Waste-to-Energy Outlook for the Middle East

The high rate of population growth, urbanization and economic expansion in the Middle East is not only accelerating consumption rates but also increasing the generation rate of all sorts of waste. High-income Middle Eastern countries like Saudi Arabia, UAE, Qatar, Bahrain and Kuwait are counted as world’s largest waste producers in terms of per capita waste generation which is more than 2kg per day in some countries. The urban waste generation from the region has now crossed 150 million tons per year which has forced policy-makers and urban planners to look for sustainable waste management solutions, including recycling and waste-to-energy.

Let us take a look at solid waste generation in major countries across the Middle East region:

Country

MSW Generation

(million tons per annum)

Saudi Arabia

15

United Arab Emirates

6

Qatar

2.5

Kuwait

2

Bahrain

1.5

Egypt

20

Tunisia

2.3

Morocco

5

Lebanon

1.6

Jordan

2

In addition, huge quantity of sewage sludge is also generated in the Middle East which presents a serious problem due to its high treatment costs and risk to environment and human health. On an average, the rate of wastewater generation is 80-200 litres per person each day and sewage output is rising by 25 percent every year across the region.

Conversion Pathways

Municipal solid waste is a very good source of biomass in the Middle East. Municipal solid waste is comprised of organic fraction, paper, glass, plastics, metals, wood etc. Almost 50% of the solid waste is contributed by organic matter.

Municipal solid waste can be converted into energy by conventional technologies (such as incineration, mass-burn and landfill gas capture). Municipal solid waste can also be efficiently converted into energy and fuels by advanced thermal technologies, such as gasification and pyrolysis.

At the landfill sites, the gas produced by the natural decomposition of MSW is collected from the stored material and scrubbed and cleaned before feeding into internal combustion engines or gas turbines to generate heat and power. In addition, the organic fraction of MSW can be anaerobically stabilized in a high-rate digester to obtain biogas for electricity or steam generation.

Anaerobic digestion is the most preferred option to extract energy from sewage, which leads to production of biogas and organic fertilizer. The sewage sludge that remains can be incinerated or gasified/pyrolyzed to produce more energy. In addition, sewage-to-energy processes also facilitate water recycling.

Relevance for Middle East

The variety of technological options available means that waste-to-energy can be applied at a small, localized scale primarily for heat, or it can be used in much larger base-load power generation capacity whilst also producing heat. Waste-to-energy conversion can thus be tailored to rural or urban environments in the Middle East, and utilized in domestic, commercial or industrial applications in the entire region.

The world’s dependence on Middle East energy resources has caused the region to have some of the largest carbon footprints per capita worldwide. The GCC region is now gearing up to meet the challenge of global warming, as with the rapid growth of the waste management sector. During the last few years, UAE, Qatar and Saudi Arabia have unveiled multi-billion dollar investment plans to Improve waste management scenario. In particular, the establishment of Domestic Solid Waste Management Centre in Qatar has catalyzed public interest in deployment of waste-to-energy systems in the Middle East.

Energy recovery from MSW is rapidly gaining worldwide recognition as the fourth ‘R’ in sustainable waste management system – Reuse, Reduce, Recycle and Recover. A transition from conventional waste management system to one based on sustainable practices is necessary to address environmental concerns and to foster sustainable development in the region.

Republished by Blog Post Promoter

Biomass Energy in Middle East

The Middle East and North Africa (MENA) region offers almost 45 percent of the world’s total energy potential from all renewable sources that can generate more than three times the world’s total power demand. MENA region has abundant biomass energy resources which have remained unexplored to a great extent. According to conservative estimates, the potential of biomass energy in the Euro-Mediterranean region is about 400TWh per year. Around the region, pollution of the air and water from municipal, industrial and agricultural operations continues to grow.  The technological advancements in the biomass energy industry, coupled with the tremendous regional potential, promises to usher in a new era of energy as well as environmental security for the region.

The major biomass producing countries are Egypt, Yemen, Iraq, Syria and Jordan. Traditionally, biomass energy has been widely used in rural areas for domestic purposes in the MENA region, especially in Egypt, Yemen and Jordan. Since most of the region is arid or semi-arid, the biomass energy potential is mainly contributed by municipal solid wastes, agricultural residues and industrial wastes.

Municipal solid wastes represent the best source of biomass in Middle East countries. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita solid waste generation. The gross urban waste generation quantity from Middle East countries is estimated at more than 150 million tons annually. Food waste is the third-largest component of generated waste by weight which mostly ends up rotting in landfill and releasing greenhouse gases into the atmosphere. The mushrooming of hotels, restaurants, fast-food joints and cafeterias in the region has resulted in the generation of huge quantities of food wastes.

In Middle East countries, huge quantity of sewage sludge is produced on daily basis which presents a serious problem due to its high treatment costs and risk to environment and human health. On an average, the rate of wastewater generation is 80-200 litres per person each day and sewage output is rising by as much as 25 percent every year. According to conservative estimates, sewage generation in the Dubai is atleast 500,000 m3 per day.

The food processing industry in MENA produces a large number of organic residues and by-products that can be used as biomass energy sources. In recent decades, the fast-growing food and beverage processing industry has remarkably increased in importance in major countries of the region. Since the early 1990s, the increased agricultural output stimulated an increase in fruit and vegetable canning as well as juice, beverage, and oil processing in countries like Egypt, Syria, Lebanon and Saudi Arabia.

The MENA countries have strong animal population. The livestock sector, in particular sheep, goats and camels, plays an important role in the national economy of respective countries. Many millions of live ruminants are imported each year from around the world. In addition, the region has witnessed very rapid growth in the poultry sector. The biogas potential of animal manure can be harnessed both at small- and community-scale.

The Middle East region is well-poised for biomass energy development, with its rich biomass resources in the form of municipal solid waste, crop residues and agro-industrial waste. The implementation of advanced biomass conversion technologies as a method for safe disposal of solid and liquid biomass wastes, and as an attractive option to generate heat, power and fuels, can greatly reduce environmental impacts of a wide array of biomass wastes. 

