Biomass Energy in Middle East

The Middle East and North Africa (MENA) region offers almost 45 percent of the world’s total energy potential from all renewable sources that can generate more than three times the world’s total power demand. MENA region has abundant biomass energy resources which have remained unexplored to a great extent. According to conservative estimates, the potential of biomass energy in the Euro-Mediterranean region is about 400TWh per year. Around the region, pollution of the air and water from municipal, industrial and agricultural operations continues to grow.  The technological advancements in the biomass energy industry, coupled with the tremendous regional potential, promises to usher in a new era of energy as well as environmental security for the region.

The major biomass producing countries are Egypt, Yemen, Iraq, Syria and Jordan. Traditionally, biomass energy has been widely used in rural areas for domestic purposes in the MENA region, especially in Egypt, Yemen and Jordan. Since most of the region is arid or semi-arid, the biomass energy potential is mainly contributed by municipal solid wastes, agricultural residues and industrial wastes.

Municipal solid wastes represent the best source of biomass in Middle East countries. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita solid waste generation. The gross urban waste generation quantity from Middle East countries is estimated at more than 150 million tons annually. Food waste is the third-largest component of generated waste by weight which mostly ends up rotting in landfill and releasing greenhouse gases into the atmosphere. The mushrooming of hotels, restaurants, fast-food joints and cafeterias in the region has resulted in the generation of huge quantities of food wastes.

In Middle East countries, huge quantity of sewage sludge is produced on daily basis which presents a serious problem due to its high treatment costs and risk to environment and human health. On an average, the rate of wastewater generation is 80-200 litres per person each day and sewage output is rising by as much as 25 percent every year. According to conservative estimates, sewage generation in the Dubai is atleast 500,000 m3 per day.

The food processing industry in MENA produces a large number of organic residues and by-products that can be used as biomass energy sources. In recent decades, the fast-growing food and beverage processing industry has remarkably increased in importance in major countries of the region. Since the early 1990s, the increased agricultural output stimulated an increase in fruit and vegetable canning as well as juice, beverage, and oil processing in countries like Egypt, Syria, Lebanon and Saudi Arabia.

The MENA countries have strong animal population. The livestock sector, in particular sheep, goats and camels, plays an important role in the national economy of respective countries. Many millions of live ruminants are imported each year from around the world. In addition, the region has witnessed very rapid growth in the poultry sector. The biogas potential of animal manure can be harnessed both at small- and community-scale.

The Middle East region is well-poised for biomass energy development, with its rich biomass resources in the form of municipal solid waste, crop residues and agro-industrial waste. The implementation of advanced biomass conversion technologies as a method for safe disposal of solid and liquid biomass wastes, and as an attractive option to generate heat, power and fuels, can greatly reduce environmental impacts of a wide array of biomass wastes. 

 

Republished by Blog Post Promoter

Green Roofs in MENA – Prospects and Challenges

Green roofs are emerging technologies that can provide a wide range of benefits to communities interested in enhancement and protection of their environment. The major benefits of green roofs are reducing energy use as well as air pollution and greenhouse gas emissions, enhancing stormwater management and water quality, decreasing heat island effect by regulating temperature for the roof and the surrounding areas and providing aesthetic value and habitats for many species.  

According to a 2013 MENA renewable energy status report, the Total Primary Energy Supply (TPES) in Middle East and North Africa has reached about 800 million tons of oil.  This equates to a 15% increase in energy demand since 2007. Increased energy consumption in the region is due largely to population growth, with related increases in demand for liquid fuels and electricity for domestic use and devices, heating, cooling, and desalination of water.  With heating and cooling being a reason for the increasing demand on fossil fuels, there is enormous opportunity for investment in green roofs as a way to stabilize or reduce energy consumption in the MENA region.  

Enhancing Stormwater Management and Water Quality

Stormwater is rainwater and melted snow that hits impervious surfaces and runs off into streets, lawns, sidewalks, and other sites. The main concern with stormwater is it can pick up debris, chemicals, dirt, and other pollutants and flow into a storm sewer system or directly to a lake, stream, river, wetland, or coastal water. In many places around the world, including MENA region, anything that enters a storm sewer system is often later discharged untreated into a nearby waterway polluting the same waters we swim, fish, and drink from.

In addition, stormwater runoff can cause flooding and an overflowing of sewer sanitary systems causing serious water quality impairments. In developing countries like Morocco and Algeria, where countrywide stormwater management and municipal waste management systems are deficient, stormwater runoff is a big problem. Rainwater flows from roofs straight onto streets carrying things like petrol, household garbage, bacteria, fertilizers and pesticides to nearby receiving waters.

According to an EPA study, green roofs are capable of removing 50% of the annual rainfall volume from a roof through retention and evapo-transpiration. By reducing the amount of impervious surfaces within a developed zone, green roofs reduce the amount of stormwater runoff.   Also, because green roofs absorb water, they delay the time at which runoff occurs, resulting in decreased stress on sewer systems at peak flow periods.

For conventional non-living roofs with a slope of 2%, a 96% runoff rate is observed.  On the other hand, intensive green roofs may have as low as a 15% runoff rate.  The benefits green roofs have regarding stormwater runoff could be amplified by more green roofs in a close-knit area and using green roofs with a deeper substrate layer. Nevertheless, if implemented, countries in the MENA region in which stormwater management systems are not in place could greatly benefit from the use of green roofs to help reduce hazardous runoff and subsequent contamination of water supplies. 

Decreasing Urban Heat Island Effect

Since the built environment tends to be constructed from materials that are impermeable and non-reflective they tend to absorb a significant proportion of the sun’s radiation and release it as heat. Because urban areas are densely populated with buildings, they tend to be hotter than the surrounding areas, a phenomenon known as heat island effect.  Urban heat islands have many negative impacts such as an in increase energy demand for cooling, an increase in air pollutants and greenhouse gas emissions, and impaired water quality.

The heat island effect causes internal temperatures of buildings to rise which subsequently increases the demand for air-conditioning to moderate the buildings internal temperatures.  This in turn leads to higher emissions from power plants, as well as increased smog production as a result of warmer temperatures.  Additionally, hot rooftop surfaces transfer their excess heat to stormwater causing the runoff water to be much warmer than the streams, lakes, and other waterways it enters.  In many cases dealing with this rapid change in temperature causes stress to aquatic ecosystems.

