  Large scale irrigation coupled with mechanization has enabled entensive production of high-value cash crops, including fruits, vegetables, cereals, and sugar in the Middle East.

The term ‘crop residues’ covers the whole range of biomass produced as by-products from growing and processing crops. Crop residues encompasses all agricultural wastes such as bagasse, straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. Wheat and barley are the major staple crops grown in the Middle East region. In addition, significant quantities of rice, maize, lentils, chickpeas, vegetables and fruits are produced throughout the region, mainly in Egypt, Tunisia, Saudi Arabia, Morocco and Jordan. 

Egypt is the one of world's biggest producer of rice and cotton and produced about 5.67 million tons of rice and 635,000 tons of cotton in 2011. Infact, crop residues are considered to be the most important and traditional source of domestic fuel in rural Egypt. The total amount of crop wastes in Egypt is estimated at about 16 million tons of dry matter per year. Cotton residues represent about 9% of the total amount of residues. These are materials comprising mainly cotton stalks, which present a disposal problem. The area of cotton crop cultivation accounts for about 5% of the cultivated area in Egypt.

Agricultural output is central to the Tunisian economy. Major crops are cereals and olive oil, with almost half of all the cultivated land sown with cereals and another third planted. Tunisia is one of the world's biggest producers and exporters of olive oil, and it exports dates and citrus fruits that are grown mostly in the northern parts of the country.

To sum up, large quantities of crop residues are produced annually in the region, and are vastly underutilised. Current farming practice is usually to plough these residues back into the soil, or they are burnt, left to decompose, or grazed by cattle. These residues could be processed into liquid fuels or thermochemically processed to produce electricity and heat in rural areas. Energy crops, such as Jatropha, can be successfully grown in arid regions for biodiesel production. Infact, Jatropha is already grown at limited scale in some Middle East countries and tremendous potential exists for its commercial exploitation.

Republished by Blog Post Promoter

Animal Waste Management in Africa

Livestock and poultry production are among the main economic activities in rural as well as urban areas of African countries.The livestock sector, in particular sheep, goats and camels, plays an important role in the national economy of African countries. In addition, the region has witnessed very rapid growth in the poultry sector.

However, livestock industry is contributing heavily to greenhouse gas emissions and waste management problems in Africa due to the absence of a sustainable Animal Waste Management System in the region. Most of the manure is collected in lagoons or left to decompose in the open which presents a severe environmental hazard.

The use of anaerobic digestion for animal waste disposal is an attractive way to address environmental problems, especially methane emissions. Anaerobic digestion of livestock manure is an alternative pathway for managing large organic waste loads and its associated problems encountered in large feeding lots and confined animal feeding operations.

Despite the numerous benefits associated with anaerobic digestion as a sustainable waste management strategy, these combined merits have never been quantified in African countries.The biogas potential of animal manure can be harnessed both at small- and community-scale. An essential aspect for adopting anaerobic digestion systems is the development of a methane market that acknowledges role of biogas systems in mitigating climate change.

With the present energy and pollution problem in Africa, conversion of animal manure as source of clean energy as well as organic fertilizer offers a great advantage. Anaerobic digestion technologies can help preserve and integrate livestock production within communities and create renewable energy resources to serve a growing bio-economy within rural communities.

Anaerobic digestion is a controlled biological treatment process that can substantially reduce the impact of livestock and poultry manures on air and water quality. An anaerobic digestion plant produces two outputs, biogas and digestate, both can be further processed or utilised to produce secondary outputs. Biogas can be used for producing electricity and heat, as a natural gas substitute and also a transportation fuel.

A biogas plant is a decentralized energy system, which can lead to self-sufficiency in heat and power needs, and at the same time reduces environmental pollution. The main features of a biogas facility are as follows:

  • Processing of renewable energy source
  • Reduction of malodors
  • Removal of harmful pathogens
  • Reduction of COD & BOD contents of processed waste
  • Production of organic fertilizer for green areas
  • Reduction in emissions of greenhouse gases
  • Production of relatively clean water for flushing or irrigation

Animal manure-to-biogas transformation has enormous potential in reducing greenhouse gas emissions and harnessing the untapped renewable energy potential of animal manure. Biogas can be used as a fuel for internal combustion engines, to generate electricity from small gas turbines, burnt directly for cooking, for space and water heating. or for running vehicles.

Republished by Blog Post Promoter

مقدمة في عملية التسميد

إن عملية التسميد هي  عبارة عن تفاعل معقد بين النفايات والكائنات الحية الدقيقة المتواجدة داخلها . الكائنات الدقيقة التي تنفذ هذه العملية تنقسم إلى ثلاث مجموعات: البكتيريا والفطريات، والفطريات الشعاعية . الفطريات الشعاعية هي شكل من أشكال البكتيريا مثل الفطريات التي تفتت المواد العضوية .المرحلة الأولى من النشاط البيولوجي هو استهلاك السكريات المتوفرة بسهولة عن طريق البكتيريا، مما يسبب ارتفاعا سريعا في درجات الحرارة . تليها  المرحلة الثانية التي تسبب فيها  البكتيريا والفطريات الشعاعية  انهيار السليلوز . المرحلة الأخيرة هي المرحلة  المعنية بإنهيار اليغنينس "lignins" الصلبة من قبل الفطريات .