 

Republished by Blog Post Promoter

Waste Management in Jeddah

Jeddah, a major commercial hub in the Middle East, is the second largest city in Saudi Arabia. Solid waste management is a big problem in Jeddah as the city’s population is increasing at a rapid pace and has now touched 3.5 million. More than 5,000 tons of solid waste is produced every day and Jeddah municipal authorities are finding it increasingly hard to cope with the problem of urban waste.

The management of solid waste in Jeddah begins with collection of wastes from bins scattered across residential and commercial areas. Wastes is collected and sent to transfer stations from where it ultimately goes to the dumping site. Most of the MSW is disposed in the landfill facility at Buraiman which receives approximately 1.5 million tons of waste per year and has an expected lifespan of between 30 and 40 years.

Buraiman or (Almusk) Lake, has been the dumping site of Jeddah's sewage wastewater for more than a decade. Wastewater accumulates in underground cesspools and then transported by truck tankers to the sewage lake. The lake lies in east of Jeddah within the catchment of Wadi Bani Malek at about 130m above mean sea level. It contains more than 10 million cubic meters of sewage water spread over an area of 2.88 km2.

The sewage lake has caused some wells in Jeddah to become poisoned due to raw sewage leaking into aquifers. Some studies have reported that water table under Jeddah is rising at 50cm per year which is attributed to the inflow of untreated sewage. As the only dumpsite for municipal sewage and industrial waste, Buraiman Lake is continuously increasing in size, constantly moving towards the south, and is now reported to be only three kilometres away from city houses.

The lake was created as a stopgap measure to deal with the increasing amounts of wastewater in the growing city. Jeddah's residents use an estimated 200 litres of water per capita per day. The lake was to be used for depositing this water until a functioning sewage system was created. But plans were delayed because of inadequate funding. As 70 percent of Jeddah households are not connected to sewerage pipelines, wastewater accumulates in underground cesspools and later transported by lorries to Buraiman Lake.

About 50,000 cubic metres of water are transported to the 2.5 million square-metre lake each day. Only a small percentage of the waste water from the remaining 30 per cent of Jeddah households goes to treatment plants for purification before being dumped in the Red Sea. Most of the waste water that is accumulated through pipes is dumped directly into the sea without purification.

Keeping in view the prevalent waste management scenario, Jeddah municipality is continuously seeking ways to develop city’s sewage treatment infrastructure. However, the current infrastructure is incapable of handling the present generation of raw sewage, leading to the continued storing untreated sewage at Buraiman Lake and dumping the remaining portion directly into the Red Sea. 

Republished by Blog Post Promoter

Energy Management in the Middle East

Managing and reducing energy consumption not only saves money but also helps in mitigating climate change and enhancing corporate reputation. The primary objective of energy management is to achieve and maintain optimum energy procurement and utilisation, throughout the organisation which may help in minimizing energy costs and mitigating environmental effects. Infact, energy management is widely acknowledged as the best solution for direct and immediate reduction of energy consumption.

Importance of Energy Management

Energy should be regarded as a business cost, like raw material or labour. Companies can achieve substantial reduction in energy bills by implementing simple housekeeping measures. Reduction and control of energy usage is vital for an organization as it:

  • Reduces costs: Reducing cost is the most compelling reason for saving energy. Most organisations can save up to 20% on their fuel cost by managing their energy use;
  • Reduces carbon emissions: Reducing energy consumption also reduces carbon emissions and adverse environmental effects. Reducing your organisation’s carbon footprint helps build a ‘green’ image thereby generating good business opportunities; and
  • Reduce risk: Reducing energy use helps reduce risk of energy price fluctuations and supply shortages.

Regulatory requirements aiming to reduce carbon emissions and energy use require accurate energy data collection and effective management systems. Good energy management practices are compliant with these requirements and help fulfil regulatory obligations. Businesses worldwide are showing interest in appointment of a formal/informal energy manager to coordinate energy management activities. The main task of an energy manager is to set up a system to collect, analyse and report on energy consumption and costs which may involve reading electricity meters regularly and analysis of utility bills.

Carbon emissions from energy use dominate the total greenhouse gas emissions of most organisations. Sound energy management is rapidly emerging as an integral part of carbon management which in turn helps organisations in effective overall environmental management. In addition to financial benefits, energy management has other significant advantages for an organisation such as:

  • Organisations achieve stronger market position by demonstrating ‘green’ credentials. Energy management improves competitive advantage as most consumers prefer to source from socially responsible businesses;
  • Organisations adopting energy management systems can influence supply chains by preferring suppliers who adopt environment management practices; and
  • Energy management creates a better workplace environment for employees by improving working conditions.

Energy Management in the Middle East

In recent years, energy consumption in the Middle East is rising exponentially due to rapid industrialization and high population growth rate. Infact, the level of primary energy consumption in MENA region is one of the highest worldwide.  However, the efficiency of energy production and consumption patterns in the region requires improvement. Though the per capita energy consumption in the GCC sub-region are among the world’s top list, more than 40 percent of the Arab population in rural and urban poor areas do not have adequate access to energy services.

The Middle East is making a steady change towards energy efficiency and alternative sources of energy. Several declarations have been issued in recent years emphasizing concerns and commitment of regional powers to achieve sustainable development. Energy Strategy 2030 introduced by Dubai aims to reduce energy demand and carbon dioxide emissions by 30% by the year 2030 through secure energy supply and efficient energy use while meeting environmental and sustainability objectives. Simalarly Saudi Arabia and Qatar are seriously pursuing the use of alternative energy in power generation. This is an attractive driver for businesses to adopt solutions that reduce overall energy consumption. 

Considering the rapid rise in power demand in the region, governments are now looking to diversify their energy mix from their primary energy source to a greater reliance on renewable energy. Middle East energy efficiency ranking is expected to get a major boost due to the development of large renewable energy projects in UAE, Saudi Arabia, Jordan etc. Balanced approaches are being employed to drive feasible clean energy projects while developing the regulatory framework and adaptation of energy efficient technologies.

