Energy Efficiency Perspectives for MENA

MENA countries are facing an increasing challenge in reducing greenhouse gas emissions from the energy sector. Qatar, Kuwait, UAE, Bahrain and Saudi Arabia figure among the world’s top-10 per capita carbon emitters. In case of business-as-usual scenario, GHGs emissions from the energy sector will continue to rise throughout the region. According to a recent report by International Energy Agency (IEA), energy intensity demand in MENA is mainly driven by population and economic growth and reliance of heavy industries on generous energy subsidy. It is projected that primary energy demand in the region will be doubled by 2030 and the region’s share in global oil production will increase from 35% now to 44% in 2030. MENA countries together have 840 billion barrels of proven crude oil reserves (57% of world’s oil) and 80 trillion cubic meters of proven gas reserves (41% of world’s natural gas). Population growth and economic expansion have increased energy demand significantly over the past decade; between 2000 and 2011, domestic consumption almost doubled in Oman and tripled in Qatar. 

Growth in energy demand is driven across the end-use sectors: in the residential sector through increased use of air conditioning and cooling units; in the transportation sector through rising vehicle ownership; and in the industrial sector from greater industrial activity, hydrocarbon production and refining, and energy-intensive desalination plants. One of the central reasons for increased GHG emissions from MENA energy sector is the low efficiency of energy resource consumption. The energy intensity (energy use per unit of GDP) is very high which drives up atmospheric GHG emissions. However it is important to highlight the difference among MENA countries regarding carbon intensity levels where GCC nations are rank higher compared to energy-importing MENA nations like Jordan, Egypt, Lebanon etc. All these facts stress the urgent need to increase energy efficiency in order to precipitate decline in energy intensity and thus reduce GHG emissions.

There is a wide array of measures on both supply side and demand side, to boost MENA energy efficiency levels by promoting stringent environmental, energy saving policies to combat climate change.  Formal energy efficiency programs and voluntary measures combined will help the region to maintain its economic strength. Energy conservation programs in residential, commercial and industrial sectors can significantly reduce carbon emissions and augment energy supply in the MENA region. A robust regulatory and institutionalized framework can help to achieve a reduction in GHG emissions through a bundle of non-market based and market-based instruments.

Also known as command and control instruments (CAC), these regulations focus on preventing environmental externalities which is achieved through auditing and monitoring/inspection program and performance-oriented regulations to limit air pollutants. Here are some examples of command and control instruments:

  • Awareness and information campaigns
  • Labeling & training programs to engage end-users to reduce their emissions voluntarily.
  • Information-based programs to spread awareness and encourage efficient consumption patterns.
  • Establishing minimum energy performance standards for appliances, equipment and vehicles as a complement to labelling methods.
  • Building codes and insulation to save the energy loss.
  • Smart reductions such as smart meters, energy audit, energy saving plans etc.
  • Phasing out of inefficient lighting like incandescent bulbs and CFLs.

Market-based instruments are defined as a policy instrument that use market, price to provide incentives for polluters to reduce or eliminate their emissions (negative environmental externality). Building regional cap, carbon trading platform and grants/rebates/tax exemption/rewards to encourage efficiency measures are good examples of market-based incentive program that may be implemented in the Middle East.

Conclusion

On account of its huge fossil fuel reserves, MENA has a great role to play in the international efforts towards green economy and sustainable development. Recently, the GCC has embarked on ambitious policies and projects across different sectors which may, explicitly or implicitly, mitigate impacts of GHG on their economies and development priorities. 

Adoption of energy efficiency-based energy policies in commercial, industrial and domestic sectors is integral to climate change mitigation in the MENA region. It is imperative on MENA governments to create an environment that rewards energy-efficient choices and encourages innovation for all kinds of energy users. The Middle East electricity market is growing at a rapid pace due to higher consumption rates in the domestic, commercial and industrial sectors which underlines the need for a successful implementation strategy that can bridge the gap between the current supply and increasing demand.

Republished by Blog Post Promoter

On Recycling of Fluorescent Bulbs

All fluorescent bulbs contain mercury. In fact, the standard fluorescent bulb has about 20 milligrams of mercury. It is clear that these lamps must be managed properly to protect human health and the environment. The risk of leaving mercury deposits in landfill is high; therefore, recycling seems the most conscientious and environmentally safe recourse. A national fluorescent bulb recycling strategy will not only help in environment protection but can also promote new business growth and job opportunities.

An analysis of the lighting industry shows a trend shifting from the usage of incandescent bulbs to fluorescent bulbs. Incandescent bulbs use more fossil fuel energy, are more costly and are less effective than fluorescent bulbs in the amount of artificial light they produce as fluorescents produce more lumens than incandescents. 

Usage of fluorescent bulbs, however, is not entirely without risk because they contain mercury, a chemical compound that can have debilitating effects on humans upon prolonged exposure.Because of its unique properties, the most effective way to dispose of mercury-bearing wastes is through recycling.

Continued illegal disposal of mercury wastes continues, resulting in unnecessary exposure to people and the planet; however, a grass roots movement to protect the environment has created momentum to generate a national law prohibiting the disposal of fluorescent bulbs in landfills.

en.lighten Initiative and Middle East

The UNEP/GEF en.lighten initiative was launched in September 2009 as a globally coordinated effort to accelerate the transition to efficient lighting and mitigate climate change, The objective of the initiative is to calculate the potential electricity savings, CO2 emission reductions and the economic benefits that could be realized from phasing out inefficient lighting and replacing them with compact fluorescent lamps (CFLs). Around 100 countries were analyzed globally, with 19 hailing from the MENA region.