الحلول الوسط لهذه العملية تتخلص  بالتسميد بكلفة منخفضة دون التهوية الإجبارية ، أما تكنولوجياً استعمال أنظمة أكثر تقدماً باستخدام الهواء و الحرارة كتغذية إجبارية . النباتات الأساسية في عملية التسميد  قادرة على  التعامل مع أكثر من 100.000 طن سنوياً  من النفايات القابلة للتحلل ، ولكن عادة ما تكون سعة النبات  حوالي 10.000 إلى 30.000 طن سنويا.

يجب فصل النفايات القابلة للتحلل قبل عملية  التسميد: نفايات الطعام النقية فقط  ، نفايات الحديقة، ورقائق الخشب، وبعض الورق حسب مدى مناسبته لإنتاج نوعية جيدة من السماد . ويمكن تصنيف منهجية التسميد هذه إلى ثلاث أقسام  رئيسية  : السماد اللاهوائي ، الكمر الهوائي، و التمسيد بواسطة الكائنات الحية الدقيقة " مثل الديدان " . في التسميد اللاهوائي، تتحلل المواد العضوية في غياب الهواء .  و من الممكن جمع المواد العضوية في حفر و تغطيتها  بطبقة سميكة من التربة وتركها من ستة إلى ثمانية أشهر .  السماد الذي تشكل ليس بالضرورة أن يكون قد تحول بشكل تام ربما سيحتوي على بعض  تكتلات  " aggregates "  .

الكمر الهوائي هي العملية التي يتم من خلالها  تحويل النفايات العضوية بوجود الهواء  إلى سماد أو مغذي للسماد  ، ويمكن أن تكون من أنواع مختلفة. الأكثر شيوعا هي طريقة التكويم، حيث تقسم المادة العضوية إلى ثلاثة أنواع مختلفة، ثم توضع في حفرة كومة فوق الأخرى و تغطى بطبقة رقيقة من التربة الجافة أو الأوراق . تحتاج هذه الكومة إلى أن تخلط كل أسبوع ، وتحتاج حوالي ثلاثة أسابيع ليأخذ التحوّل منحاً جدياً . هذه العملية تقريبا نفس طريقة الحفرة، ولكنها تحتاج حفراً مخصصة . ينبغي القيام بالخلط كل 15 يوماً ، وليس هناك وقت ثابت لتأكيد جاهزية السماد .

يستخدم بيركلي الطريقة التقنية و كثيفة المجهود كما أن لديه متطلبات دقيقة للمواد التي يتم تحويلها إلى سماد . المواد القابلة للتحلل بسهولة، مثل العشب، والمواد نباتية، وما إلى ذلك، يتم خلطها  مع فضلات الحيوان بنسبة 1:2  . و يجهز السماد عادة في غضون 15 يوماً .

يتضمن التسميد بواسطة الكائنات الحية الدقيقة استخدام ديدان الأرض كمفاعلات و محفزات حيوية لعملية التسميد . ويتم ذلك في حفر مصممة خصيصا حيث يحتاج دودة الأرض الى التكاثر و تكوين مجتمعات حيوية  أيضا. التسميد بواسطة الكائنات الحية الدقيقة  هو خيار قائم على الدقة ويتطلب الإشراف على العمل من قبل خبير . كما أنه خيار عالي التكلفة .

على كل حال , خلافاً للخيارين أعلاه هي عملية عديمة الرائحة مما يجعلها الخيار الأفضل للمناطق السكنية .  كما أن  نسبة  تحويلها للمواد إلى سماد عالية للغاية ، لذلك جودة المنتج النهائي عالية جدا مع  وجود مغذيات دقيقة  والمغذيات صغيرة ايضا .  يحتوي المنتج النهائي أيضا على ميزة أنه يمكن أن يجفف ويخزن بأمان لفترة أطول من الزمن.

يحتاج تسميد النباتات إلى بعض أو كل الوحدات التقنية التالية: الفتاحات الحقيبة، فواصل مغناطيسية و / أو الباليستية، غرابيل (منخل)، القطاعات، معدات المزج و الخلط ، ومعدات التحويل وشبكات الري، وأنظمة التهوية وأنظمة الصرف الصحي، المرشحات الحيوية ، وأجهزة الغسيل، وأنظمة التحكم، وأنظمة التوجيه.