Urban heat island effect is especially worrisome for areas like Middle East and North Africa, where out of a population of 300 million, 170 million people reside in urban areas. Furthermore, according to UN projections the MENA population will reach 430 million by 2020, of which 280 million are expected to be urban.  In order to combat the potential for the heat island effect in the MENA region, communities can utilize green roofs. 

The vegetative surfaces of green roofs utilize a relatively large proportion of the absorbed radiation in the evapo-transpiration process and then release water vapor into the air which helps to cool air temperatures.  Additionally, the shade provided by trees and other shrubbery greatly helps to reduce the rooftop temperatures and the overall heat island effect. 

Roof Lifespan

Rooftop vegetation moderates the factors that accelerate a rooftops breakdown such as extreme temperatures, UV radiation, and cold winds, thus dramatically expanding the life of a roof.  According to a study in Germany, a vegetated roof on average can be expected to prolong the service life of a conventional roof by at least 20 years. The result of this is not only cost savings to the building’s owner but also a reduction of landfill wastes. 

Habitats for Species

One of the more altruistic aspects of green roofs is the creation of wildlife habitats. Green roofs can provide habitat (food, shelter, water and breeding grounds) for many different species. Because of their high density, cities severely restrict green space and threaten or destroy habitats so the creation of such green space assumes particular importance in these areas.  Urban habitats are often seen as too degraded and depauperate to support biodiversity. 

Various recent studies in Europe have indicated that green roofs in large cities have high potential as habitat for species negatively impacted by land-use changes. For example, in Basel, Switzerland, surveys of birds, spiders and beetles on green roofs found high diversity levels for all groups, including many species considered rare or threatened.

For modern Middle Eastern citiies like Dubai, Jeddah, Cairo, Beirut and Tehran, creation of habitats for species could be very valuable.  Across the MENA region natural habitats are few and far, and green roofs can provide living space for plants and animals, especially for species such as invertebrates and birds. 

Aesthetic Value

Green roofs have the ability to significantly improve the beauty of buildings, the visual and environmental diversity which can have positive impacts psychological well-being. Studies across several countries have all shown the correlation between daily contact with nature and human well-being. In fact, the results of a large survey in the Netherlands showed that the amount of green space in the residential environment was positively related to the health condition people said they experienced in their daily life.

When people have contact with green space research has indicated a positive effect in levels of stress, health levels due to green space encouraging a higher level of use of the outdoor spaces, and mental well-being due to positive psychological effects plants and nature has on humans.

Current Scenario

While green roofs in Northern Scandinavia have been around for centuries, in North America green roofs are still a relatively new technology. In Europe, these technologies have become very well established mainly due to governments and legislatives financial support.  This support has led to the creation of a vibrant, multi-million dollar market for green roof products and services in Germany, France, Austria and Switzerland among others.

Currently, implementation of green roofs is rare in the MENA region.  However, there is a definite market potential as the benefits of green roofs address many of the major environmental concerns of this area.  Furthermore, the concrete architecture in the Middle East is ideal for a green roof implementation.  The structural soundness of concrete buildings has the potential to support the weight load of both intensive and extensive roofs. The swift progress of green buildings industry in the Middle East  promises a deeper penetration of green roofs in domestic as well as commercial constructions in the years to come.

However, one issue that may surface is that roofs are often fully accessible and are often used to dry laundry or to hold social events like weddings and other celebrations.  This may pose an issue for home owners if their green roof takes up too much of their roof to perform their daily functions.  An intensive roof may be more suitable for homeowners in this region as they lend well to daily visits and offer space to hold social functions.

Conclusion

Due to their extensive range of environmental and economic benefits, particularly their insulation and cooling properties, ability to significantly reduce rainwater runoff and urban heat island effect, as well as improve air quality and their value in promoting biodiversity and habitat in urban areas, green roofs have become important elements of sustainable and green construction in many countries.  While the green roof industry is growing in popularity, the industry is still young with many areas needing advancement.

The major barriers to green roof expansion in the Middle East include a lack of governmental support, high installation costs, lack of awareness and education about green roofs, and limited data quantifying green roof benefits.  However, with proper support these barriers can be easily overcome through research and innovation in design by the green roof industry. 

 

References

  1. After the Storm". (2013). 2013, from http://water.epa.gov/action/weatherchannel/stormwater.cfm#what
  2. Akbari, H. (2005). Energy Saving Potentials and Air Quality Benefits of Urban Heat Island Mitigation. 1-19. http://www.osti.gov/scitech/servlets/purl/860475
  3. Beattie, D., Berghage, R., Jarrett, A., O’Connor, T., Razaei, F., & Thuring, C. (2009). Green Roofs for Stormwater Runoff Control (pp. 81). National Risk Management Research Laboratory Office Of Research And Development: EPA.
  4. Bryden, J., Riahi, L., & Zissler, R. (2013). MENA Renewables Status Report. In L. Mastny (Ed.), (pp. 21). REN21 Secretariat, Paris, France.
  5. Colla, S. R., Packer, L., & Willis, E. (2009). Can green roofs provide habitat for urban bees (Hymenoptera: Apidae)? . Cities and the Environment 2(1), 1-12. http://digitalcommons.lmu.edu/cgi/viewcontent.cgi?article=1017&context=cate
  6. Dinsdale, S., Pearen, B., & Wilson, C. (2006). Feasibility Study for Green Roof Application on Queen’s University Campus: Queens University.
  7. Dunnett, N. (2006). Green Roofs For Biodiversity: Reconciling Aesthetics With Ecology. Paper presented at the Fourth Annual Greening Rooftops for Sustainable Communities Conference, Boston.
  8. Green Roof Benefits. (2013).   Retrieved 12/9/2013, from http://www.greenroofs.org/index.php/about/greenroofbenefits
  9. Hermy, M., Mentens, J., & Raes, D. (2006). Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landscape and Urban Planning, 77, 217–226. Retrieved from www.sciencedirect.com website: http://www.floradak.be/downloads/eng.pdf
  10. The Future of Green Roofs.   Retrieved 12/18/2013, from http://www.hrt.msu.edu/greenroof/future/index.html
  11. The social role of green space – health, education and enjoyment of life. (2005).   Retrieved 12/18/2013, from http://www.thesteelvalleyproject.info/green/intro/people-2.htm#well
  12. Urban Challenges in the MENA Region. (2013).   Retrieved 12/14/2013, from http://goo.gl/IT8rWo 
  13. What Is an Urban Heat Island? (2013).   Retrieved 12/14/2013, from http://www.epa.gov/hiri/about/index.htm