Several countries in the Middle East are already taking measures to promote efficient lighting. Six countries (Egypt, Lebanon, Iran, Turkey, Morocco, and UAE) have already distributed more than 100 million CFLs in total. Countries like Egypt, Tunisia, Morocco, and Lebanon have announced ban on the sale of all incandescent bulbs by specific target years. Likewise Qatar has already announced plans to phase out use of incandescent bulbs. However, the promotion of CFLs demands a viable strategy to counter broken and disused fluorescent bulbs in order to prevent its harmful effect on the environment and public health.

Recycling Strategy

Proper disposal of mercury-contained fluorescent lamps is essential to prevent release of toxic materials into the environment. The manufacturers of fluorescent tubes are responsible for the proper labeling of mercury-containing lamps to alert customers to their hazards. With the labeling of the symbol “Hg” on each lamp, individuals should recognize these products contain mercury. In United States, fluorescent bulbs and other types of energy-efficient lighting as well as nickel-cadmium batteries, pesticides and thermostats are regulated under the Universal Waste Rule (UWR).

The UWR allows businesses, government agencies and other generators an opportunity to recycle bulbs and other types of universal waste at the end of life rather than manifesting and disposing of them as a hazardous waste. This can result in significant savings for the business or property owner. Recycling also helps protect our environment from potentially toxic materials.

Many governments and retailers are offering CFL recycling schemes that safely handle the mercury. Private industry has to partner with government to develop a plan to eliminate fluorescent bulbs in landfills. To further encourage recycling, the cost of recycling should be initially absorbed by the manufacturers, who in turn, may pass the costs to the consumers. The consumer can then return the spent bulbs to their purchase point of origin. This has worked in other recycling sectors, and it can also work with mercury-containing devices such as fluorescent lamps.

Republished by Blog Post Promoter

Biogas Feedstock in the Middle East

Anaerobic digestion (or biogas technology) is the natural biological process which stabilizes organic waste in the absence of air and transforms it into biofertilizer and biogas. It is a reliable technology for the treatment of wet, organic waste.  Organic waste from various sources is biochemically degraded in highly controlled, oxygen-free conditions circumstances resulting in the production of biogas which can be used to produce both electricity and heat. Almost any organic material can be processed with anaerobic digestion. 

A wide range of organic wastes are available in the Middle East for anaerobic digestion. In addition to MSW, large quantity of waste, in both solid and liquid forms, is generated by the industrial sector like sugar mills, agro=processing, food processing, leather, pharmaceuticals and paper and pulp industries. Poultry waste has the highest biogas potential per ton of waste, however livestock wastes have the greatest potential for energy generation in the agricultural sector.

Here is the list of potential feedstock for biogas production in the Middle East.

Agricultural Feedstock

  • Animal manure
  • Energy crops
  • Algal biomass
  • Crop residues

Community-Based Feedstock

  • Organic fraction of MSW (OFMSW)
  • Sewage sludge
  • Grass clippings/garden waste
  • Food residuals
  • Institutional wastes etc.

Industrial Feedstock

  • Food/beverage processing
  • Dairy
  • Starch industry
  • Sugar industry
  • Pharmaceutical industry
  • Cosmetic industry
  • Biochemical industry
  • Pulp and paper
  • Slaughterhouse/rendering plant etc.

Anaerobic digestion is particularly suited to wet organic material and is commonly used for effluent and sewage treatment. Almost any organic material can be processed with anaerobic digestion. This includes biodegradable waste materials such as waste paper, grass clippings, leftover food, sewage and animal waste. The exception to this is woody wastes that are largely unaffected by digestion as most anaerobic microorganisms are unable to degrade lignin. 

Anaerobic digesters can also be fed with specially grown energy crops such as silage for dedicated biogas production. A wide range of crops, especially C-4 plants, demonstrate good biogas potentials. Corn is one of the most popular co-substrate in Germany while Sudan grass is grown as an energy crop for co-digestion in Austria. Crops like maize, sunflower, grass, beets etc., are finding increasing use in agricultural digesters as co-substrates as well as single substrate.

A wide range of organic substances are anaerobically easily degradable without major pretreatment. Among these are leachates, slops, sludges, oils, fats or whey. Some wastes can form inhibiting metabolites (e.g.NH3) during anaerobic digestion which require higher dilutions with substrates like manure or sewage sludge. A number of other waste materials often require pre-treatment steps (e.g. source separated municipal bio-waste, food leftovers, expired food, market wastes and crop residues).

Republished by Blog Post Promoter

Green Buildings Certification in MENA – Issues and Challenges

Green building rating systems are increasingly gaining attention in the building industry in the MENA region. During the last 15 years, there has been a regional trend in developing and applying green building ratings systems. In several countries such systems have been developed in an attempt to follow the international green movement. For example, the Pearl Building Rating System (PBRS) was founded in UAE in 2007, the Green Pyramid (GPRS) and ARZ Building Rating System in Egypt and Lebanon respectively were founded in 2008, the Edama was proposed in Jordan in 2009 and Qatar Sustainability Assessment System (QSAS) was founded in 2010. 

A new study compared four regional rating systems in the Middle East, in addition to LEED and BREEAM. The study found that the problem with most emerging rating systems is that they imitate the LEED or BREEAM rating systems and are not enough adapted to local environmental, cultural, historical, societal and economic context. Thus certification systems must be adapted to meet the needs of the Middle East regional climate, social, environmental and economic conditions.

The study, conducted in 2013, compared four rating systems (GPRS, SI 5281, QSAS and PBRS) and a cross analysis study was used to answer questions about the strength and weakness of the systems. The four systems use score point system for assessment. The four tools provide programs involving the building life cycle process – pre-design, design and post-design (occupation). There are many common criteria and categories between the four examined rating systems; such as limiting the consumption of energy and water in the building, improving the environmental quality in both indoor and outdoor, resources and material conservation, service quality, and site strategies. The four rating systems operate from an ecological foot print minimisation paradigm. At the same time, each rating system focuses on certain aspects more than the other ones according to the country’s local context. Surprisingly, there is no agreement on weighing the different environmental criteria.