تحدث عملية التسميد عندما تتراكم النفايات القابلة للتحلل جنبا إلى جنب على شكل  هيكل يسمح لانتشار الأوكسجين مع محتوى المادة الجافة مسببا بيئة مناسبة لنمو الميكروبات.  درجة الحرارة تزداد بزيادة الكتلة الحيوية وذلك بسبب النشاط الميكروبي وخصائص عزل المواد المكدسة . غالبا ما تصل درجة الحرارة من 65 درجة مئوية إلى 75 درجة مئوية في غضون بضعة أيام ثم تنخفض ​​ببطء. هذا الارتفاع في درجة الحرارة يعجل القضاء على مسببات الأمراض وبذور الحشائش.

          ترجمة 

علا محمود المشاقبة , حاصلة على درجة البكالوريوس تخصص " إدارة الأراضي و المياه " من الجامعة الهاشمية – الأردن بتقدير جيد جدا , أعمل تطوعيا كعضو إداري مع مجموعة " مخضّرو الأردن JO Greeners"  منذ ثلاثة سنوات و حتى الأن  , و متطوعة أيضا مع منظمة  EcoMENA  . موهبة الكتابة شيء أساسي في حياتي و قمت بتوظيفها في كتابة و خدمة القضايا البيئية 

 

Republished by Blog Post Promoter

Renewable Energy Prospects in Kuwait

shagaya-renewable-energy-parkRenewable energy is in nascent stages in Kuwait, however there has been heightened activity in recent years mainly on account of the need for diversification of energy resources, climate change concerns and greater public awareness. The oil-rich State of Kuwait has embarked on a highly ambitious journey to meet 15 per cent of its energy requirements (approximately 2000 MW) from renewable resources by 2030. One of the most promising developments is the kick-starting of the initial phase of 2GW Shagaya Renewable Energy Park in 2015. Al-Abdaliyah integrated solar project is another promising solar venture currently at pre-qualification stage, which will have a total capacity of 280 MW, out of which 60 MW will be contributed by solar thermal systems.

Potential of Renewables

In Kuwait, the predominant renewable energy resource is available in the form of solar and wind. The country has one of the highest solar irradiation levels in the world, estimated at 2100 – 2200 kW/m2 per year. The average insolation of 5.2 kWh/m2/day and maximum annual sun hours of around 9.2 hours daily makes Kuwait a very good destination for solar power plant developers.

Wind energy also has good potential in the country as the average wind speed is relatively good at around 5m/s in regions like Al-Wafra and Al-Taweel. Infact, Kuwait already has an existing 2.4MW Salmi Mini-windfarm, completed in 2013, which mainly serves telecommunication towers in remote areas and the fire brigade station in Salmi. As far as biomass energy is concerned, it has very limited scope in Kuwait due to arid climate and lack of water resources.

Kuwait's Renewable Energy Program

Interestingly, Kuwait has been one of the earliest advocates of renewable energy in the Middle East with its involvement dating back to mid-1970s; however the sector is still in its early stages. The good news is that renewable energy has now started to move into development agenda and political discourse in Kuwait. The Kuwait Institute of Scientific Research (KISR) and the Kuwait Authority for Partnership Projects (KAPP) are playing an important role in Kuwait’s push towards low-carbon economy. KISR, in particular, has been mandated by the government to develop large-scale alternative energy systems in collaboration with international institutions and technology companies.

Kuwait’s renewable energy program, with the aim to generate 2GW renewable energy by 2030, has been divided into three stages. The first phase involves the construction of 70 MW integrated renewable energy park (solar PV, solar thermal and wind) at Shagaya which was scheduled to be completed by the end of 2016. The second and third phases are projected to produce 930 MW and 1,000 MW, respectively.

The Kuwait Institute for Scientific Research (KISR), founded in 1967, is one of the earliest research institutions in GCC to undertake commercial-scale research on potential applications and socio-economic benefits of renewable energy systems in Kuwait as well as GCC.

Shagaya Renewable Energy Park

Shagaya Renewable Energy Park comprises of solar thermal, solar photovoltaic and wind power systems, being built on a 100 km2 area in Shagaya, in a desert zone near Kuwait’s border with Saudi Arabia and Iraq. The $385 million first phase, scheduled to be operational by the end of 2016, will include 10MW of wind power, 10MW of solar PV, and 50MW of solar thermal systems. The project’s thermal energy storage system, based on molten salt, will have nine hours of storage capacity, one of the few projects worldwide with such a large capacity.

Shagaya is to Kuwait as Masdar is to Abu Dhabi.

Shagaya is to Kuwait as Masdar is to Abu Dhabi.

Future Perspectives

The major driving force behind Kuwait’s renewables program is energy security and diversification of energy mix. The country has one of the world’s highest per capita consumption of energy which is growing with each passing year. In recent years, the Middle East has received some of the lowest renewable-energy prices awarded globally for both photovoltaic and wind power which seems to have convinced Kuwait to seriously explore the option of large-scale power generation from renewable resources. However, Kuwait has a long way to go before renewable energy can make a real impact in its national energy mix.