Many businesses in the Middle East have set dynamic strategic direction to achieve immediate reduction in energy consumption. The trend towards energy efficiency will only continue to grow to sustain this demand. With increasing environmental awareness, there is significant room for growth and leadership within the Middle East for the adoption of energy optimisation, introduction of specialised energy-saving systems and implementation of sustainable energy technologies.

Republished by Blog Post Promoter

Women and the Environment in Arabia

Women and the environment are closely interlinked, throughout history, different nations glorified women as powerful symbols of nature, and nature has always been given the female characteristics: care, reproduction and life-giving. Nevertheless, women’s involvement in the preservation of the environment has seldom been recognized and documented in the histories of several nations.

One of the most significant phenomena in the last decades is recognition of women rights to achieve sustainable development; many international agreements reflected this recognition, including Rio Declaration in 1992, which stresses the point of the centrality of the full women participation to achieve environmental sustainability. The UN Conference on Sustainable Development in 2012 has acknowledged the importance of gender equality and women empowerment, the CBD identifies the integration of women right in biodiversity conservation as intrinsically vital. Linking gender equality and sustainable development is not only important for ethical and moral reasons, but also because achieving gender equality as human rights of women is prerequisite of a fair and sustainable globe and future.

Increasingly, achievement environmental sustainability is recognized as central to pursue development goals. It`s crucial that gender equality —a human right—is central to this pursuit. Worldwide, there is a perception that women are closer to nature than men, as women interact directly and more intensively with the natural surroundings more than their counterparts' men, which produced their profound experience, understanding and knowledge about the environment. Many studies on women and environment have shown that women are significant role player in natural resources management and ecological preservation. Women have served as farmers, water and firewood collectors and scientists with more respective and caring attitude.

The interesting dilemma about all is since women interact directly with the environment, and because of their roles as home-managers, they are often vulnerable to several environmental threats and hazards especially rural women in developing countries. The toxic environmental hazards may increase the risk of birth defects, abortion, perinatal death, and fetal growth retardation.

Women in Agriculture and Plant and Soil Conservation

Globally, women produce around half of all the grown food, women`s roles in agriculture include: planting, cultivation, production, weeding, distribution, harvesting and storage, women are also involved in animal farming such as rearing poultry and goat. Some examples of women role in agriculture in Arabia include rural women in the Jordan Valley, who have proved themselves in agricultural work and is now irreplaceable in various agricultural operations. In addition, women have participated in and led soil and plant conservation projects. A role model is the Royal Botanic Garden (RBG) of Jordan, led by its founder HRH Princess Basma bint Ali. The RBG aims to preserve plants and ecosystems, and promote biodiversity research and environmental education in Jordan.

Women in Forest Management and Tree Planting                                                

In many areas of the Arab world, natural resources, such as firewood, are the main source of energy for domestic consumption. Unfortunately, the extensive use of these sources has led to forests degradation and air pollution. At the same time, women are the main contributor in forest management through planting and protection. A good example is the campaign organized by the APN, represented by its President Razan Zeater, which has planted more than two million trees in Jordan and Palestine.

Women and Water Resources

Around the Middle East, women constitute the main group of direct users of water for household consumptions. Therefore, they are a mainstream interest group in water management to provide and safeguard their own water resources. Women involvement in water management is growing up, but not yet receiving the attention it deserves. To fill the gap, many programs are launched to empower women at all levels including research. Dr. Malak AlNory, a scientist and a winner of Ibn Khaldun fellowship, researched the supply chain for water in Saudi Arabia and was the first Saudi woman presented her paper at the IDA Congress in 2013.

Women and Waste Management

Women role in waste management include garbage disposal management and research. Dr.Sumaya Abbas, a Bahraini engineer and a winner of L'Oréal-UNESCO For Women In Science Fellowship, works on waste management and waste transformation into energy. “Because oil and gas resources are depleting, we are looking at alternatives sources of energy, and waste is one of them ” she clarifies.

Women and Energy

Worldwide, many people lack access to modern, clean energy, which has a huge impact on general quality of life. Rural women devote much of their time as fuel gatherers. Additionally, women work on projects to produce energy. An excellent model is the Jordanian brave Bedouin Rafea, who decided to challenge gender roles in her Bedouin community and followed her aspirations to light up her underprivileged village by enrolling in a solar program in India. Rafea has not only become the first female solar engineer in Jordan, but she has also set up 80 small-scale solar systems, helping her village to become solar-powered. Today Rafea is a role model, an elected leader and training many others on how to use sustainable energy.

Women and Policy

There is growing evidence of the synergies between gender equality and environmental sustainability. While women participation is vital, their involvement in policy-making aimed at sustainability does not mean better gender equality, especially when the foundations of gender inequality remain unchanged. Governments and donor agencies target women as influential agents for green transformation.

However, such stereotypical assumptions which view women as “sustainability saviors” have risks, as it's based on the assumption that women are unlimited resource that can sustain environments without consideration of women’s health, time, knowledge, interests and opportunities. Thus, women’s involvement in policy-making focused only at sustainability doesn't mean better gender equality; on the contrary, increase of women’s already heavy unpaid work burdens without consideration of their benefits in advantage to the environment can worsen gender inequalities and power imbalances.

Conclusions

Despite the challenges, this is a time of great opportunity for Arab women.  Worldwide, there are many examples of alternative pathways that move towards environmental sustainability and gender equality synergistically, which means respect for women knowledge, capabilities and rights, while ensuring that roles are matched with rights, control over resources and decision-making power.