Problems of Rating Systems

The study found that the examined rating systems are proposing theoretical models that needs to move to effective market implementation politically (government) and economically (NGOs & private sector). The rating systems require more adaptation to local and regional context. Rating systems should differentiate themselves from well-established rating systems.  For example, the study believes that water scarcity should be the most important category together with human wellbeing. Already LEED and BREEAM programs are considered the most fairly comprehensive in scope – from registration to calculation to building certification. In the case of the four rating systems, the initiation approaches were bottom down and not bottom up approaches.

Therefore, the uptake and market penetration is slow compared to LEED or BREEAM. In the four countries, there is no encouragement/engagement in the form of working out incentives or law enforcement to apply the four rating systems except for PBRS. In fact, each country in the region is looking to achieve those criteria individually. The entry of the LEED and BREEAM rating system into the Middle East property market coincided with increasing demand for regional and local ratings systems. As a result, different systems were developed under serious time pressure in the last ten years. The four compared systems are based on American and British standard. In the same time, there are currently no standardisation efforts working at local level to quantify and assess sustainability.

Towards Harmonised Systems

Green Building Councils in the Middle East will have a long way; they have to manage to position themselves as leaders promoting green buildings in the countries where they operate. By comparing and evaluating the four rating systems lesson could be learned and problem could be avoided. Therefore, the study author believes that a harmonised system within the Middle East would have distinctly better chances if the following issues are addressed:

Institutional Setting

Since the oil embargo of 1973, Western countries developed local codes and standards, which are revised annually, for the built environment. Those codes correspond to their context and are strongly linked to practice and buildings industry. However, in the four examined countries, the (b) local codes and standards are still not mature when compared to American or British ones. So there is a regulation problem on the institutional level. More importantly, (b) energy and water are heavily subsidized in most of the four countries.The comparison revealed that the certification rates are low and the feesstructure is very high (registration, certification, auditing).

Thus the whole political regulation landscape regarding resources efficiency is contradicting with the rating systems scope and objective. Therefore, it is important to address the (a) efficiency regulations and (b) subsidies policies on the institutional level and avoid the dependence on Western standards, codes and rating systems. This should be done through facilitating the adjustment and upgrading for the specification of environmental assessment factors in a dynamic, flexible and simple way.

Scientific Rigour and Priorities

Developing an assessment framework should be based on in-situ building performance research and technical knowledge. Technical rigour is very important in this case, for example setting benchmarks and measuring the performance. Furthermore, the investigated rating systems are located in hot climates, with scarce water resources which require a different approach and credits focus. Issues like solar protection, water conservation, life style, solar cooling and urban planning should be more strongly addressed in future developments. This includes advancing environmental footprint issues, like climate change.

Regionalisation

The assessment framework should suite the local context of each country in the Middle East, depending on its culture, issues, stakeholders, practices and institutions. Surprisingly, SI 5281 is the only rating system that was written in a native language, thus it is essential for each country, to design its own indicators to serve its goals in local language. This includes the development of local criteria to quantify the social part of sustainability that includes tradition and culture.

Providing a Platform

Multi-stakeholders should participate in developing rating systems, since they require participative and collaborative work process. Experts, designers, elected officials, working group, agency players, and others should be introduced as key participants in this process. The building industry should be encouraged to get into sustainable track to achieve a real transformation, regarding water and energy. There is a need to link those rating systems to grass root initiatives rather than developing them within academia or elite practicing companies.

According to the study, the examined certification systems need strong adaptation to meet the needs of the Middle East regional climate, social, cultural, environmental and economic conditions. Also there must be a harmonisation effort between regional rating systems aiming to develop and implement a common, transparent regional building assessment methodology. Otherwise, there will be a proliferation of immature systems without accumulated and unifying experience. 

Conclusion

There is still a long way before those examined systems examined become mature and widely usable.  Despite that the development of the examined rating systems is intended to facilitate the assessment of sustainable design in MENA; they fail to suit the local context culture issues, resources, priorities, practices and economic challenges. The GPRS, QSAS and PBRS systems neglect the interpretation of essential local sustainability measurements in their assessment set and normative standards. The study concludes that the existing rating system needs to increase the technical rigor and to put more weight on the most important categories, mainly water, IEQ, pollution and energy. The study suggests a number of recommendations to develop a harmonised green building assessment system in the MENA region. The usefulness of rating systems in the future depends on their flexibility and ability to measure the merits of buildings.

Note: The original version of the article can be viewed at this link.

Republished by Blog Post Promoter

Concept of Energy Management

Energy management is the best solution for direct and immediate reduction of energy consumption. For the last few decades we have been exploring various alternatives to conventional sources of energy like solar, wind and biomass energy. However, due attention must also be given to best utilization of energy, improvement in energy efficiencies and optimum management of energy resources. Infact, energy management deals with already existing sources and actual consumption. It includes planning and operation of energy-related production and consumption units.

The main objectives of energy management are resource conservation, climate protection and cost savings. The central task of energy management is to reduce costs for the provision of energy in buildings and facilities without compromising work processes. The simplest way to introduce energy management is the effective use of energy to maximize profit by minimizing costs. Energy management could save up to 70% of the energy consumption in a typical building or plant.