Another key driver for Kuwait’s transition to low-carbon economy is its carbon and ecological footprints, which is among the highest worldwide. Widespread use of renewable power will definitely help Kuwait in putting forward a ‘green’ and ‘eco-friendly’ image in the region and beyond. The business case for green energy proliferation in Kuwait is strengthened by widespread availability of solar and wind resources and tumbling costs of alternative energy systems.

The Paper Bag Boy of Abu Dhabi

Abdul Muqeet, also known as the Paper Bag Boy, has risen from being just another ordinary student to an extra-ordinary environmentalist. At just ten years old, Abdul Muqeet has demonstrated his commitment to saving the environment in United Arab Emirates and elsewhere. 

Inspired by the 2010 campaign “UAE Free of Plastic Bags”, Abdul Muqeet, a student of Standard V at Abu Dhabi Indian School, applied his own initiative and imagination to create 100% recycled carry bags using discarded newspapers. He then set out to distribute these bags in Abu Dhabi, replacing plastic bags that take hundreds of years to degrade biologically. The bags were lovingly named ‘Mukku bags' and Abdul Muqeet became famous as the Paper Bag Boy.

Abdul Muqeet’s environmental initiative has catalyzed a much larger community campaign. During the first year, Abdul Muqeet created and donated more than 4,000 paper bags in Abu Dhabi. In addition, he has led workshops at schools, private companies and government entities, demonstrating how to create paper bags using old newspapers. His school along with a number of companies in Abu Dhabi adopted his idea by exchanging their plastic bags for paper bags.

Abdul Muqeet was one of the youngest recipients of Abu Dhabi Awards 2011, for his remarkable contribution to conserve environment. The awards were presented by General Sheikh Mohammad Bin Zayed Al Nahyan, Crown Prince of Abu Dhabi and Deputy Commander of the UAE Armed Forces. In 2011, Abdul Muqeet was selected to attend the United Nation’s Tunza conference in Indonesia where he demonstrated his commitment for a cleaner environment through his paper bag initiative. He is actively involved in spreading environmental awareness worldwide, especially UAE, India, USA and Indonesia.

 

Abdul Muqeet continues to make headlines for his concerted efforts towards a plastic-free environment, and has been widely covered by leading newspapers in UAE and other countries. He tirelessly campaigned for the Rio+20 summit, urging world leaders to commit to the Green Economy. “Plant more trees; use less water; reuse and recycle; always remember that everything in this world can be recycled but not time,” offers Abdul.

He has been remarkably supported by his parents and siblings throughout his truly inspiring environmental sojourn. Abdul Muqeet’s monumental achievements at such a tender age make him a torch-bearer of the global environmental movement, and should also inspire the young generation to protect the environment by implementing the concept of ‘Zero Waste’.

Republished by Blog Post Promoter

Fuel Pellets from Solid Wastes

MSW is a poor-quality fuel and its pre-processing is necessary to prepare fuel pellets to improve its consistency, storage and handling characteristics, combustion behaviour and calorific value. Technological improvements are taking place in the realms of advanced source separation, resource recovery and production/utilisation of recovered fuel in both existing and new plants for this purpose. There has been an increase in global interest in the preparation of Refuse Derived Fuel (or RDF) containing a blend of pre-processed MSW with coal suitable for combustion in pulverised coal and fluidised bed boilers.

Pelletization of Urban Wastes

Pelletization of municipal solid waste involves the processes of segregating, crushing, mixing high and low heat value organic waste material and solidifying it to produce fuel pellets or briquettes, also referred to as Refuse Derived Fuel (RDF) or Process Engineered Fuel (PEF) or Solid Recovered Fuel (SRF). The process is essentially a method that condenses the waste or changes its physical form and enriches its organic content through removal of inorganic materials and moisture. The calorific value of RDF pellets can be around 4000 kcal/ kg depending upon the percentage of organic matter in the waste, additives and binder materials used in the process.

The calorific value of raw MSW is around 1000 kcal/kg while that of fuel pellets is 4000 kcal/kg. On an average, about 15–20 tons of fuel pellets can be produced after treatment of 100 tons of raw garbage. Since pelletization enriches the organic content of the waste through removal of inorganic materials and moisture, it can be very effective method for preparing an enriched fuel feed for other thermo-chemical processes like pyrolysis/ gasification, apart from incineration.

Pellets can be used for heating plant boilers and for the generation of electricity. They can also act as a good substitute for coal and wood for domestic and industrial purposes. The important applications of RDF in the Middle East are found in the following spheres:

  • Cement kilns
  • RDF power plants
  • Coal-fired power plants
  • Industrial steam/heat boilers
  • Pellet stoves

The conversion of solid waste into briquettes provides an alternative means for environmentally safe disposal of garbage which is currently disposed off in non-sanitary landfills. In addition, the pelletization technology provides yet another source of renewable energy, similar to that of biomass, wind, solar and geothermal energy. The emission characteristics of RDF are superior compared to that of coal with fewer emissions of pollutants like NOx, SOx, CO and CO2.