 

References

  1. Wuyep, Solomon Z. et al "Women Participation in Environmental Protection and Management: Lessons from Plateau State, Nigeria." American Journal of Environmental Protection, n.d. Web. 2014.
  2. Yalan, Zhu. Women’s Participation in Environmental Protection Organizations—A Qualitative Study of Australian Women’s Involvement in Green Non-Governmental Organizations. Diss. D the Graduate School of Beijing Foreign Studies U, 2007. N.p.: n.p., n.d. Print.
  3. Chelala, Cesar. "Women's Role Key to Saving Environment." China Daily. N.p., 2011. Web. 27 July 2015.
  4. "Women, Environment and Sustainable Development: Making the Links." UNEP (n.d.): n. pag. Web. <http://www.unep.org/civilsociety/Portals/24105/documents/publications/Women%20and%20the%20environment/ChapterTwo.pdf>.
  5. The Environment and Women's Health (n.d.): n. pag. Web. <http://www.womenshealth.gov/publications/our-publications/fact-sheet/environment-womens-health.pdf>.
  6. JACKSON, CECILE. "Doing What Comes Naturally? Women and Environment in Development." World Development. N.p., n.d. Web. http://josiah.berkeley.edu/2007Fall/ER275/Readings/DP3/jackson-GAD-1993.pdf.
  7. Schultz, . Irmgard.et al  "Research on Gender, the Environment and Sustainable Development." N.p., n.d. Web. <ftp://ftp.cordis.europa.eu/pub/eesd/docs/wp1_endversion_complete.pdf>.
  8. UN Documents. Beijing Platform for Action. Chapter IV. K. Women and the Environment, n.d. Web. 26 July 2013. http://www.un-documents.net/bpa-4-k.html
  9. "Gender and Sustainable Development." (2014): n. pag. The Research and Data Section of UN Women. Web..
  10. "Postural Synergies: Gender Equality, Economic Development and Environmental Sustainability." SpringerReference (2012): n. pag. UNDP. Web.
  11. "For Women, It's Personal." Water.org. N.p., n.d. Web. 31 July 2015.
  12. "WEDO » NEW Article: "Women and Energy Access: Impact on Sustainable Development and Livelihoods"" WEDO RSS. N.p., n.d. Web. 31 July 2015
  13. "Sustainable Energy." (2010): n. pag" http://www.ashden.org/files/pdfs/reports/DFID-Energia-Ashden-Report-Public-Summary-Feb-2015.pdf"
  14. Rafea: Solar Mama. Dir. Jehane Noujaim and Mona Eldaief. Perf. Rafea, Rouf Dabbas, Um Bader. N.p., 2014. Web. <https://www.youtube.com/watch?v=ON_NQ1HnRYs>.
  15. Sarant, Louise. "L'Oreal-UNESCO Recognises Exceptional Arab Women Scientists." – News. Nature Middle East, 9 Feb. 2013. Web. 31 July 2015. <http://www.natureasia.com/en/nmiddleeast/article/10.1038/nmiddleeast.2013.20>.
  16. http://ccwce.mit.edu/Ibn-Khaldun-Fellowship <2015>.
  17. www.rbg.org.jo

Republished by Blog Post Promoter

My Little Paper Recycling Project

Paper industry is considered as one of the world’s largest consumers of fossil fuels and biggest industrial polluter. The industry is criticized by environmental groups for being responsible for massive deforestation around the world. With the use of modern technology such as the printing press and the highly mechanised harvesting of wood, paper has become a cheap commodity. This has led to a high level of consumption and waste. Worldwide consumption of paper has risen by 400% in the past 40 years, with 35% of harvested trees being used for paper manufacture. 

Paper wastes constitute as much as one-fourth of the solid wastes stream in the Middle East. Infact the percentage of paper wastes in municipal solid waste is around 28 percent in GCC countries like Saudi Arabia, Bahrain and Oman. These grim statistics are a major wake-up call for all concerned stakeholders to cut down on paper consumption and adopt paper recycling in a big way. High paper consumption and waste generation rate in the Middle East makes it imperative on regional countries to embrace the sustainable waste management strategy involving Reduce, Reuse and Recycle.

Why Recycling?

Material recycling process is one of the best ways to protect the environment.  Waste management can be initiated in private households and organizations by minimizing the consumption of electricity, water, food, paper etc. Recycling is processing used materials (waste) into new products to prevent waste of potentially useful materials, reduce the consumption of fresh raw materials, reduce energy usage, reduce air pollution (from incineration) and water pollution (from landfilling) by reducing the need for "conventional" waste disposal, and lower greenhouse gas emissions. Use of 3Rs of waste management can also reduce dependence on landfills, protect environment, conserve natural resources and also generate revenues.

Manufacture of Pencils from Paper Wastes

I started this project last year in my college to encourage and motivate students to recycle papers. Like other educational institutions, paper consumption is very high in our college and I devised a simple cost-effective method to transform old papers and magazines into a high-quality quality pencil which can be used at school or at work. The following materials are required to start your paper recycling project.

  • White Glue
  • Lead from any stationary store
  • Old newspapers
  • Pencil for drawing lines
  • Ruler
  • Scissor

Step 1

Use 4 to 5 pages of the newspaper and measure the right size for the lead which is about 18 cm length x 10cm width. You can also draw with the pencil to make sure it fits the right size of the lead.

Step 2

Cut the newspaper following the lines you have drawn and it will look like a rectangle shape.

Step 3

Apply glue at the edge of the rectangle shaped-paper and place the lead to start the rolling process.

Step 4

Carefully roll the paper with lead inside by using glue at fixed intervals.

Step 5

After finishing the rolling process, let it dry for few minutes. Re-start the rolling process with another piece of newspaper until the pencil is of the same size as a regular wood pencil.  Finally, your pencil, which will be same as a normal wooden pencil, is ready for use.

What Can You Do?

Be an active part of your local environmental community by participating and organizing paper recycling campaigns at your school, college or organizations. This also works when you are at home by sending reminders and emails through social networks and building global communities by sharing recycling ideas and activities that people can adapt while they are moving on their daily activities.

Please propagate this environmental message among your friends and co-workers. These 5 simple steps have the potential to make a big impact on the environment. Don’t forget that recycling a ton of paper saves 17 trees and 3.3 cubic yards in landfill space!