The typical energy saving for any plant or building, using basic energy management principles, could be 10-15% of the total consumption. This percentage may rose to 25-35% by a medium scale energy management program (1 – 3 year). For achieving higher degree of savings, a long-term energy management program, spread over a period of three years or more, is required which will involve a certain capital investment. The major elements of an energy management program are:

  • Set your goal: how much energy reduction do you want to achieve
  • Know your numbers: how much do you consume
  • Define major consumption units and try to reduce consumption
  • Continuous review and management

Basic Energy Savings Tips for Industries

  • Avoid extra-load in peak time. It is way more costly.
  • Turn off machines during shut downs, inspections, maintenance and when not in use.
  • Regular and efficient maintenance of machines and motors prevents extra loads and saves 15 % of extra consumption and prevents break downs as well.
  • Attend air and steam leakages. These leakages are extra load on boilers, compressors etc.
  • Replacement of incandescent lamps with compact fluorescent lights (CFLs) or LEDs can save significant amount of energy.

Our case study for energy management program was developed and implemented in textile industry which is second highest industrial energy consumer in Egypt. The program, involving minimum investment, was implemented over a period of one year and proved to be a major success. Direct energy savings were approximately one-fourth of the total consumption. More than one million Egyptian pounds were saved from direct costs, in addition to considerable indirect savings.

Conclusions

Energy management is the process of monitoring, controlling, and conserving energy in a building or an industry. Energy management is the key to saving energy in your organization. Energy management is an important energy resource that can help meet future energy needs while the nation concurrently develops new and low-carbon energy sources

Republished by Blog Post Promoter

Women Entrepreneurship in MENA: An Analysis

Women entrepreneurship is an important unexploited source of economic growth in almost all parts of the world. Unfortunately women in MENA have the lowest rates of Total Entrepreneurial Activity (TEA) at merely 4% of the population. The highest rates, globally, are in sub-Saharan Africa, at 27%. Latin American and Caribbean economies also show high levels (15 percent). In just seven economies (Panama, Thailand, Ghana, Ecuador, Nigeria, Mexico, and Uganda), women had equal or slightly higher levels of entrepreneurship than men. For the rest, women represented a smaller share of the entrepreneur population.

Current Situation

The recent interest in women entrepreneurship in the Middle East and North Africa region has spurred a number of studies that aim to explain MENA’s very low female participation in the workforce and political life, at  both the inter-regional and the intra-regional scales and  to identify the challenges facing women entrepreneurs. The comparative data shows that the MENA region has made strong gains in human development: Literacy increased to 69 percent, average schooling (for those above 15)  rose  to  5.2  years,  child mortality  rates  plunged  to  around  46  per  thousand  births,  and  life  expectancy  has climbed to  reach  68  years.”. However the level of unemployment among women remains high throughout the region. Of course, there is enough evidence to show that culture and social norms — not religion since countries with the same religion clearly show different rates — have a great deal to do with it.

The MENA region, more than other regions, faces specific barriers for women to interact in the public sphere and to access vital resources. This poses constraints that need to be addressed with specific measure in access to technology, financing and access to information which is a necessity in a globalized world. Some of the main barriers and constraints identified in hampering women entrepreneurs from entering the economic mainstream are as follows:

  • Gender specific barriers: Despite the fact that MENA nations have made considerable efforts to narrow the gender gap, much remains to be done to raise the social welfare of women in the region.
  • Cultural norms.
  • Civil law: Prevalent laws tend to enforce certain customs and social norms and, in doing so, institutionalize and legitimize certain behaviors.
  • Access to financial services and resources.
  • Barriers in the business environment.
  • Lack of research and data to inform an effective advocacy strategy.

Inter-regional Disparities in MENA

The difference of Total Entrepreneurial Activity (TEA) rates among countries in the MENA region is well explained by the heterogeneity and diversity of their historical development, social makeup and system of governance as well as  the  key  indicators  of  human  development  such  as health, education and living  standards.  It is quite difficult to make generalizations across the MENA region as the region  includes super-rich oil economies, a relatively small population and a large expat population such as Kuwait, Libya, Oman, Qatar, Saudi Arabia, and the UAE; mixed oil economies such as Algeria, Iran, Egypt, Tunisia, Yemen and  Syria  and non-oil economies  like  Jordan, Morocco, Palestine, Malta and Cyprus. This further complicates attempts to explain variations in the character and gender aspects of employment and entrepreneurship.

Thus, each country in the Arab world is confronting constraints and barriers to women entrepreneurship in different contexts. The profile of barriers for each nation is shaped by inter-connectedness of intrinsic and extrinsic factors specific to each country. Some studies have attributed MENA’s low rates of female labor force participation in oil-exporting countries of MENA (the Islamic Republic of Iran, Iraq, Kuwait, Saudi Arabia, and the United Arab Emirates) to oil. It has been argued that the economic structure, social norms, and institutional characteristics of oil-rich economies discourage women from formal sector work. Ross (2008) argues that oil production “reduces the number of women in the labor force, which in turn reduces their political influence.” Oil-rich countries tend to have undiversified private sectors characterized by male-dominated employment and large public sectors. Consequently, employment opportunities for women often are highly concentrated in the public sector

Oil is a significant source of income for some MENA countries, especially GCC nations, and has definitely limited the growth of non-oil sectors. Nevertheless, it is notable that many countries in the region are net oil importers but still have rates of female labor force participation as low as those of oil-rich MENA countries. In contrast, oil producers outside MENA such as Norway and the Russian Federation have higher rates of female labor force participation.

Ways to Enhance Female Entrepreneurship

Targeted, coordinated efforts are needed on multiple fronts to increase women’s participation in the economic and political spheres, and these efforts must be specific to country context. These efforts include changes in policies to secure women’s equality under the law, to bridge the remaining gender gaps in health and education, to redress the skills mismatch in the job market, and to promote women’s civic and political participation, and changes in economic policies by adoption of more nuanced labor taxation systems, more targeted social welfare benefits, tax credits, public financed parental leave schemes and promotion, better flex-work arrangements, enhanced access to finance and training for female entrepreneurs.