RDF production line consists of several unit operations in series in order to separate unwanted components and condition the combustible matter to obtain the required characteristics. The main unit operations are screening, shredding, size reduction, classification, separation either metal, glass or wet organic materials, drying and densification. These unit operations can be arranged in different sequences depending on raw MSW composition and the required RDF quality.

Various qualities of fuel pellets can be produced, depending on the needs of the user or market. A high quality of RDF would possess a higher value for the heating value, and lower values for moisture and ash contents. The quality of RDF is sufficient to warrant its consideration as a preferred type of fuel when solid waste is being considered for co-firing with coal or for firing alone in a boiler designed originally for firing coal.

Republished by Blog Post Promoter

Composting Guidelines for Beginners

It seems everyone is concerned about the environment and trying to reduce their “carbon footprint”.  Let us hope that this trend will continue and grow as a worldwide phenomenon.  Composting has been around for many years and is a great way to keep biodegradables out of the landfill and to reap the reward of some fabulous “black gold”.  That’s what master gardeners call compost and it’s great for improving your soil.  Plants love it. 
Check out few Rules to Remember About Composting.
  1. Layer your compost bin with dry and fresh ingredients: The best way to start a compost pile is to make yourself a bin either with wood or chicken wire.  Layering fresh grass clippings and dried leaves is a great start.
  2. Remember to turn your compost pile: As the ingredients in your compost pile start to biodegrade they will start to get hot.  To avoid your compost pile rotting and stinking you need to turn the pile to aerate it.  This addition of air into the pile will speed up the decomposition.
  3. Add water to your compost pile: Adding water will also speed up the process of scraps turning into compost.  Don’t add too much water, but if you haven’t gotten any rain in a while it’s a good idea to add some water to the pile just to encourage it along.
  4. Don’t add meat scraps to your pile: Vegetable scraps are okay to add to your compost pile, but don’t add meat scraps.  Not only do they stink as they rot, but they will attract unwanted guests like raccoons that will get into your compost bin and make a mess of it.
  5. If possible have more than one pile going: Since it takes time for raw materials to turn into compost you may want to have multiple piles going at the same time.  Once you fill up the first bin start a second one and so on.  That way you can allow the ingredient in the first pile to completely transform into compost and still have a place to keep putting your new scraps and clippings.  This also allows you to always keep a supply of compost coming for different planting seasons.
  6. Never put trash in your compost pile: Just because something says that it is recyclable it doesn’t mean that it should necessarily go into the compost bin.  For example, newspapers will compost and can be put into a compost pile, but you will want to shred the newspapers and not just toss them in the bin in a stack.  Things like plastic and tin should not be put into a compost pile, but can be recycled in other ways.
  7. Allow your compost to complete the composting process before using: It might be tempting to use your new compost in your beds as soon as it starts looking like black soil, but you need to make sure that it’s completely done composting otherwise you could be adding weed seeds into your beds and you will not be happy with the extra weeds that will pop up.
  8. Straw can be added if dried leaves are not available: Dried materials as well as green materials need to be added to a compost bin.  In the Fall you will have a huge supply of dried leaves, but what do you do if you don’t have any dried leaves?  Add straw or hay to the compost bin, but again these will often contain weed seeds so be careful to make sure they are completely composted before using them.
  9. Egg Shells and Coffee grounds are a great addition: Not only potato skins are considered kitchen scraps.  Eggshells and coffee grounds are great additions to compost piles because they add nutrients that will enhance the quality of the end product.
  10. Never put pet droppings in your compost pile: I’m sure you’ve heard that manure is great for your garden, but cow manure is cured for quite a while before used in a garden.  Pet droppings are far to hot and acidic for a home compost pile and will just make it stink.

Republished by Blog Post Promoter

قصص ملهمة – القصة الثانية: ربى الزعبي – ملهمة الابتكار الأخضر والريادة في العمل المجتمعي

rubaalzubi_inspiremenaالمهندسة ربى الزعبي، قيادية وخبيرةٌ معروفة في السياسات البيئية والحوكمة والتخطيط في مجال التنمية المستدامة وتعتبرُ مصدرَ إلهامٍ حقيقيٍّ للشبابِ في الأردن وخارجه. تشغل الزعبي حاليا منصب المدير التنفيذي لجمعية إدامة (EDAMA) وهي منظمة غير ربحية اردنية تمثل إحدى أوائل جمعياتِ الأعمالِ المعنية  بإيجاد حلولٍ مبتكرةٍ في قطاعات الطاقة والمياه والبيئة وتحفيز الاقتصاد الاخضر. ربى الزعبي سفيرة  (قرارات عالمية Global Resolutions) في الأردن وعضوة في شبكة النفع المجتمعي (Plus Social Good) التي تحاول تعزيزِ الوعي ونشرِ قصصِ النجاحَ المتعلقة بالأهداف العالمية للتنمية المستدامة في منطقة الشرق الأوسط وشمال إفريقيا MENA.