Republished by Blog Post Promoter

Energy Management in the Middle East

Managing and reducing energy consumption not only saves money but also helps in mitigating climate change and enhancing corporate reputation. The primary objective of energy management is to achieve and maintain optimum energy procurement and utilisation, throughout the organisation which may help in minimizing energy costs and mitigating environmental effects. Infact, energy management is widely acknowledged as the best solution for direct and immediate reduction of energy consumption.

Importance of Energy Management

Energy should be regarded as a business cost, like raw material or labour. Companies can achieve substantial reduction in energy bills by implementing simple housekeeping measures. Reduction and control of energy usage is vital for an organization as it:

  • Reduces costs: Reducing cost is the most compelling reason for saving energy. Most organisations can save up to 20% on their fuel cost by managing their energy use;
  • Reduces carbon emissions: Reducing energy consumption also reduces carbon emissions and adverse environmental effects. Reducing your organisation’s carbon footprint helps build a ‘green’ image thereby generating good business opportunities; and
  • Reduce risk: Reducing energy use helps reduce risk of energy price fluctuations and supply shortages.

Regulatory requirements aiming to reduce carbon emissions and energy use require accurate energy data collection and effective management systems. Good energy management practices are compliant with these requirements and help fulfil regulatory obligations. Businesses worldwide are showing interest in appointment of a formal/informal energy manager to coordinate energy management activities. The main task of an energy manager is to set up a system to collect, analyse and report on energy consumption and costs which may involve reading electricity meters regularly and analysis of utility bills.

Carbon emissions from energy use dominate the total greenhouse gas emissions of most organisations. Sound energy management is rapidly emerging as an integral part of carbon management which in turn helps organisations in effective overall environmental management. In addition to financial benefits, energy management has other significant advantages for an organisation such as:

  • Organisations achieve stronger market position by demonstrating ‘green’ credentials. Energy management improves competitive advantage as most consumers prefer to source from socially responsible businesses;
  • Organisations adopting energy management systems can influence supply chains by preferring suppliers who adopt environment management practices; and
  • Energy management creates a better workplace environment for employees by improving working conditions.

Energy Management in the Middle East

In recent years, energy consumption in the Middle East is rising exponentially due to rapid industrialization and high population growth rate. Infact, the level of primary energy consumption in MENA region is one of the highest worldwide.  However, the efficiency of energy production and consumption patterns in the region requires improvement. Though the per capita energy consumption in the GCC sub-region are among the world’s top list, more than 40 percent of the Arab population in rural and urban poor areas do not have adequate access to energy services.

The Middle East is making a steady change towards energy efficiency and alternative sources of energy. Several declarations have been issued in recent years emphasizing concerns and commitment of regional powers to achieve sustainable development. Energy Strategy 2030 introduced by Dubai aims to reduce energy demand and carbon dioxide emissions by 30% by the year 2030 through secure energy supply and efficient energy use while meeting environmental and sustainability objectives. Simalarly Saudi Arabia and Qatar are seriously pursuing the use of alternative energy in power generation. This is an attractive driver for businesses to adopt solutions that reduce overall energy consumption. 

Considering the rapid rise in power demand in the region, governments are now looking to diversify their energy mix from their primary energy source to a greater reliance on renewable energy. Middle East energy efficiency ranking is expected to get a major boost due to the development of large renewable energy projects in UAE, Saudi Arabia, Jordan etc. Balanced approaches are being employed to drive feasible clean energy projects while developing the regulatory framework and adaptation of energy efficient technologies.

Many businesses in the Middle East have set dynamic strategic direction to achieve immediate reduction in energy consumption. The trend towards energy efficiency will only continue to grow to sustain this demand. With increasing environmental awareness, there is significant room for growth and leadership within the Middle East for the adoption of energy optimisation, introduction of specialised energy-saving systems and implementation of sustainable energy technologies.

Republished by Blog Post Promoter

Overview of Composting Methods

The composting process is a complex interaction between the waste and the microorganisms within the waste. The microorganisms that carry out this process fall into three groups: bacteria, fungi, and actinomycetes. Actinomycetes are a form of fungi-like bacteria that break down organic matter. The first stage of the biological activity is the consumption of easily available sugars by bacteria, which causes a fast rise in temperature. The second stage involves bacteria and actinomycetes that cause cellulose breakdown. The last stage is concerned with the breakdown of the tougher lignins by fungi.

Types of Composting

The methodology of composting can be categorized into three major segments—anaerobic composting, aerobic composting, and vermicomposting.

In anaerobic composting, the organic matter is decomposed in the absence of air. Organic matter may be collected in pits and covered with a thick layer of soil and left undisturbed six to eight months. The compost so formed may not be completely converted and may include aggregated masses.

Aerobic composting is the process by which organic wastes are converted into compost or manure in presence of air and can be of different types. The most common is the Heap Method, where organic matter needs to be divided into three different types and to be placed in a heap one over the other, covered by a thin layer of soil or dry leaves. This heap needs to be mixed every week, and it takes about three weeks for conversion to take place.

The process is same in the Pit Method, but carried out specially constructed pits. Mixing has to be done every 15 days, and there is no fixed time in which the compost may be ready. Berkley Method uses a labor-intensive technique and has precise requirements of the material to be composted. Easily biodegradable materials, such as grass, vegetable matter, etc., are mixed with animal matter in the ratio of 2:1. Compost is usually ready in 15 days.