All these policy options and more can narrow the gap between men and women in economic life, and can trigger a momentum of growth and job creation that can support much higher rates of GDP and ensure prosperity for all.

Furthermore, the economic and political environment arising from the Arab Spring has created an unprecedented window of opportunity for change. Given the growing labor, demographic, and fiscal constraints, and the changing aspirations in the Middle East and North Africa region, policy reforms are urgently needed to boost job creation for all.

 

References:

  • Donna J. Kelley, Candida G. Brush, Patricia G. Greene, Yana Litovsky, GEM 2012 Women's Report
  • Ebba Augustin, Ruby Assad & Dalila Jaziri, 2012, Women Empowerment for Improved Research in Agricultural Development, Innovation and Knowledge Transfer in the West Asia/ North Africa Region, AARINENA Association of Agricultural Research Institutions in the Near East and North Africa 
  • Leyla Sarfaraz, Nezameddin Faghih and Armaghan Asadi Majd 2014, The relationship between women entrepreneurship and gender equality, The Journal of Global Entrepreneurship Research (JGER)
  • Michael L. Ross, 2008, “Oil, Islam, and Women.” American Political Science Review 
  • OECD-MENA Investment Programme, 2013, Gender inequality and entrepreneurship in the Middle East and North Africa : A statistical portrait
  • World Bank, 2007, The Environment for Women’s Entrepreneurship in the Middle East and North Africa Region

Republished by Blog Post Promoter

Use of Sewage Sludge in Cement Industry

The MENA region produces huge quantity of municipal wastewater which represents a serious problem due to its high treatment costs and risk to environment, human health and marine life. The per capita wastewater generation rate in the region is estimated at 80-200 litres per day. Sewage generation across the region is rising by an astonishing rate of 25 percent every year.

Municipal wastewater treatment plants in MENA produce large amounts of sludge whose disposal is a cause of major concern. For example, Kuwait has 6 wastewater treatment plants, with combined capacity of treating 12,000m³ of municipal wastewater per day, which produce around 250 tons of sludge daily. Similarly Tunisia has approximately 125 wastewater treatment plants which generate around 1 million tons of sewage sludge every year. Currently most of the sewage is sent to landfills. Sewage sludge generation is bound to increase at rapid rates in MENA due to increase in number and size of urban habitats and growing industrialization.

Use of Sewage Sludge in Cement Industry

An attractive disposal method for sewage sludge is to use it as alternative fuel source in a cement kiln. The resultant ash is incorporated in the cement matrix. Infact, several European countries, like Germany and Switzerland, have already started adopting this practice for sewage sludge management. Sewage sludge has relatively high net calorific value of 10-20 MJ/kg as well as lower carbon dioxide emissions factor compared to coal when treated in a cement kiln. Use of sludge in cement kilns can also tackle the problem of safe and eco-friendly disposal of sewage sludge. The cement industry accounts for almost 5 percent of anthropogenic CO2 emissions worldwide. Treating municipal wastes in cement kilns can reduce industry’s reliance on fossil fuels and decrease greenhouse gas emissions.

The use of sewage sludge as alternative fuel in clinker production is one of the most sustainable option for sludge waste management. Due to the high temperature in the kiln the organic content of the sewage sludge will be completely destroyed. The sludge minerals will be bound in the clinker after the burning process. The calorific value of sewage sludge depends on the organic content and on the moisture content of the sludge. Dried sewage sludge with high organic content possesses a high calorific value.  Waste coming out of sewage sludge treatment processes has a minor role as raw material substitute, due to their chemical composition.

The dried municipal sewage sludge has organic material content (ca. 40 – 45 wt %), therefore the use of this alternative fuel in clinker production will save fossil CO2 emissions. According to IPCC default of solid biomass fuel, the dried sewage sludge CO2 emission factor is 110 kg CO2/GJ without consideration of biogenic content. The usage of municipal sewage sludge as fuel supports the saving of fossil fuel emission.

Sludge is usually treated before disposal to reduce water content, fermentation propensity and pathogens by making use of treatment processes like thickening, dewatering, stabilisation, disinfection and thermal drying. The sludge may undergo one or several treatments resulting in a dry solid alternative fuel of a low to medium energy content that can be used in cement industry.

Conclusions

The use of sewage sludge as alternative fuel is a common practice in cement plants around the world, Europe in particular. It could be an attractive business proposition for wastewater treatment plant operators and cement industry in the Middle East to work together to tackle the problem of sewage sludge disposal, and high energy requirements and GHGs emissions from the cement industry.

Republished by Blog Post Promoter

Jatropha’s Relevance for MENA

Jatropha is a genus of nearly 175 species of shrubs, low-growing plants, and trees.  However, discussions of Jatropha as a biodiesel are actually means a particular species of the plant, Jatropha curcas. The plant is indigenous to parts of Central America, however it has spread to other tropical and subtropical regions in Africa and Asia.

Jatropha curcas is a perennial shrub that, on average, grows approximately three to five meters in height. It has smooth grey bark with large and pale green leaves. The plant produces flowers and fruits are produced in winter or throughout the year depending on temperature and soil moisture. The curcas fruit contains 37.5 percent shell and 62.5 percent seed.  Jatropha curcas can be grown from either seed or cutting.

By virtue of being a member of the Euphorbiaceae family, Jatropha has a high adaptability for thriving under a wide range of physiographic and climatic conditions. It is found to grow in all most all parts of the country up to an elevation 3000 feet. Jatropha is suitable for all soils including degraded and barren lands, and is a perennial occupying limited space and highly suitable for intercropping.