وتعتبرُ المهندسة ربى الزعبي من الناشطين في العمل التطوعي وهي أحد مؤسسي المجلس الأردني للأبنية الخضراء  حيث نسقت مرحلة التأسيس ووضع الخطط والتوجهات الاستراتيجية للمجلس مع بقية زملائها أعضاء الهيئة التأسيسية. كما قادت الزعبي قطاع التكنولوجيا النظيفة ضمن برنامج التنافسية الأردني الممول من والذي هدف الى تعزيز القدرة التنافسية للقطاع الخاص وخلق مزيدٍ من فرص العمل وزيادة الصادرات في قطاعات الطاقة النظيفة وإدارة النفايات الصلبة و إدارة المياه.

كما تم اختيارها للمشاركة عن الاردن في برنامج زمالة أيزنهاور للقادة  للعام 2012 حيث تركز برنامجها على مجالات الاقتصاد الأخضر والمباني الخضراء وسياسات الاستدامة في الولايات المتحدة الأمريكية. وتم اختيارها في زمالة وارد وييل-لوك Ward Wheelock Fellow عام 2012 لإسهاماتها البارزة في القطاع البيئي وفي مجتمعها بشكل عام. وترتبط المهندسة ربى الزعبي مع منظمة إيكومينا EcoMENA كمرشدة، حيث قدمت دعما هائلاً للمنظمة برفع مستوى الوعي البيئي وتحفيز الشباب ونشر المعرفة.

وهنا تتحدث ربى لأحد شركائنا إمباكت سكويرد Impact Squared حول خلفيتها التعليمية وأبرز إنجازاتها المهنية وكذلك  رؤيتها وتوجهاتها الاستراتيجية.

 

سؤال: هل يمكنكِ أن تُخْبرينا نبذةً بسيطةً عن نفسك وما هو مجال عملك؟

اكملت دراستي كمهندسة مياه وبيئة ، ولاحظت خلال دراستي للهندسة بعدم وجود ترابط بين ماندرسه  ويين التنمية والمجتمع. ومنذ ذلك الحين وأنا أحاول باستمرار تعزيز ذلك الترابط بينهما. عندما تم الإعلان عن تأسيس وزارة البيئة في الأردن عام 2004، حظيت بفرصة المشاركة في وضع وتنفيذ خطط التطوير المؤسسي للوزارة وتحديث توجهاتها الاستراتيجية في مجال التنمية المستدامة، حيث تلقيتُ وقتها الدعمَ والتأييدَ مباشرة من وزير البيئة انذاك والذي كان يؤمن بتمكين المرأة . ب شجعتني هذه التجربة على الحصول   على تدريب متخصص وشهادة في إدارة التغيير المؤسسي لأكون  اكثر قدرة على المساهمة في تطوير القطاع العام في الأردن. أما الآن، فأشغل منصب المديرة التنفيذية  لجمعية إدامة EDAMA ، وهي منظمة غير ربحية تهدف إلى تحفيز القطاع الخاص للمساهمة في الوصول  الى الاقتصاد الأخضر في الأردن والمضي  قُـدُماً في إيجاد حلولٍ مبتكرةٍ ضمن قطاعات الطاقة والمياه والبيئة.

سؤال: ما هي أكبر التحديات أو المشكلات التي تواجهك في عملك؟

هناك قضية كبيرة تواجه العالم بأسره اليوم وتعتبر من أبرز التحديات التي تواجه برامج التنمية المستدامة الا وهي دمج مفاهيم الاستدامة  في التنمية.، ويتضمن ذلك ادراج اهداف وتطبيقات الاستدامة البيئية ضمن مختلف القطاعات والقرارات المتعلقة بالتنمية. نضطر الى المفاضلة  في الكثير من الاحيان.   في الدول النامية  يصعب وضع الاستدامة البيئية في اعلى سلم الأولويات باستمرار، إلا أنه يجب مراعاة كلفة المفاضلة  والخيارات التي نفاضل بينها  خلال  عمليات صنع القرار.

كما أعتقد بأن مسائل أخرى  مثل تكافؤ الفرص والتطوير الوظيفي وسد الفجوة بين التعليم وفرص العمل المطلوبة في السوق جميعها تعتبر من القضايا ذات الأولوية.