Republished by Blog Post Promoter

Water-Food Linkage in Arab World

The water-food linkage represents an important and vital nexus in the Arab countries. Under the current unstable food security situation (fluctuating energy prices, poor harvests, rising demand from a growing population, the use of bio-fuels and export bans have all increased prices), the ability for the Arab countries to feed their growing population is severely challenged by competition over increasingly limited water resources. Agriculture is currently challenged by competition among sectors on available water resources.

While the majority of water in the Arab region is used inefficiently in the agricultural sector (about 85% with less than 40% efficiency), which is not only crucial for food production but also employs a large labor force of rural population, the contribution of agriculture to GDP is significantly low. Hence, and using the argument of higher productivity per drop, voices are increasingly advocating for shift of water resources from agriculture to meet pressing demands of the industrial and municipal sectors.  The negative repercussions of that on the agricultural sector and rural population are most evident.  However, improving irrigation efficiency can release water for other uses (see AFED report on water in the Arab Region).

The Arab countries are far from having enough water to grow sufficient basic food, the obsession with the idea of self-sufficiency at any cost, had been predominant in the 1970s and 1980s, has been abandoned. It is no longer rational or sustainable. In fact, the region has been importing more and more food to meet its need. Recent studies have shown that more than half of the food calories consumed in the region is imported and would increase to 64% over the next two decades (World Bank, 2009). An older study in the mid-1990s showed that the food imports of the region were equivalent to 83 billion m3 of virtual water, or about 12% of the region’s annual renewable water resources. In fact, the same study has shown that for selected countries, this percentage was much higher: Algeria (87%), Egypt (31%), Jordan (398%), Libya (530%) and Saudi Arabia (580%) (FAO, 2001). With the rise of the population and improvement of lifestyles, one can expect these figures to be much higher today.

A better policy to address national food security can be to improve agricultural production and maximise water productivity and to rely on virtual water trade in food imports. By importing water intensive crops, not only can there be local water savings, there are also energy savings through reduction in withdrawal of irrigation water from deep aquifers (Siddiqi and Anadon, 2011), which could be significant for many Arab countries that have energy intensive groundwater withdrawals, such as the GCC countries. 

Moreover, Arab food security could be achieved through regional agricultural integration that combines the relative comparative advantages of all of the Arab countries, such as land and water resources, human resources, and financial resources. Joint agricultural projects could be implemented towards achieving food security for the region as a whole using advanced agricultural methods supported by active R&D programs in agricultural production as well as effective governance of water and land resources. 

References:

  1. World Bank. 2009. Water Resources: Managing a Scarce, Shared Resource. http://siteresources.worldbank.org/IDA/Resources/IDA-Water_Resources.pdf
  2. FAO. 2001. The State of Food and Agriculture 2001. Rome, Italy. ftp://ftp.fao.org/docrep/fao/003/x9800e/
  3. Siddiqi, A., and Anadon, L. D. 2011. The water-energy nexus in Middle East and North Afirca. Energy policy (2011) doi:10.1016/j.enpol.2011.04.023. 

Republished by Blog Post Promoter

Solid Waste Management Challenges in GCC

garbage-dump-kuwaitThe challenges posed by solid waste to governments and communities are many and varied. In the Gulf Cooperation Council region, where most countries have considerably high per capita waste generation values, the scale of the challenge faced by civic authorities is even bigger. Fast-paced industrial growth, recent construction boom, increasing population, rapid urbanisation, and vastly improved lifestyle coupled with unsustainable consumption patterns have all contributed to the growing waste crisis in the GCC.

Among the GCC nations, United Arab Emirates has the highest municipal solid waste generation per capita of 2.2 kg (which is among the highest worldwide) followed closely by Qatar, Kuwait, Saudi Arabia, Oman and Bahrain. The total urban waste generation in the GCC has been estimated to be around 150 million tons per annum, with MSW being the second largest stream after construction wastes.

Key Challenges

A look at the composition of municipal solid waste in GCC nations suggests that it is largely decomposable and recyclable. However, at present waste disposal into landfills/dumpsites remains the widely practiced method. In countries such as Kuwait and Bahrain where limited land is available, this doesn’t seem to be most prudent option. At present, GCC waste management sector is facing multiple challenges in the form of:

  1. Lack of clear reliable framework by which the solid waste sector is administered from the collection, transformation to disposing or treatment phases
  2. Absence  of effective and comprehensive legislative frameworks governing the solid waste sector and the inadequate enforcement mechanisms, which are no less important than the legislations themselves
  3. Management activities of MSW are considered public services
    which are directly controlled by governmental institutions. Such management arrangement is considered weak as it lacks market mechanisms, and in this case economical incentives cannot be used to improve and develop the MSW management services
  4. Inadequate human and organizational capacities and capabilities
  5. Scarcity of accurate and reliable background data and information on the status of solid waste such as rate of generation of different solid waste constituencies, assessment of natural resources and land-use,   and transportation needs, scenarios of treatment, growth scenarios of solid waste which are linked to several driving forces. Needless to say, data and information are the crucial elements for developing MSW management system including the adequate monitoring of the sector.
  6. Inadequate waste strategies/management infrastructure:  In most GCC countries existing waste handling capacities are insufficient. Presently recyclable recovery rate is low. Further, in the absence of local recycling facilities, there is no alternative except to dump the otherwise recyclable material at Landfills.
  7. Waste recycling is expensive: Though recent years have seen an increase in the number of waste recycling facilities the economics of recycling is still not very favourable. In many cases recycling waste is expensive compared to buying the product which can be attributed to lack of recycling facilities.
  8. Under developed market for recycled products: Insufficient demand for recycled products in the local market is another reason, which has hampered the growth of the waste recycling industry.
  9. Public attitude: Economies in the GCC countries are oil dependant due to high reserves of fossil fuels. For several decades alternatives such as solar and wind were not considered and oil was the easier option.  Recently and due to drop in oil prices more consideration is given to renewable sources. Similarly waste was mainly landfilled as it was the easier choice, yet due to known complication with such treatment, more suitable measures were considered. Therefore there is the need for an effective comprehensive “education and awareness” program in regards of these two issues

The Way Forward

GCC urgently requires an ambitious sustainable development agenda with waste management (minimisation, reuse and recycling) among its main priorities. Waste has a range of environmental impacts, on air, water, and land and also is a major economic drain, especially on city budgets. It is estimated that 50% of a city’s budget is spent on waste management. The inefficient use of scarce resources reflected in materials discarded and abandoned as waste represents a huge economic and environmental cost borne by society as a whole.