Extensive research has shown that Jatropha requires low water and fertilizer for cultivation, is not grazed by cattle or sheep, is pest resistant, is easily propagated, has a low gestation period, and has a high seed yield and oil content, and produces high protein manure. Sewage effluents provide a good source of water and nutrients for cultivating Jatropha, though there are some risk of salinization in arid regions.

Pongamia pinnata or Karanj is another promising non-edible oil seed plant that can be utilized for oil extraction for biofuels. The plant is a native of India and grows in dry places far in the interior and up to an elevation of 1000 meters. Pongamia plantation is not much known as like Jatropha, but the cost effectiveness of this plant makes it more preferred than other feedstock. Pongamia requires about four to five times lesser inputs and giver two to three times more yield than Jatropha which makes it quite suitable for small farmers. However, Pongamia seeds have about 5-10 percent less oil content than Jatropha and the plant requires longer period to grow as the gestation period is about 6-8 years for Pongamia against 3-5 years in Jatropha

To conclude, Jatropha can be successfully grown in arid regions of the Middle East and North Africa (MENA) for biodiesel production. These energy crops are highly useful in preventing soil erosion and shifting of sand-dunes. The production of sewage-irrigated energy crops has good potential to secure additional water treatment and thus reduce adverse environmental impacts of sewage disposal. Countries in the Middle East, like Eqypt, Libya, Sudan, Jordan and Saudi Arabia, are well-suited to the growth of Jatropha plantations. Infact, Jatropha is already grown at limited scale in some Middle East countries, especially Egypt,  and tremendous potential exists for its commercial exploitation.

Republished by Blog Post Promoter

Role of Agricultural Sector in Harnessing Renewable Energy

The continuous rise in fossil energy prices, combined with climate change concerns and progress in renewable energy sector, has catalyzed interest in clean energy systems across the MENA region, especially in the Mediterranean. The Mediterranean region has abundant renewable resources, such as wind, solar, and biomass, which makes it a fertile zone for renewable energy developments. 

The agricultural sector has played a key role in the progress of renewable energy sector around the world as it provides large areas where renewable energy projects are built and is also the predominant feedstock source for biomass energy projects. For example, German agricultural sector accounts for one-fifth of the total installed PV capacity.

The main objective of this article is to explore the role that Mediterranean agricultural sector can play in tapping tremendous renewable energy potential available across the region.

Wind Energy

In countries where there is a lack of available land to build wind turbines, the agricultural sector is playing a key role by providing enough spaces. For instance, in Denmark farmer cooperatives are diversifying their incomes by investing in wind energy. Almost a quarter of wind energy sourced from wind turbines are owned by the Danish farmers. The same trend is taking place in Germany where farmers have established private companies to develop wind energy projects. Wind farms can be built in farms without any harmful impact on agricultural activities.

Wind energy potential is abundant across the Mediterranean region due to geographical location marked by a long coastline. The integration of wind energy projects in the agricultural sector is an interesting economic opportunity for agricultural enterprises in the region. However, as wind energy projects demand heavy capital, there is a need to mobilize funds to develop such projects.

In addition, there is need to create attractive financing mechanisms for farmers and to build their capacities in developing and managing wind projects. The development of wind energy projects owned by farmers will help them to have an extra revenue stream. It will also lead to decentralization of electricity production, which will not only reduce transmission losses but also decrease reliance on the national grid.

Solar Energy

The Mediterranean region receives one of the highest solar radiation in the world. Large availability of unexploited lands in the region, especially in the Eastern and Southern countries, makes solar energy systems, especially photovoltaics an attractive proposition for regional countries.  Agricultural farms in the Mediterranean region can use PV systems for domestic as well as commercial power generation.  In addition, there are a handful of applications in agricultural sector such as water pumping and irrigation.

Off-grid photovoltaic systems ensure a reliable and completely autonomous water supply at low cost – without fuel-powered generators, battery systems or long power lines. Solar energy can make irrigation independent of grid power. Low-pressure drip irrigation systems can be operated with any photovoltaic-powered pump, making them ideal for areas not connected to the grid. Photovoltaic projects require low capital investment and can be developed at small-to-medium scales.

Bioenergy

A variety of fuels can be produced from agricultural biomass resources including liquid fuels, such as ethanol, methanol, biodiesel, Fischer-Tropsch diesel, and gaseous fuels, such as hydrogen and methane. The agricultural resources include animal manure and crop residues derived primarily from maize, corn and small grains. A variety of regionally significant crops, such as cotton, sugarcane, rice, and fruit and nut orchards can also be a source of crop residues.

Globally, biofuels are most commonly used to power vehicles, heat homes, and for cooking. Biofuels are generally considered as offering many priorities, including sustainability, reduction of greenhouse gas emissions, regional development, social structure and agriculture, and security of supply.        

One of the species that is cultivated and exploited for these purposes is Jatropha curcas which is widely cultivated in Brazil and India for producing biodiesel. Jatropha can be successfully grown in arid regions of the Mediterranean for biodiesel production. These energy crops are highly useful in preventing soil erosion and shifting of sand-dunes. Infact, Jatropha is already grown at limited scale in some Middle East countries, especially Egypt,  and tremendous potential exists for its commercial exploitation.

Conclusion

The time has come for industries in the Mediterranean region, especially the agricultural sector, to undertake the shift necessary to contribute to sustainable development of the MENA region by making the best use of latest technological developments in renewable energy sector.