حالياً، وبكل أسف لا يوجد الكثير من الابتكار في القطاعات الخضراء، حيث نفتقر إلى وجود الزخم المطلوب للمساعدة على الابتكار في هذا المجال بالذات، ويرجع السبب في ذلك ليس لقلة الموارد الداعمة والمحفزة لمزيد من الإبداع والابتكار الأخضر، بل إلى عدم فهم احتياجات السوق وقلة إدراك العوامل المؤثرة فيه. لا بد من دعم أالرياديين وصحاب المبادرات الخضراء لييتمكنوا من الابتكار من اجل تحقيق الاستدامة . ان الرؤية التي ابقي امام عيني تتضمن هذه القضايا واحاول  كلما سنحت لي الفرصة ان اسلط الضوء على كافة تلك التحديات والمفاهيم ا بهدف حشد الدعم العالمي والوصول إلى تأثير فعلي على نطاق واسع.

سؤال: ما هي  المحفزات التي دفعتك لمواصلة  مسيرتكِ المهنيَّة   وماهي العوامل التي تساعدك على الاستمرار؟

لقد عملت في القطاعين العام والخاص والمنظمات الدولية والجهات المانحة. وارغب حقيقة في العمل في أالمكان الذي يمكنني من أن اترك قيمة مضافة وأثر مستدام.  واعتبر عملي الآن لدى منظمة غير ربحية تحدياً وذلك بسبب الحاجة الدائمة إلى توفير مصادر تمويل لضمان الاستدامة المالية للمنظمة، الا انه لابد من أن نكون قريبين بشكل كبير من الناس والمجتمع حيث تكمن الاحتياجات الحقيقية. إن العمل في جمعية إدامة له ميزة إضافية تتمثل في العمل مع القطاع الخاص ويمكنني من هذا الموقع  تعزيز الربط ما بين المجتمعات المحلية القطاع الخاص وهو جانب واعد لنا في الأردن.

ruba-al-zubi

 كلما فطرنا أكثر في الطاقة المستدامة التي يمكن أن نقدمها للجميع، خصوصاً في ظل الظروف الراهنة التي ألقت بظلالها على المنطقة بشكل عام وتأثر بها الأردن بشكل خاص وتدفق مئات الآلاف من اللاجئين السوريين إلى الأردن، كلما تمكنا من تخفيف الضغط على الاقتصاد والموارد الطبيعية.

سؤال: كيف تنظرين الى موضوع القيادة ؟ وما هي المهارات والقيم الواجب توفرها في القيادِيِّ الناجح؟

قمت مؤخراً باصطحاب فريقي لتناول الافطار، حيث ذكر لي أعضاء فريقي بأنهم يستيقظون صباحاً وهم سُـعَـداء لأنهم يشعرون بالتمكين والتقدير.  نوفر في ادامة مساحة لعضاء الفريق للإبداع والابتكار والمشاركة في اتخاذ القرار بعيدا عن التنفيذ الحرفي لافكار الغير حيث أعتبر ان هذا التوجه من اهم العوامل الواجب توافرها في المنظمات غير الربحية الرائدة.   ر.  كقائدة يهمني للغاية خلق مجتمعٍ صغيرٍ يُـمَـكِّـنُ أعضاءه من خلق مجتمعات اكبر حول القضايا التي نعمل من اجل تحسينها وتطويرها.  . اذا فشلنا في خلق مجمع داخلي صغير لن ننجح في التأثير على المجتمع الخارجي الأكبر.

أردد على الدوام أنني اتمنى لو كان لي مرشد في مرحلة مبكرة من مشواري العملي- حيث لم يكن هذا الموضوع شائعاً عندما كنت أصغر سناً. لدي الآن اكثر من مرشد وانا ايضا مرشدة لعدد من الشباب والفتيات  أعتقد بأن مثل هذه العلاقات هامة جدا .  ومن المهم ايضا للمرشد  ان يعرف كيف  يوصل دعمه للشخص المتلقي للارشاد لكن دون التأثير على قراراته. أستمتع حين ارشد شخصا ما ليجد الطريق وكم كنت أتمنى لو كان لدي في بداية حياتي العملية شخصا  يرشدني  بنفس الاسلوب. كذلك فان دعم الأسرة والأصدقاء يساهم في تعزيز روح القيادة. فكلما زاد ارتياحنا في الحياة الشخصية كلما استطعنا أن نعطي أكثر للمجتمع وعلى المستوى المهني. أعتبر نفسي محظوظةً لوجود هذه الميزة في حياتي.

 تمتعت بالقيادة من مواقع مختلفة ولم اتجاوز الثلاثين من العمر ولهذا مميزات وسلبيات. اذا لم يكن القائد على المستوى المطلوب من النضج فقد ينعكس ذلك سلبا على نظرة الناس له ولكل القادة الشباب بشكل عام.  لذلك من الأهمية بمكان أن يجد القائد الوقت للتوقف والنظر والتقييم الذاتي للتطور الشخصي والمهارات المكتسبة بين الفترة والأخرى. التعلم من التجربة الذاتية هام لتكوين قيادات فاعلة. يحتاج النضوج المهني والشخصي الى وقت … هذا ما أحاول باستمرار ان اوضحه للاجيال الشابة التي قد يقودها الاندفاع الى الرغبة في تسلق السلم بسرعة كبيرة.