Vermicomposting involves use of earthworms as natural and versatile bioreactors for the process of conversion. It is carried out in specially designed pits where earthworm culture also needs to be done. Vermicomposting is a precision-based option and requires overseeing of work by an expert. It is also a more expensive option (O&M costs are high).

However, unlike the above two options, it is a completely odorless process making it a preferred solution in residential areas. It also has an extremely high rate of conversion, so quality of the end product is very high with rich macro and micronutrients. The end product also has the advantage that it can be dried and stored safely for a longer period of time.

 

Republished by Blog Post Promoter

Preserving Biodiversity in Jordan

Jordan is situated at the center of unique biota, representing the biodiversity of dry lands. The natural ecosystems in Jordan support human activities in agriculture, forestry, animal husbandry, tourism, traditional and pharmaceutical health products, traditional medicine and many others. These ecosystems are also important for their intrinsic value, and for protection of overall environmental quality.

The Levant states in general, and Jordan in particular, went through changes during the past two centuries from various anthropogenic activities. These changes are threatening the natural ecosystems, which have been destroyed to make way for agricultural, industrial, or housing developments. Species biodiversity have been severely affected, with many facing extinction. Rare and endemic plant and animals are endangered.

Biodiversity in Jordan

Despite its relatively small size, Jordan is highly rich in biodiversity. The country is divided into four different bio-geographical zones – the Mediterranean, Irano -Turanian, saharo-Arabian and Sudania. These zones are key elements in supporting biodiversity, containing three major ecosystems – terrestrial, marine, and wetland.

Biodiversity in Jordan has been seriously threatened in recent years. Natural areas and wildlife has been severely affected due to rapid urban growth resulting from population growth, large-scale migration and rapid industrial expansion has led to depletion of natural ecosystems.  Agriculture, animal-grazing, construction and other human activities has led to soil erosion, desertification and fragmentation of the land and reduction or extinction of wildlife. Furthermore, the increasing stress on limited water supplies has led to overexploitation of water resources and a decline in its quality and general decline in biological systems.

The agricultural expansion has led to ecological changes in two ways: decrease in population of some species due to alteration of their natural habitat, and over-exploitation of water resources. For some species, the lack of water has forced the animals to move or die, although for others it has increased their population. Rampant use of pesticides and chemical fertilizers has contaminated soil and water resources while reckless use of heavy agricultural machinery on marginal arid lands has encouraged soil erosion.

Overgrazing is widely recognized as harmful to ecosystems as it may lead to desertification, which increases atmospheric dust; such dust creates a health problem for both humans and wildlife. Furthermore, overgrazing is harmful for soil microorganisms on which the health of the entire ecosystem depends upon. Desertification and deforestation causes the land to deteriorate rapidly. Although Jordan is committed to the Convention on International Trade in Endangered Species (CITES), illegal hunting and trapping is still common which is threatening a host of wildlife species. Traffic and vehicular movement is increasing rapidly in Jordan which is also reading to soil erosion and death of animals.

Roadmap for Biodiversity Conservation

Jordan is working toward more profound strategic policies and actions to meet the requirements of the Convention on Biological Diversity. At the national level, the goal is to raise public awareness about nature as related to the conservation of biodiversity, and to direct national concern in different sectors about the conservation and management of Jordan’s natural habitat in a sustainable way. Decision makers in Jordan should be more aware of the threats facing biological diversity and the degree of its deterioration.

An important development is a multidisciplinary approach that uses geographic information system (GIS) analysis. The plan should involve many stakeholders, including the government, specialized nongovernmental organizations, local communities, and representatives research initiations and universities. As a response to the urgent need for conservation of biodiversity in Jordan, I suggest the following solutions:

  • Rehabilitation of damaged ecosystems in order to promote biodiversity and solving causes of poverty and unemployment – Poverty is both a cause and a consequence of biodiversity degradation: poor people are forced to put urgent needs before the long-term quality of the biodiversity.
  • Designing water supply models and monitoring water quantity and quality for plant and animal biodiversity. To reduce pressure from the growing urban demand, a long-term water solution will require fundamental changes in national water policy and adoption of a large-scale management by the Jordanian government.
  • Coordinating implementation of the plan between the local communities, government agencies and the private sector. It is important to involve local communities in decision making regarding hunting, water use and grazing.
  • Implementation of comprehensive plan, guidelines and national and international policies for sustainable development of arid areas, preservation of biodiversity, and adoption of strategies to prevent harmful practices such as overgrazing or over extraction of water.
  • Establishment of separated areas for biodiversity conservation, off-limits to grazing and other activities, and the monitoring of biodiversity in those areas.
  • Addressing the problems faced by farmers, such as crop selection. There is currently a lack of information on alternative crops that are tolerant to water stress and water-saving irrigation techniques. Livestock owners need services such as grazing reserves and infrastructure for marketing milk and other products.
  • Land use plans are essential for conservation of biodiversity of Jordan, there is an urgent need to encourage shifting the rural pressure to none fertile land, also new trends should be adopted to minimize reduction in forested land and reforest cleared areas.
  • Establishment of more natural reserves to give Jordanians beautiful places to visit and preserve Jordan’s beauty for future generations. A network of protected areas for ecosystems species and genetic resources preservation must also be established.
  • Introduction of sustainable systems for farming, include disease control and crops that help to regenerate soils. Appropriate support and encouragement to farmers to adopt new policies and new practices, such as water-saving irrigation techniques and plantings of sustainable crops such as date palms or honey production.

Jordan is committed to study its biodiversity to conserve its natural resources and ensure the sustainable use of its resources. It is also hoped that Jordan Biodiversity study will be the basis for cross-cultural cooperation and exchange, resulting in scientific integration between Jordan and the rest of the World. The result of applying there principle across several areas will be a visible recovery and improvement of Jordan’s ecosystem. Additionally, new jobs will be created as part of the conservation efforts.

A biological survey is necessary to monitor changes in the Jordanian ecosystems.  National guidance is required, as well as national and international funding for these activities. Appropriate development organizations should encourage research in ethno-biology to identify plant and animal species used by local people, which will prevent species from being irretrievably lost. 