Republished by Blog Post Promoter

Desalination – A Better Choice for MENA

Water scarcity is a major problem in many parts of the world affecting quality of life, the environment, industry, and the economies of developing nations. The Middle East and North Africa (MENA) region is considered as one of the most water-scarce regions of the world. Large scale water management problems are already apparent in the region. While the MENA region’s population is growing steadily, per capita water availability is expected to fall by more than 40-50% by the year 2050. Also, climate change is likely to affect weather and precipitation patterns, and the consequences of which may force the MENA region to more frequent and severe droughts.

Growth in desalination has increased dramatically as countries seek solutions to water scarcity caused by population growth, climate change, pollution and industrial development. In addition, the industry has done much to lower the cost of desalination. Advances in technology have led to increased energy efficiency, and greater economies of scale have also helped lower costs. The majority of new commissioned capacity is seawater desalination. As of June 30, 2011, there were 15,988 desalination plants worldwide and the total global capacity of all plants online was 66.5 million cubic meters per day (m3/d), or approximately 17.6 billion US gallons per day.

Existing desalination plants work in one of two ways. Some distil seawater by heating it up to evaporate part of it. They then condense the vapour—a process that requires electricity. The other plants use reverse osmosis. This employs high-pressure pumps to force the water from brine through a membrane that is impermeable to salt. That, too, needs electricity. Even the best reverse-osmosis plants require 3.7 kilowatt hours (kWh) of energy to produce 1,000 litres of drinking water.

Recent researches indicate that we can produce that much freshwater with less than 1 kWh of electricity, and no other paid-for source of power is needed. This process is fuelled by concentration gradients of salinity between different vessels of brine. These different salinities are brought about by evaporation. The process begins by spraying seawater into a shallow, black-bottomed pond, where it absorbs heat from the atmosphere. The resulting evaporation increases the concentration of salt in the water from its natural level of 3.5% to as much as 20%. Low-pressure pumps are then used to pipe this concentrated seawater, along with three other streams of untreated seawater, into the desalting unit.

Perspectives for MENA

Seawater desalination powered by renewable power offers an attractive opportunity for MENA countries to ensure affordable, sustainable and secure freshwater supply. The MENA region has tremendous wind and solar energy potential which can be effectively utilized in desalination processes. Concentrating solar power (CSP) offers an attractive option to power industrial-scale desalination plants that require both high temperature fluids and electricity.

The renewable energy potential is now starting to be more seriously considered in the MENA region, driven by rapidly increasing energy usage, high insolation rates, a young and empowered workforce, and an increasing awareness of the costs of burning natural resources. The United Arab Emirates, Saudi Arabia, Jordan, Tunisia and Morocco, have ambitious solar power generation goals as well as evolving policies and regulatory frameworks to support these goals. Demonstration projects are being deployed in some countries, while large scale projects are being deployed in others.

Conclusion

Water demand and supply have become an international issue due to several factors: global warming (droughts are more often in arid areas), low annual rainfall, a rise in population rates during last decades, high living standards, and the expansion of industrial and agricultural activities. Freshwater from rivers and groundwater sources are becoming limited and vast reserves of fresh water are located in deep places where economical and geological issues are the main obstacles.

Therefore, it has turned into a competition to get this vital liquid and to find more feasible and economical sources that can ameliorate the great demand that the world is living nowadays and avoid water restrictions and service interruptions to domestic water supply. And, desalination powered by renewable energy resources seems to be an excellent alternative for getting fresh water and electricity in MENA countries.

Republished by Blog Post Promoter

Paris Agreement: Role of Effective Climate Governance Framework

climate-governanceIt has been a while since 195 countries agreed to the Paris Agreement resulting from the UNFCCC COP21. In a few weeks, countries are expected to adopt the Agreement which will be open for signature until April 2017. While many consider that history was made as industrialized and developing countries jointly agreed on the same climate policy framework for the first time ever; others alert that the Paris Agreement is only as good as its implementation plans and review mechanisms. Nevertheless, the Paris Agreement and the process around it demonstrate an exemplary model for global governance and policy advocacy. The question now is whether such international governance breakthrough could trickle down to the national and local levels across the globe. Countries and regions are challenged to move forward with the implementation leveraging the high momentum and mobilizing the diverse resources available in the market.

Paris Climate Deal: A Bottom-up Approach

The Paris Agreement encourages a bottom-up pledge and review approach through Nationally Determined Contributions (NDCs). National climate action targets are recognized by the agreement but are not legally binding. Countries have a legally binding obligation to put together domestic targets and prepare policies to achieve these; but the targets themselves are in a “public registry” separate from the Agreement.

NDCs represent a tremendous opportunity to link climate change and development with a view to pursuing sustainable climate-resilient and low-carbon development pathways. The Post-Paris process is not about reinventing the wheel, but about reinforcing existing efforts, mainstreaming the NDC process and about incentivizing additional action. The NDCs build on already existing climate change policies and measures and one of the main challenges is the integration and anchoring of the NDCs into sectoral programmes (policy coherence) and future strategies (i.e. Green Growth Strategies). Until February 2016, a total of 161 INDCs representing 188 countries were submitted to the UNFCCC covering around 98.7 % of global emissions.

Review Mechanism

The Paris Agreement established a periodic process for the submission of information on all Parties’ efforts to tackle climate change, according to guidance to be adopted by the COP serving as the meeting of the Parties to the Paris Agreement. The review of Parties’ action will take place at the individual level and at the aggregate level. Implementation of the Agreement will be assisted by an expert-based, facilitative compliance mechanism. Therefore, not only does the Paris Agreement provide an obligation for all to make efforts to reduce their emissions, it also sets the basis for a common process to review action, and enhance it when needed. The details of these review and compliance processes, however, remain to be determined by the body entrusted to prepare for the entry into force of the Paris Agreement.