سؤال: كقيادية، ما هي القِـيَـم والمبادئ التي  تقود عملية اتخاذ القرارات  لديك؟

بشكل عام، أحاول تطبيق القيم والمبادئ الاجتماعية والبيئية التي أؤمن بها. أقدر شخصيا قيم العدالة الاجتماعية وتكافؤ الفرص  والعدالة المبنية على النوع الاجتماعي، والتي أدى عدم مراعاتها  الى ما آلت اليه الاوضاع في منطقتنا العربية.

اذا لم نستطع كقادة مراعاة ودمج هذه القيم في حياتنا الشخصية ومن ثم المهنية، فلن يتم تطبيق هذه المبادئ على أرض الواقع وعبر المستويات المختلفة.

 

ملاحظة: تم إعادة نشر هذه المقابلة بالتنسيق مع شريك  إيكومينا EcoMENAإمباكت سكويرد Impact Squared، يمكنكم قراة النص الأصلي للمقابلة هنا.

 

ترجمه

جعفر أمين فلاح العمري

جعفر العمري، أردني مقيم منذ عام 2011 في الرياض- المملكة العربية السعودية، مهتم بمجال إدارة المشاريع ويخطط لتقديم امتحان شهادة إدارة المشاريع الاحترافية PMP. لديه خبرة واسعة تجاوزت 12 عاماً كمهندس في المشاريع الهندسية المتخصصة في قطاعات المياه والبيئة، في مجالات: التخطيط والإدارة والتنمية، والعمل كجزء من فريق متكامل في العديد من الشركات والمنظمات العربية والدولية.

Saudi Arabia Biorefinery from Algae (SABA) Project

The King Abdulaziz City for Science & Technology (KACST) is funding an innovative project called Saudi Arabia Biorefinery from Algae (SABA Project) to screen for lipid hyper-producers species in Saudi Arabia coastal waters. These species will be the basis for next-generation algal biofuel production. The goal of this project is to increase research and training in microalgae-based biofuel production as well algal biomass with an additional goal of using a biorefinery approach that could strongly enhance Saudi Arabia economy, society and environment within the next 10 years.

The primary mission of the SABA project is to develop the Algae Based Biorefinery – ABB biotechnology putting into operation innovative, sustainable, and commercially viable solutions for green chemistry, energy, bio-products, water conservation, and CO2 abatement. Microalgae are known sources of high-value biochemicals such as vitamins, carotenoids, pigments and anti-oxidants. Moreover, they can be feedstocks of bulk biochemicals like protein and carbohydrates that can be used in the manufacture of feed and food.

The strategic plan for SABA project is based on the achievement of the already ongoing applied Research, Technology Development & Demonstration (RTD&D) to the effective use of microalgae biomass production and downstream extraction in a diversified way, e.g. coupling the biomass production with wastewater bioremediation or extracting sequentially different metabolites form the produced biomass (numerous fatty acids, proteins, bioactive compounds etc.). This interdisciplinary approach including algal biology, genetic engineering and technologies for algae cultivation, harvesting, and intermediate and final products extraction is crucial for the successful conversion of the developed technologies into viable industries.

The first phase of this project entitled “Screening for lipid hyper-producers species in Saudi Arabia coastal waters for Biofuel production from micro-Algae” will build the basis for large scale system to produce diesel fuel and other products from algae grown in the ocean with a strong emphasis on building know-how and training. It will ultimately produce competitively priced biofuel, scaling up carbon capture for a range of major environmental, economic, social and climate benefits in the Kingdom and elsewhere. The project lends itself to an entrepreneurial new venture, working in partnership with existing firms in the oil and gas industry, in energy generation, in water supply and sanitation, in shipping and in food and pharmaceutical production.

The project is gaining from cross-disciplinary cutting edge Research, Technology Development & Demonstration for the industrial implementation of the fourth generation algae-based Biorefinery. The technology development is supported by a consortium of engineers, researchers in cooperation with industry players (to ensure technology transfer), international collaborators (to ensure knowledge transfer) and the Riyadh Techno Valley (to promote spin-off and commercialization of results). 

Since the research topic is innovative in the Kingdom research circles, a strong research partnership was promptly developed by the King Saud University / King Abdulah Institute for Nanotechnology with international distinguished research centers with proved successful experience in this technology development. The Centre of Marine Science (CCMAR) and the Institute of Biotechnology and Bioengineering (IBB) both from Portugal are a guarantee to the successful research-based technology development in the SABA project development and the effective capacity-building for Saudi young researchers and technicians.

Republished by Blog Post Promoter