As human induced environmental change continues, society is facing an increasing array of pressing environmental challenges. Answers to these complex challenges must be informed by coordinated, long-term interdisciplinary research. The LTER sites (Long term ecological research sites) are poised to address a set of new initiatives to be pursued in response to these environmental challenges.

Considering that one third of the land mass surface of the earth is classified as arid land, knowledge of the composition of their bio-communities and of how these communities are affected by landscape sustainability measures will find wider application in landscape sustainability programs and contribute to future global policies. Government and specialized environmental NGO involvement is essential for the success of these measures.

Republished by Blog Post Promoter

Energy Efficiency Perspectives for MENA

MENA countries are facing an increasing challenge in reducing greenhouse gas emissions from the energy sector. Qatar, Kuwait, UAE, Bahrain and Saudi Arabia figure among the world’s top-10 per capita carbon emitters. In case of business-as-usual scenario, GHGs emissions from the energy sector will continue to rise throughout the region. According to a recent report by International Energy Agency (IEA), energy intensity demand in MENA is mainly driven by population and economic growth and reliance of heavy industries on generous energy subsidy. It is projected that primary energy demand in the region will be doubled by 2030 and the region’s share in global oil production will increase from 35% now to 44% in 2030. MENA countries together have 840 billion barrels of proven crude oil reserves (57% of world’s oil) and 80 trillion cubic meters of proven gas reserves (41% of world’s natural gas). Population growth and economic expansion have increased energy demand significantly over the past decade; between 2000 and 2011, domestic consumption almost doubled in Oman and tripled in Qatar. 

Growth in energy demand is driven across the end-use sectors: in the residential sector through increased use of air conditioning and cooling units; in the transportation sector through rising vehicle ownership; and in the industrial sector from greater industrial activity, hydrocarbon production and refining, and energy-intensive desalination plants. One of the central reasons for increased GHG emissions from MENA energy sector is the low efficiency of energy resource consumption. The energy intensity (energy use per unit of GDP) is very high which drives up atmospheric GHG emissions. However it is important to highlight the difference among MENA countries regarding carbon intensity levels where GCC nations are rank higher compared to energy-importing MENA nations like Jordan, Egypt, Lebanon etc. All these facts stress the urgent need to increase energy efficiency in order to precipitate decline in energy intensity and thus reduce GHG emissions.

There is a wide array of measures on both supply side and demand side, to boost MENA energy efficiency levels by promoting stringent environmental, energy saving policies to combat climate change.  Formal energy efficiency programs and voluntary measures combined will help the region to maintain its economic strength. Energy conservation programs in residential, commercial and industrial sectors can significantly reduce carbon emissions and augment energy supply in the MENA region. A robust regulatory and institutionalized framework can help to achieve a reduction in GHG emissions through a bundle of non-market based and market-based instruments.

Also known as command and control instruments (CAC), these regulations focus on preventing environmental externalities which is achieved through auditing and monitoring/inspection program and performance-oriented regulations to limit air pollutants. Here are some examples of command and control instruments:

  • Awareness and information campaigns
  • Labeling & training programs to engage end-users to reduce their emissions voluntarily.
  • Information-based programs to spread awareness and encourage efficient consumption patterns.
  • Establishing minimum energy performance standards for appliances, equipment and vehicles as a complement to labelling methods.
  • Building codes and insulation to save the energy loss.
  • Smart reductions such as smart meters, energy audit, energy saving plans etc.
  • Phasing out of inefficient lighting like incandescent bulbs and CFLs.

Market-based instruments are defined as a policy instrument that use market, price to provide incentives for polluters to reduce or eliminate their emissions (negative environmental externality). Building regional cap, carbon trading platform and grants/rebates/tax exemption/rewards to encourage efficiency measures are good examples of market-based incentive program that may be implemented in the Middle East.

Conclusion

On account of its huge fossil fuel reserves, MENA has a great role to play in the international efforts towards green economy and sustainable development. Recently, the GCC has embarked on ambitious policies and projects across different sectors which may, explicitly or implicitly, mitigate impacts of GHG on their economies and development priorities. 

Adoption of energy efficiency-based energy policies in commercial, industrial and domestic sectors is integral to climate change mitigation in the MENA region. It is imperative on MENA governments to create an environment that rewards energy-efficient choices and encourages innovation for all kinds of energy users. The Middle East electricity market is growing at a rapid pace due to higher consumption rates in the domestic, commercial and industrial sectors which underlines the need for a successful implementation strategy that can bridge the gap between the current supply and increasing demand.

Republished by Blog Post Promoter

On Recycling of Fluorescent Bulbs

All fluorescent bulbs contain mercury. In fact, the standard fluorescent bulb has about 20 milligrams of mercury. It is clear that these lamps must be managed properly to protect human health and the environment. The risk of leaving mercury deposits in landfill is high; therefore, recycling seems the most conscientious and environmentally safe recourse. A national fluorescent bulb recycling strategy will not only help in environment protection but can also promote new business growth and job opportunities.

An analysis of the lighting industry shows a trend shifting from the usage of incandescent bulbs to fluorescent bulbs. Incandescent bulbs use more fossil fuel energy, are more costly and are less effective than fluorescent bulbs in the amount of artificial light they produce as fluorescents produce more lumens than incandescents. 

Usage of fluorescent bulbs, however, is not entirely without risk because they contain mercury, a chemical compound that can have debilitating effects on humans upon prolonged exposure.Because of its unique properties, the most effective way to dispose of mercury-bearing wastes is through recycling.

Continued illegal disposal of mercury wastes continues, resulting in unnecessary exposure to people and the planet; however, a grass roots movement to protect the environment has created momentum to generate a national law prohibiting the disposal of fluorescent bulbs in landfills.

en.lighten Initiative and Middle East

The UNEP/GEF en.lighten initiative was launched in September 2009 as a globally coordinated effort to accelerate the transition to efficient lighting and mitigate climate change, The objective of the initiative is to calculate the potential electricity savings, CO2 emission reductions and the economic benefits that could be realized from phasing out inefficient lighting and replacing them with compact fluorescent lamps (CFLs). Around 100 countries were analyzed globally, with 19 hailing from the MENA region.