Accountability and Transparency

For governments, accountability on NDCs would be established through the UNFCCC and associated mechanisms. For businesses, accountability is rather scattered, yet no less powerful. Companies should expect to be held accountable not only to the government authorities in their host countries, but by civil society organizations; and increasingly aware customers, employees and investors. The Agreement also subjects the implementation of developed Parties’ obligations concerning the provision of finance to a review process for the first time.

One of the most important conceptual changes made in the Paris agreement is the shift from blaming one another for failure to comply with a legal obligation, to trying to outdo one another in addressing a shared challenge. The transparency mechanism supports this shift by allowing journalists, activists, scientists, concerned citizens, and eco-businesses to: engage in debates, publicize successes and failures, solicit help and advice, and offer support to other countries.

Climate Finance

Finance lies at the heart of the new agreement, with its own objective, and commitments to provide scaled up financial resources and capacity building to support country-driven strategies.  Paris is already being heralded by private investors as a game-changer in terms of mobilizing low-carbon investment. Their role and that of carbon pricing will be vital in funding national projects and programmes.  The Agreement established two forms of carbon trading; the detailed rules for these will have to be spelled out over the next five years.

It is worth mentioning the global climate finance has increased by 18% in 2014 mounting up to $391 billion. Of that, $9 billion was invested in the MENA region with around 44% ($2 billion) utilized by the private sector. While renewable energy, energy efficiency and sustainable transport consumed the majority of mitigation finance, water and wastewater management took over the bulk of adaptation finance.

Examples of climate financing funds include: The Green Climate Fund, Adaptation Fund, Clean Technology Fund, GEF, NAMA facility as well as several bilateral funds. It is, moreover, anticipated that most of the climate investment would come from the private sector. National fund in Jordan include the Jordan Renewable Energy and Energy efficiency Fund under the Ministry of Energy and Mineral Resources as well as a number of green financing instruments implemented by commercial banks and MFIs.   

Role of Non-State Actors

Non-state actors include mainly Non Governmental Organizations (NGOs), cities and regions, as well as companies. The Paris Agreement is seen as a major turning point when it comes to the emphasizing the role and leadership of non-state actors, especially the private sector, side by side with governments. It calls upon ‘non-Party’ stakeholders to scale up their efforts and to demonstrate them via the UNFCCC website, and it also recognizes that tools such as domestic policies and carbon trading are important. Already 11,000 commitments from 4,000 companies and local authorities have been registered on the UNFCCC website, and that number is expected to grow in the coming years. http://climateaction.unfccc.int/

The Agreement contains clear messages to business community to join the climate action and implement short and long term projects to reduce their emissions. Climate leadership has a cascaded impact throughout the value chain: as emissions are reduced, money is saved, stakeholders are engaged and business reputation is enhanced.

 

Disclaimer: Some of the information contained in this article has been based on content developed by the writer during an assignment with GIZ Jordan on the comparative analysis of Jordan’s Intended Nationally Determined Contributions (INDCs) that was conducted in February 2016 in partnership with the Ministry of Environment

Solar Energy in Jordan

The solar energy potential in Jordan is enormous as it lies within the solar belt of the world with average solar radiation ranging between 5 and 7 KWh/m2, which implies a potential of at least 1000GWh per year annually. Solar energy, like other forms of renewable energy, remains underutilized in Jordan. Decentralized photovoltaic units in rural and remote villages are currently used for lighting, water pumping and other social services (1000KW of peak capacity). In addition, about 15% of all households are equipped with solar water heating systems.

Jordan has major plans for increasing the use of solar energy. As per the Energy Master Plan, 30 percent of all households are expected to be equipped with solar water heating system by the year 2020. The Government is hoping to construct the first Concentrated Solar Power (CSP) demonstration project in the short to medium term and is considering Aqaba and the south-eastern region for this purpose. It is also planning to have solar desalination plant. According to the national strategy the planned installed capacity will amount to 300MW – 600MW (CSP, PV and hybrid power plants) by 2020.

One of the most promising potential investments in renewable energy worldwide will be installing more than 250 MW of concentrated solar power (CSP) in Jordan’s Ma’an development zone through different projects developed by the private sector. The upcoming CSP solar power plants in Ma'an would highlight Jordan's strategy of sustainable energy diversification. The Ma'an Development Area enjoys about 320 days of sunshine a year, with a high level of irradiance that allows over 2500 million kWh of primary energy to be harvested annually from each square kilometre.  At full capacity, the planned flagship CSP plant could meet some 4% of the Kingdom's electricity needs, reducing the reliance on electricity imports from neighbouring countries. Surplus energy could in turn be sold to Syria, Egypt and Palestine, whose networks are connected to Jordan.

Qawar Energy in partnership with Maan Development Area (MDA) has recently announced the launch of its $400 million Shams Ma’an Project, a 100MW photovoltaic (PV) power plant project to come up at the MDA industrial park in Jordan. The project, being undertaken in partnership with MDA, is spread across a two million m2 area, and expected to be ready in 2012. On completion, it will be the largest PV plant in the world that will position Jordan on the global renewable energy map attracting investments, technologies and knowhow. It aims to utilize approximately 360,000 to 2 million PV/CPV panels and produce around 168 GWh per year

California-based company Ausra has been chosen to supply solar steam boilers to the 100MW JOAN1 concentrated solar thermal power (CSP) project in development in Ma’an. The JOAN1 project is expected to enter operation in 2013 and will be the largest CSP project in the world using direct solar steam generation. JOAN1 will be based on Ausra’s reflector technology to power the plant’s solar steam cycle and generate up to 100 MW of electricity. JOAN1 will use dry cooling to conserve water. Ausra plans to install an advanced manufacturing facility in Jordan in order to supply JOAN1 with its solar steam boilers.

 

Republished by Blog Post Promoter