GCC urgently requires more recycling facilities, like this MRF in Sharjah

GCC urgently requires more recycling facilities, like this MRF in Sharjah

Management of solid waste is a serious challenge faced by most modern societies. But waste is not only a challenge: it is also a largely untapped opportunity. Proper waste management presents an opportunity not only to avoid the detrimental impacts associated with waste, but also to recover resources, realise environmental, economic and social benefits and take a step on the road to a sustainable future. The benefits arise when waste is treated as a resource, a resource that can be
recovered and put to productive and profitable use. Products can be reused and the materials that make them up can be recovered and converted to other uses or recycled.

Medical Wastes in GCC

There has been a growing awareness of the need for safe management of medical waste all over the world. Medical Waste are generated by all health sectors including hospitals, laboratories, diagnostic and research centers, dental and medical clinics, blood banks, mortuaries and autopsy centres, veterinary hospitals, industrial laboratories etc.Medical wastes which pose the greatest risk to human health are infectious waste (or hazardous medical waste) which constitutes 15 – 25 percent of total healthcare waste.

Infectious wastes may include all waste items that are contaminated with or suspected of being contaminated with body fluids such as blood and blood products, used catheters and gloves, cultures and stocks of infectious agents, wound dressings, nappies, discarded diagnostic samples, contaminated materials (swabs, bandages, and gauze), disposal medical devices, contaminated laboratory animals etc.

The quantity of waste produced in a hospital depends on the level of national income and the type of facility concerned. A university hospital in a high-income country can produce up to 10 kg of waste per bed per day, all categories combined.

 

Medical Waste in the GCC

Healthcare sector in the Gulf Cooperation Council continues to grow at a very rapid pace, which in turn has led to big increase in the quantity of waste generated by hospitals, clinics and other establishments. According to conservative estimates, more than 150 tons of medical waste is generated in GCC countries every day.

Saudi Arabia leads the pack with daily healthcare waste generation of more than 80 tons. As far as UAE is concerned, approximately 21.5 tons per day of medical waste are generated in the UAE, out of which 12 tons per day is produced by Abu Dhabi alone. Kuwait produces around 12 tons while Bahrain generates 7 tons of hazardous medical waste daily.

These figures are indicative of the magnitude of the problem faced by municipal authorities in dealing with medical waste disposal problem across GCC. The growing amount of medical wastes is posing significant public health and environmental challenges in major cities of the region. The situation is worsened by improper disposal methods, insufficient physical resources, and lack of research on medical waste management.

 

Medical Waste Generation in Some GCC Countries

Country Medical Wastes (tons per day)
Saudi Arabia 80
UAE 21.5
Kuwait 12
Bahrain 7

 

Need for Medical Waste Management Strategy

Improper management of healthcare wastes from hospitals, clinics and other facilities in GCC countries pose occupational and public health risks to patients, health workers, waste handlers, haulers and general public. It may also lead to contamination of air, water and soil which may affect all forms of life. In addition, if waste is not disposed of properly, members of the community may have an opportunity to collect disposable medical equipment (particularly syringes) and to resell these materials which may cause dangerous diseases.

According to World Health Organization, hospital-associated infections (HAI) affect approximately 5% of hospitalized patients.The complexity of infectious healthcare waste problems and the recent rise in the incidence of diseases such as AIDS, SARS and Hepatitis B open up greater risk of contamination through mishandling and unsafe disposal practices.

Inadequate waste management can cause environmental pollution, growth and multiplication of vectors like insects, rodents and worms and may lead to the transmission of diseases like typhoid, cholera, hepatitis and AIDS through injuries from syringes and needles contaminated with human. In addition to health risks associated with poor management of medical waste, consideration must also be given to the impact on environment, especially to the risks of pollution of water, air and soil.

The situation is further complicated by the extreme climatic and environmental conditions of the region, which makes medical waste disposal more challenging. Since medical waste is more dangerous than ordinary trash, it is imperative on governments and private companies in GCC countries to devise a successful hospital waste management program to avoid the spread of diseases and to protect the environment.

 

Republished by Blog Post Promoter

الطاقة المتجددة….مستقبل الكامن في السهل الممتنع

لقد دلت المؤشرات على أن متوسط استهلاك الفرد للطاقة في المملكة العربية السعودية بلغ ضعف متوسط الإستهلاك العالمي بحسب الاحصاءات,و تعد بذلك من أعلى المستويات في العالم. مع العلم أن نسبة استهلاك أجهزة التكييف للطاقة الكهربائية تمثل أكثر من 70 بالمائة و ترتفع هذ النسبة في فصل الصيف لتصل إلى 100 بالمائة مما يشكل إختلالآ في عمل المنظومات الكهربائية.

فلذلك تعمل المملكة العربية السعودية الآن على تبني مصادر متنوعة للطاقة المتجددة و استكشاف الطرق الرامية إلى تحسين أداء الطاقة البترولية والحد من أثآرها على البيئة ويمكنها في نهاية المطاف أن تحقق الاستدامة من خلال تنويع مصادر هذه الطاقة. فالإعتماد على مصادر الطاقة المتجددة مهم جداً ، مثل الطاقة الشمسية الكثيفة بالإضافة إلى طاقة الرياح والطاقة الجوف أرضية وتنضم الطاقة الذرية إلى كل ذلك.