Several countries in the Middle East are already taking measures to promote efficient lighting. Six countries (Egypt, Lebanon, Iran, Turkey, Morocco, and UAE) have already distributed more than 100 million CFLs in total. Countries like Egypt, Tunisia, Morocco, and Lebanon have announced ban on the sale of all incandescent bulbs by specific target years. Likewise Qatar has already announced plans to phase out use of incandescent bulbs. However, the promotion of CFLs demands a viable strategy to counter broken and disused fluorescent bulbs in order to prevent its harmful effect on the environment and public health.

Recycling Strategy

Proper disposal of mercury-contained fluorescent lamps is essential to prevent release of toxic materials into the environment. The manufacturers of fluorescent tubes are responsible for the proper labeling of mercury-containing lamps to alert customers to their hazards. With the labeling of the symbol “Hg” on each lamp, individuals should recognize these products contain mercury. In United States, fluorescent bulbs and other types of energy-efficient lighting as well as nickel-cadmium batteries, pesticides and thermostats are regulated under the Universal Waste Rule (UWR).

The UWR allows businesses, government agencies and other generators an opportunity to recycle bulbs and other types of universal waste at the end of life rather than manifesting and disposing of them as a hazardous waste. This can result in significant savings for the business or property owner. Recycling also helps protect our environment from potentially toxic materials.

Many governments and retailers are offering CFL recycling schemes that safely handle the mercury. Private industry has to partner with government to develop a plan to eliminate fluorescent bulbs in landfills. To further encourage recycling, the cost of recycling should be initially absorbed by the manufacturers, who in turn, may pass the costs to the consumers. The consumer can then return the spent bulbs to their purchase point of origin. This has worked in other recycling sectors, and it can also work with mercury-containing devices such as fluorescent lamps.

Republished by Blog Post Promoter

Biogas Feedstock in the Middle East

Anaerobic digestion (or biogas technology) is the natural biological process which stabilizes organic waste in the absence of air and transforms it into biofertilizer and biogas. It is a reliable technology for the treatment of wet, organic waste.  Organic waste from various sources is biochemically degraded in highly controlled, oxygen-free conditions circumstances resulting in the production of biogas which can be used to produce both electricity and heat. Almost any organic material can be processed with anaerobic digestion. 

A wide range of organic wastes are available in the Middle East for anaerobic digestion. In addition to MSW, large quantity of waste, in both solid and liquid forms, is generated by the industrial sector like sugar mills, agro=processing, food processing, leather, pharmaceuticals and paper and pulp industries. Poultry waste has the highest biogas potential per ton of waste, however livestock wastes have the greatest potential for energy generation in the agricultural sector.

Here is the list of potential feedstock for biogas production in the Middle East.

Agricultural Feedstock

  • Animal manure
  • Energy crops
  • Algal biomass
  • Crop residues

Community-Based Feedstock

  • Organic fraction of MSW (OFMSW)
  • Sewage sludge
  • Grass clippings/garden waste
  • Food residuals
  • Institutional wastes etc.

Industrial Feedstock

  • Food/beverage processing
  • Dairy
  • Starch industry
  • Sugar industry
  • Pharmaceutical industry
  • Cosmetic industry
  • Biochemical industry
  • Pulp and paper
  • Slaughterhouse/rendering plant etc.

Anaerobic digestion is particularly suited to wet organic material and is commonly used for effluent and sewage treatment. Almost any organic material can be processed with anaerobic digestion. This includes biodegradable waste materials such as waste paper, grass clippings, leftover food, sewage and animal waste. The exception to this is woody wastes that are largely unaffected by digestion as most anaerobic microorganisms are unable to degrade lignin. 

Anaerobic digesters can also be fed with specially grown energy crops such as silage for dedicated biogas production. A wide range of crops, especially C-4 plants, demonstrate good biogas potentials. Corn is one of the most popular co-substrate in Germany while Sudan grass is grown as an energy crop for co-digestion in Austria. Crops like maize, sunflower, grass, beets etc., are finding increasing use in agricultural digesters as co-substrates as well as single substrate.

A wide range of organic substances are anaerobically easily degradable without major pretreatment. Among these are leachates, slops, sludges, oils, fats or whey. Some wastes can form inhibiting metabolites (e.g.NH3) during anaerobic digestion which require higher dilutions with substrates like manure or sewage sludge. A number of other waste materials often require pre-treatment steps (e.g. source separated municipal bio-waste, food leftovers, expired food, market wastes and crop residues).

Republished by Blog Post Promoter

Green Buildings Certification in MENA – Issues and Challenges

Green building rating systems are increasingly gaining attention in the building industry in the MENA region. During the last 15 years, there has been a regional trend in developing and applying green building ratings systems. In several countries such systems have been developed in an attempt to follow the international green movement. For example, the Pearl Building Rating System (PBRS) was founded in UAE in 2007, the Green Pyramid (GPRS) and ARZ Building Rating System in Egypt and Lebanon respectively were founded in 2008, the Edama was proposed in Jordan in 2009 and Qatar Sustainability Assessment System (QSAS) was founded in 2010. 

A new study compared four regional rating systems in the Middle East, in addition to LEED and BREEAM. The study found that the problem with most emerging rating systems is that they imitate the LEED or BREEAM rating systems and are not enough adapted to local environmental, cultural, historical, societal and economic context. Thus certification systems must be adapted to meet the needs of the Middle East regional climate, social, environmental and economic conditions.

The study, conducted in 2013, compared four rating systems (GPRS, SI 5281, QSAS and PBRS) and a cross analysis study was used to answer questions about the strength and weakness of the systems. The four systems use score point system for assessment. The four tools provide programs involving the building life cycle process – pre-design, design and post-design (occupation). There are many common criteria and categories between the four examined rating systems; such as limiting the consumption of energy and water in the building, improving the environmental quality in both indoor and outdoor, resources and material conservation, service quality, and site strategies. The four rating systems operate from an ecological foot print minimisation paradigm. At the same time, each rating system focuses on certain aspects more than the other ones according to the country’s local context. Surprisingly, there is no agreement on weighing the different environmental criteria.

