Waste Management Perspectives for Bahrain

Fast industrialisation, urbanisation, enhanced consumerism and rise in standards of living is causing generation of large quantities of waste which needs to be stored, transported, treated and disposed. Globally, municipal and urban governments are spending huge financial and human resources on waste management but the service coverage is barely coinciding with the generated waste quantities as overflowing communal containers and waste heaps are amply witnessed in all major urban centres. The worldwide quantities of Municipal Solid Waste (MSW) are rapidly increasing. It is estimated that around 2.5 billion MT of MSW was generated worldwide in 2000, which is expected to … Continue reading

MSW Generation in the Middle East

The high rate of population growth, urbanization and economic expansion in the Middle East is not only accelerating consumption rates but also increasing the generation rate of all  sorts of waste. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita solid waste generation. The gross urban waste generation quantity from Middle East countries has crossed 150 million tons per annum.The world’s dependence on Middle East energy resources has caused the region to have some of the largest carbon footprints per capita worldwide. The region is now gearing up to meet the challenge of … Continue reading

Waste-to-Energy Pathways

Waste-to-energy is the use of modern combustion and biological technologies to recover energy from urban wastes. The conversion of waste material to energy can proceed along three major pathways – thermochemical, biochemical and physicochemical. Thermochemical conversion, characterized by higher temperature and conversion rates, is best suited for lower moisture feedstock and is generally less selective for products. On the other hand, biochemical technologies are more suitable for wet wastes which are rich in organic matter. Thermochemical Conversion The three principal methods of thermochemical conversion are combustion (in excess air), gasification (in reduced air), and pyrolysis (in absence of air). The most … Continue reading

Waste Management Outlook for Qatar

Qatar is counted among the world’s fastest growing economies as well as richest countries in the world. The rapid industrialization of the country and high population growth generates a lot of wastes in the form of municipal wastes, construction & demolition debris, industrial wastes etc. Annual solid waste generation in Qatar has crossed 2.5 million tons, which corresponds to daily waste generation of more than 7,000 tons per day. The country has one of the highest per capita waste generation worldwide which ranges from 1.6 to 1.8 kg per day. Solid Waste Management Scenario Solid waste is mainly comprised of organic … Continue reading

Waste-to-Energy Outlook for the Middle East

The high rate of population growth, urbanization and economic expansion in the Middle East is not only accelerating consumption rates but also increasing the generation rate of all sorts of waste. High-income Middle Eastern countries like Saudi Arabia, UAE, Qatar, Bahrain and Kuwait are counted as world’s largest waste producers in terms of per capita waste generation which is more than 2kg per day in some countries. The urban waste generation from the region has now crossed 150 million tons per year which has forced policy-makers and urban planners to look for sustainable waste management solutions, including recycling and waste-to-energy. Let … Continue reading

Wastes as Energy Resource

The tremendous increase in the quantum and diversity of waste materials generated by human activities has focused the spotlight on waste management options. Waste generation rates are affected by standards of living, degree of industrialization and population density. Generally, the greater the economic prosperity and the higher percentage of urban population, the greater the amount of waste produced. A good example are the oil-rich GCC nations who are counted among the world's most prolific per capita waste generators. Reduction in the volume and mass of wastes is a crucial issue due to limited availability of final disposal sites in the … Continue reading

Waste Management in Jeddah

Jeddah, a major commercial hub in the Middle East, is the second largest city in Saudi Arabia. Solid waste management is a big problem in Jeddah as the city’s population is increasing at a rapid pace and has now touched 3.5 million. More than 5,000 tons of solid waste is produced every day and Jeddah municipal authorities are finding it increasingly hard to cope with the problem of urban waste. The management of solid waste in Jeddah begins with collection of wastes from bins scattered across residential and commercial areas. Wastes is collected and sent to transfer stations from where it … Continue reading

Solid Waste Management in Iraq

Iraq is one of the most populous Arab countries with population exceeding 32 million. Rapid economic growth, high population growth, increasing individual income and sectarian conflicts have led to worsening solid waste management problem in the country. Iraq is estimated to produce 31,000 tons of solid waste every day with per capita waste generation exceeding 1.4 kg per day. Baghdad alone produces more than 1.5 million tons of solid wastes each year. Rapid increase in waste generation production is putting tremendous strain on Iraqi waste handling infrastructure which have heavily damaged after decades of conflict and mismanagement. In the absence … Continue reading

Solid Waste Management in Qatar

Qatar is counted among the world’s fastest growing economies. Municipal solid waste management is one of the most serious challenges faced by this tiny Gulf nation on account of high population growth rate, urbanization, industrial growth and economic expansion. The country has one of the highest per capita waste generation rates worldwide which is as high as 1.8 kg per day. Qatar produces more than 2.5 million tons of municipal solid waste each year. Solid waste stream is mainly comprised of organic materials (around 60 percent) while the rest of the waste steam is made up of recyclables like glass, … Continue reading

Insights into WTE Industry

Waste-to-Energy is the use of modern combustion and biochemical technologies to recover energy, usually in the form of electricity and steam, from urban wastes. These new technologies can reduce the volume of the original waste by 90%, depending upon composition and use of outputs. The main categories of waste-to-energy technologies are physical technologies, which process waste to make it more useful as fuel; thermal technologies, which can yield heat, fuel oil, or syngas from both organic and inorganic wastes; and biological technologies, in which bacterial fermentation is used to digest organic wastes to yield fuel. Global Scenario Around 130 million … Continue reading

Renewable Energy in Algeria

Algeria plays a key role in world energy markets as a leading producer and exporter of natural gas and liquefied natural gas. Algeria’s energy mix in 2010 was almost exclusively based on fossil fuels, especially natural gas (93%). However the country has enormous renewable energy potential, mainly solar, which the government is trying to harness by launching an ambitious Renewable Energy and Energy Efficiency Program. The Program consists of generating 22,000 MW of power from renewable sources between 2011 and 2030, of which 12,000 MW will be meant for domestic consumption and the rest for export. The Program is focused … Continue reading

Waste Management in Morocco

Solid waste management is one of the major environmental problems threatening the Mediterranean Kingdom of Morocco. More than 5 million tons of solid waste is generated across the country with annual waste generation growth rate touching 3 percent. The proper disposal of municipal solid waste in Morocco is exemplified by major deficiencies such as lack of proper infrastructure and suitable funding in areas outside of major cities.  According to the World Bank, it was reported that before a recent reform in 2008 “only 70 percent of urban MSW was collected and less than 10 percent of collected waste was being … Continue reading