الطاقة الشمسية

علميآ تقع المملكة بمحاذاة الحزام الشمسي و هو عبارة عن نطاق قريب جدآ من المنطقة الإستوائية, حيث تبلغ سقوط أشعة الشمس أقصاها. فبذلك يعتبر موقعها مثالي جدآ للإستثمار في الطاقة الشمسية,ناهيك عن المساحات الواسعة و القادرة على استيعاب المعدات الهائلة لتوليد الطاقة. و تستقبل السعودية من الطاقة الشمسية ما يعادل 7 كيلوواط في الساعة لكل متر مربع في ساعات النهار, مما يؤهلها لتكون الدولة الأمثل للإستفادة منها و لإبتكار حلول تكنولوجية في المستقبل.

طاقة الرياح

تمثل طاقة الرياح اليوم أهمية متزايدة في جميع أنحاء العالم , و تتمتع المملكة بمؤهلات جيدة للإستفادة من هذه الطاقة. حيث قدر توفرالرياح القوية من 4 إلى 5 ساعات يوميآ, و يعد هذا المعدل الأعلى في الشرق الأوسط. و من الجدير بالذكر الخطط الطامحة من قبل المملكة في الإستفادة من هذه الطاقة لإنتاج 9 جيجاواط خلال السنوات العشرون القادمة.

الطاقة الذرية

توجهت المملكة حاليآ نحو إنتاج الطاقة الذرية. و يعتبر تأسيس مدينة الملك عبدالله للطاقة الذرية و المتجددة أكبر دليل على ذلك. فإن  تنفيذ مشاريع لتوليد الطاقة الكهربائية و إنتاج مياه محلاة تعتبر من أكبر أهدافها. و لكن كشفت بعض الأراء بأن محطات توليد هذه الطاقة لن تستطيع العمل بكفاءة و الإنتاج إلا بعد مضي عشر سنوات.

فهل ستتمكن المملكة من التحول والإعتماد على مزيج متوازن ومستدام من مصادر الطاقة ليس لأسباب بيئية وحسب ولكن لأهمية مصادر الطاقة هذه و التي من شأنها المساعدة في بناء قطاع إقتصادي متنوع، يوفر المزيد من فرص الأعمال والوظائف، الأمر الذي سيرفع من مستوى حياة المواطنين وينقل المملكة لتصبح إحدى الدول الرائدة في مجال الطاقة البديلة على مستوى العالم.

رفع أسعار النفط المحلي

لتحقيق هذا الأمل الوردي, هناك المزيد من الخطوات العملية يجب أن تطبق في مجال التشجيع على الاستثمار في الطاقة النظيفة. فهل من الممكن رفع أسعار النفط المحلي؟ و ما أثره ذلك اقتصاديآ و اجتماعيآ؟ أليس من الأهم التركيز على دفع عجلة البناء والإقتصاد ومن ثم العمل على الخطط البديلة للطاقة كناتج للتقدم الحضاري؟

المجهودات الحكومية لتقليل الاستهلاك الداخلي المسرف للطاقة دائماُ ماتقابل بمعوقات مرتبطة بقلة أسعار الوقود.بالطبع يساعد خفض أسعار النفط سواء كان وقود للمركبات أو الكهرباء في التخفيف من الفقر وتحفيز التنمية في الاقتصاد غير النفطي ولكن من الممكن أن الآثار السلبية تطغى على الإيجابية, حيث أنها قد ترسخ عدم الكفاءة في الإستهلاك خصوصاُ مع الآراء المتصاعدة والمنبئة بنضوب مصادر البترول قريباً. رفع الدعم الحكومي للطاقة المستهلكة داخليا من شأنه تشجيع استخدام البدائل الصديقة للبيئة وبقدر مايعتقد الكثير أن ذلك من السهل حدوثه فإن التحول للطاقة النظيفة يلزمه الكثير من العمل على المستوى الفردي والمؤسسي مما يجعل الطاقة البديلة السهل الممتنع.

Republished by Blog Post Promoter

Combined Heat and Power Systems

Combined Heat and Power (CHP), or Cogeneration, is the sequential or simultaneous generation of multiple forms of useful energy (usually mechanical and thermal) in a single, integrated system. In conventional electricity generation systems, about 35% of the energy potential contained in the fuel is converted on average into electricity, whilst the rest is lost as waste heat.

CHP systems uses both electricity and heat and therefore can achieve an efficiency of up to 90%, giving energy savings between 15-40% when compared with the separate production of electricity from conventional power stations and of heat from boilers.

CHP systems consist of a number of individual components—prime mover (heat engine), generator, heat recovery, and electrical interconnection—configured into an integrated whole. The type of equipment that drives the overall system (i.e., the prime mover) typically identifies the CHP unit. 

Prime movers for CHP units include reciprocating engines, combustion or gas turbines, steam turbines, microturbines, and fuel cells. These prime movers are capable of burning a variety of fuels, including natural gas, coal, oil, and alternative fuels to produce shaft power or mechanical energy.

CHP Technology Options

Reciprocating or internal combustion engines (ICEs) are among the most widely used prime movers to power small electricity generators. Advantages include large variations in the size range available, fast start-up, good efficiencies under partial load efficiency, reliability, and long life.

Steam turbines are the most commonly employed prime movers for large power outputs. Steam at lower pressure is extracted from the steam turbine and used directly or is converted to other forms of thermal energy. System efficiencies can vary between 15 and 35% depending on the steam parameters.

Co-firing of biomass with coal and other fossil fuels can provide a short-term, low-risk, low-cost option for producing renewable energy while simultaneously reducing dependence on fossil fuels. Biomass can typically provide between 3 and 15 percent of the input energy into the power plant. Most forms of biomass are suitable for co-firing. 

Steam engines are also proven technology but suited mainly for constant speed operation in industrial environments. Steam engines are available in different sizes ranging from a few kW to more than 1 MWe.