Problems of Rating Systems

The study found that the examined rating systems are proposing theoretical models that needs to move to effective market implementation politically (government) and economically (NGOs & private sector). The rating systems require more adaptation to local and regional context. Rating systems should differentiate themselves from well-established rating systems.  For example, the study believes that water scarcity should be the most important category together with human wellbeing. Already LEED and BREEAM programs are considered the most fairly comprehensive in scope – from registration to calculation to building certification. In the case of the four rating systems, the initiation approaches were bottom down and not bottom up approaches.

Therefore, the uptake and market penetration is slow compared to LEED or BREEAM. In the four countries, there is no encouragement/engagement in the form of working out incentives or law enforcement to apply the four rating systems except for PBRS. In fact, each country in the region is looking to achieve those criteria individually. The entry of the LEED and BREEAM rating system into the Middle East property market coincided with increasing demand for regional and local ratings systems. As a result, different systems were developed under serious time pressure in the last ten years. The four compared systems are based on American and British standard. In the same time, there are currently no standardisation efforts working at local level to quantify and assess sustainability.

Towards Harmonised Systems

Green Building Councils in the Middle East will have a long way; they have to manage to position themselves as leaders promoting green buildings in the countries where they operate. By comparing and evaluating the four rating systems lesson could be learned and problem could be avoided. Therefore, the study author believes that a harmonised system within the Middle East would have distinctly better chances if the following issues are addressed:

Institutional Setting

Since the oil embargo of 1973, Western countries developed local codes and standards, which are revised annually, for the built environment. Those codes correspond to their context and are strongly linked to practice and buildings industry. However, in the four examined countries, the (b) local codes and standards are still not mature when compared to American or British ones. So there is a regulation problem on the institutional level. More importantly, (b) energy and water are heavily subsidized in most of the four countries.The comparison revealed that the certification rates are low and the feesstructure is very high (registration, certification, auditing).

Thus the whole political regulation landscape regarding resources efficiency is contradicting with the rating systems scope and objective. Therefore, it is important to address the (a) efficiency regulations and (b) subsidies policies on the institutional level and avoid the dependence on Western standards, codes and rating systems. This should be done through facilitating the adjustment and upgrading for the specification of environmental assessment factors in a dynamic, flexible and simple way.

Scientific Rigour and Priorities

Developing an assessment framework should be based on in-situ building performance research and technical knowledge. Technical rigour is very important in this case, for example setting benchmarks and measuring the performance. Furthermore, the investigated rating systems are located in hot climates, with scarce water resources which require a different approach and credits focus. Issues like solar protection, water conservation, life style, solar cooling and urban planning should be more strongly addressed in future developments. This includes advancing environmental footprint issues, like climate change.

Regionalisation

The assessment framework should suite the local context of each country in the Middle East, depending on its culture, issues, stakeholders, practices and institutions. Surprisingly, SI 5281 is the only rating system that was written in a native language, thus it is essential for each country, to design its own indicators to serve its goals in local language. This includes the development of local criteria to quantify the social part of sustainability that includes tradition and culture.

Providing a Platform

Multi-stakeholders should participate in developing rating systems, since they require participative and collaborative work process. Experts, designers, elected officials, working group, agency players, and others should be introduced as key participants in this process. The building industry should be encouraged to get into sustainable track to achieve a real transformation, regarding water and energy. There is a need to link those rating systems to grass root initiatives rather than developing them within academia or elite practicing companies.

According to the study, the examined certification systems need strong adaptation to meet the needs of the Middle East regional climate, social, cultural, environmental and economic conditions. Also there must be a harmonisation effort between regional rating systems aiming to develop and implement a common, transparent regional building assessment methodology. Otherwise, there will be a proliferation of immature systems without accumulated and unifying experience. 

Conclusion

There is still a long way before those examined systems examined become mature and widely usable.  Despite that the development of the examined rating systems is intended to facilitate the assessment of sustainable design in MENA; they fail to suit the local context culture issues, resources, priorities, practices and economic challenges. The GPRS, QSAS and PBRS systems neglect the interpretation of essential local sustainability measurements in their assessment set and normative standards. The study concludes that the existing rating system needs to increase the technical rigor and to put more weight on the most important categories, mainly water, IEQ, pollution and energy. The study suggests a number of recommendations to develop a harmonised green building assessment system in the MENA region. The usefulness of rating systems in the future depends on their flexibility and ability to measure the merits of buildings.

Note: The original version of the article can be viewed at this link.

Republished by Blog Post Promoter

Concept of Energy Management

Energy management is the best solution for direct and immediate reduction of energy consumption. For the last few decades we have been exploring various alternatives to conventional sources of energy like solar, wind and biomass energy. However, due attention must also be given to best utilization of energy, improvement in energy efficiencies and optimum management of energy resources. Infact, energy management deals with already existing sources and actual consumption. It includes planning and operation of energy-related production and consumption units.

The main objectives of energy management are resource conservation, climate protection and cost savings. The central task of energy management is to reduce costs for the provision of energy in buildings and facilities without compromising work processes. The simplest way to introduce energy management is the effective use of energy to maximize profit by minimizing costs. Energy management could save up to 70% of the energy consumption in a typical building or plant.

The typical energy saving for any plant or building, using basic energy management principles, could be 10-15% of the total consumption. This percentage may rose to 25-35% by a medium scale energy management program (1 – 3 year). For achieving higher degree of savings, a long-term energy management program, spread over a period of three years or more, is required which will involve a certain capital investment. The major elements of an energy management program are:

  • Set your goal: how much energy reduction do you want to achieve
  • Know your numbers: how much do you consume
  • Define major consumption units and try to reduce consumption
  • Continuous review and management

Basic Energy Savings Tips for Industries

  • Avoid extra-load in peak time. It is way more costly.
  • Turn off machines during shut downs, inspections, maintenance and when not in use.
  • Regular and efficient maintenance of machines and motors prevents extra loads and saves 15 % of extra consumption and prevents break downs as well.
  • Attend air and steam leakages. These leakages are extra load on boilers, compressors etc.
  • Replacement of incandescent lamps with compact fluorescent lights (CFLs) or LEDs can save significant amount of energy.