A gas turbine system requires landfill gas, biogas, or a biomass gasifier to produce the gas for the turbine. This biogas must be carefully filtered of particulate matter to avoid damaging the blades of the gas turbine.  

Stirling engines utilize any source of heat provided that it is of sufficiently high temperature. A wide variety of heat sources can be used but the Stirling engine is particularly well-suited to biomass fuels. Stirling engines are available in the 0.5 to 150 kWe range and a number of companies are working on its further development.

A micro-turbine recovers part of the exhaust heat for preheating the combustion air and hence increases overall efficiency to around 20-30%. Several competing manufacturers are developing units in the 25-250kWe range. Advantages of micro-turbines include compact and light weight design, a fairly wide size range due to modularity, and low noise levels. 

Saudi ARAMCO's CHP Initiatives

Recently ARAMCO announced the signing of agreements to build and operate cogeneration plants at three major oil and gas complexes in Saudi Arabia. These agreements demonstrate ARAMCO's commitment to pursue energy efficiency in its operation. Upon completion, the cogeneration plants will meet power and heating requirements at Abqaiq, Hawiya and Ras Tanura plants. These plants are expected to generate a total on 900MW of power and 1,500 tons of steam per hour when they come onstream in 2016.

Republished by Blog Post Promoter

Future of Urban Transportation in Saudi Arabia

Transportation sector has played a prominent role in the socio-economic development of Kingdom of Saudi Arabia. However, there are a wide range of current and future issues which should be tackled to ensure sustainable development in the country. More than 75% of the total population of Saudi Arabia lives in urban areas. Given the worldwide trends and statistics on urban population growth, many have regarded the 21st century as the urban century, understanding the prominence and importance urban areas have played and will continueto play in the future. Therefore, the Kingdom of Saudi Arabia must focus its attention in the re-planning and re-designing of existing cities in order to absorb the pressure of increasing urban populations, in a manner that will improve environmental sustainability and energy efficiency. In re-fitting urban areas for expected expansion, the future of urban transportation will be a much needed but thoroughly thought-out strategy to ensure the cities’ lifelines are able to cope with the needs and demands of the increasing urban population.

Prevalent Scenario

Accordingly to a 2014 article published in The Peninsula Times, Saudi Arabia had 15.9 million licensed cars at the end of 2012. The article also mentioned that an analysis by Al-Eqtisadiah (a Saudi newspaper) estimated that the number of cars was expected to increase to 18 million in 2014. Therefore if we were to do a ‘rough’ calculation using the projected number of cars for 2014 and the total population of persons in 2013, then for approximately every two persons there is one licensed car. For urban areas, a ‘rough’ calculation using the 2010 urban population figure and the ‘roughly’ calculated ratio of one licensed car to approximately every two persons, means that if at present, over 22.9 million people live in the urban cities, then there is a high probability that there are over 11.4 million licenced cars in the urban areas of the Kingdom of Saudi Arabia.

The reality that such figures exist in the Kingdom for licensed cars in urban areas, solidifies the importance of reviewing present modes of urban transport.Such modes of urban transport must be seen as energy efficient, compactable, aesthetically pleasing, safe, reliable and environmentally-sustainable. A key area in applying such type of urban transport is through the urban public transportation system. This can be done through the implementation of urban mass transit systems, for example, bus and extensive rapid railway systems.Such systems will encourage the city inhabitants to forego personal vehicles for public transport. Fortunately, the Kingdom is well on their way in this regard, having an already functioning public bus and railway system. These two public systems are governed under two separate organizations, Saudi Arabian Public Transport Company, and Saudi Railways. Saudi Arabian Public Transport Company has an inter-city and inner-city bus system, while Saudi Railways is responsible for passenger railway transport in the Kingdom. The railway organization has many projects in the pipelinesand is working on implementing their Master Plan, which speaks of the creation of a railway for urban transportation, Urban Transit. 

Future Outlook

Even though the Kingdom is in the process of planning to implement extensions of those transport systems on a larger scale for urban areas, that type of infrastructure will take a number of years to complete. In the interim, simpler alternative modes of public transport, which can bring about positive changes to the country’s urban transportation sector, can be installed and implemented. One such alternative is a bike –share system. Although it is seen as child’s play, bikes have traditionally been used for transport. However, with a bit of innovation and creativity, bike-shares having smart and green technology have popped up all over the world, in many of the mega-cities with huge success. In the case of Saudi Arabia, new city developments and economic zones can easily incorporate such a system into their plans and designs. The bike-share concept can also be incorporated on university campuses and other large-scale development centres throughout the Kingdom. There are numerous advantages to a bike-share, such as improved health, air quality, urban environment and urban aesthetics. The Kingdom can successfully create its own version of a fashionably green urban bike-share system but it will require support from all stakeholders, especially the city dwellers.

Aside from the current usage of the public transport system, a lot more can be done to promote and encourage modes of public transport, as well as other initiatives to ‘nudge’ the urban population to reduce the number of personal cars in cities. One such initiative could be, ‘Use Public Transport Day’ or ‘Car-pool Day’. Another approach to ‘nudging’ urban residents to reduce the need for cars, can be through the installation of pedestrian zones or pathways,where the entire roadway of a certain part of the city is free of cars, allowing for a better flow of pedestrian traffic. These along with many more examples, can be found in case studies on cities like Mexico City, Copenhagen, Malmo, Curitiba and Vancouver.

Conclusion

Prioritising and revitalising urban transport in Saudi Arabia is indeed a requirement as the urban population increases. It is encouraging to see Saudi Arabia taking strides to increase modes of urban transport for cities. However, the Kingdom needs to implement short and medium term strategies that will get the urban population to begin transitioning from conventional modes to environmentally-sustainable modes of transport. The needs of future urban populations are what should be considered by traffic and transportation planners, not future projections of the number of cars. We must begin to think of the future needs of the population, in particular the urban population, for more proactive solutions to emerge in the transportation sector in Saudi Arabia, escially in big cities like Jeddah, Riyadh and Dammam. 

Republished by Blog Post Promoter