Our case study for energy management program was developed and implemented in textile industry which is second highest industrial energy consumer in Egypt. The program, involving minimum investment, was implemented over a period of one year and proved to be a major success. Direct energy savings were approximately one-fourth of the total consumption. More than one million Egyptian pounds were saved from direct costs, in addition to considerable indirect savings.

Conclusions

Energy management is the process of monitoring, controlling, and conserving energy in a building or an industry. Energy management is the key to saving energy in your organization. Energy management is an important energy resource that can help meet future energy needs while the nation concurrently develops new and low-carbon energy sources

Republished by Blog Post Promoter

Women Entrepreneurship in MENA: An Analysis

Women entrepreneurship is an important unexploited source of economic growth in almost all parts of the world. Unfortunately women in MENA have the lowest rates of Total Entrepreneurial Activity (TEA) at merely 4% of the population. The highest rates, globally, are in sub-Saharan Africa, at 27%. Latin American and Caribbean economies also show high levels (15 percent). In just seven economies (Panama, Thailand, Ghana, Ecuador, Nigeria, Mexico, and Uganda), women had equal or slightly higher levels of entrepreneurship than men. For the rest, women represented a smaller share of the entrepreneur population.

Current Situation

The recent interest in women entrepreneurship in the Middle East and North Africa region has spurred a number of studies that aim to explain MENA’s very low female participation in the workforce and political life, at  both the inter-regional and the intra-regional scales and  to identify the challenges facing women entrepreneurs. The comparative data shows that the MENA region has made strong gains in human development: Literacy increased to 69 percent, average schooling (for those above 15)  rose  to  5.2  years,  child mortality  rates  plunged  to  around  46  per  thousand  births,  and  life  expectancy  has climbed to  reach  68  years.”. However the level of unemployment among women remains high throughout the region. Of course, there is enough evidence to show that culture and social norms — not religion since countries with the same religion clearly show different rates — have a great deal to do with it.

The MENA region, more than other regions, faces specific barriers for women to interact in the public sphere and to access vital resources. This poses constraints that need to be addressed with specific measure in access to technology, financing and access to information which is a necessity in a globalized world. Some of the main barriers and constraints identified in hampering women entrepreneurs from entering the economic mainstream are as follows:

  • Gender specific barriers: Despite the fact that MENA nations have made considerable efforts to narrow the gender gap, much remains to be done to raise the social welfare of women in the region.
  • Cultural norms.
  • Civil law: Prevalent laws tend to enforce certain customs and social norms and, in doing so, institutionalize and legitimize certain behaviors.
  • Access to financial services and resources.
  • Barriers in the business environment.
  • Lack of research and data to inform an effective advocacy strategy.

Inter-regional Disparities in MENA

The difference of Total Entrepreneurial Activity (TEA) rates among countries in the MENA region is well explained by the heterogeneity and diversity of their historical development, social makeup and system of governance as well as  the  key  indicators  of  human  development  such  as health, education and living  standards.  It is quite difficult to make generalizations across the MENA region as the region  includes super-rich oil economies, a relatively small population and a large expat population such as Kuwait, Libya, Oman, Qatar, Saudi Arabia, and the UAE; mixed oil economies such as Algeria, Iran, Egypt, Tunisia, Yemen and  Syria  and non-oil economies  like  Jordan, Morocco, Palestine, Malta and Cyprus. This further complicates attempts to explain variations in the character and gender aspects of employment and entrepreneurship.

Thus, each country in the Arab world is confronting constraints and barriers to women entrepreneurship in different contexts. The profile of barriers for each nation is shaped by inter-connectedness of intrinsic and extrinsic factors specific to each country. Some studies have attributed MENA’s low rates of female labor force participation in oil-exporting countries of MENA (the Islamic Republic of Iran, Iraq, Kuwait, Saudi Arabia, and the United Arab Emirates) to oil. It has been argued that the economic structure, social norms, and institutional characteristics of oil-rich economies discourage women from formal sector work. Ross (2008) argues that oil production “reduces the number of women in the labor force, which in turn reduces their political influence.” Oil-rich countries tend to have undiversified private sectors characterized by male-dominated employment and large public sectors. Consequently, employment opportunities for women often are highly concentrated in the public sector

Oil is a significant source of income for some MENA countries, especially GCC nations, and has definitely limited the growth of non-oil sectors. Nevertheless, it is notable that many countries in the region are net oil importers but still have rates of female labor force participation as low as those of oil-rich MENA countries. In contrast, oil producers outside MENA such as Norway and the Russian Federation have higher rates of female labor force participation.

Ways to Enhance Female Entrepreneurship

Targeted, coordinated efforts are needed on multiple fronts to increase women’s participation in the economic and political spheres, and these efforts must be specific to country context. These efforts include changes in policies to secure women’s equality under the law, to bridge the remaining gender gaps in health and education, to redress the skills mismatch in the job market, and to promote women’s civic and political participation, and changes in economic policies by adoption of more nuanced labor taxation systems, more targeted social welfare benefits, tax credits, public financed parental leave schemes and promotion, better flex-work arrangements, enhanced access to finance and training for female entrepreneurs.

All these policy options and more can narrow the gap between men and women in economic life, and can trigger a momentum of growth and job creation that can support much higher rates of GDP and ensure prosperity for all.

Furthermore, the economic and political environment arising from the Arab Spring has created an unprecedented window of opportunity for change. Given the growing labor, demographic, and fiscal constraints, and the changing aspirations in the Middle East and North Africa region, policy reforms are urgently needed to boost job creation for all.

 

References:

  • Donna J. Kelley, Candida G. Brush, Patricia G. Greene, Yana Litovsky, GEM 2012 Women's Report
  • Ebba Augustin, Ruby Assad & Dalila Jaziri, 2012, Women Empowerment for Improved Research in Agricultural Development, Innovation and Knowledge Transfer in the West Asia/ North Africa Region, AARINENA Association of Agricultural Research Institutions in the Near East and North Africa 
  • Leyla Sarfaraz, Nezameddin Faghih and Armaghan Asadi Majd 2014, The relationship between women entrepreneurship and gender equality, The Journal of Global Entrepreneurship Research (JGER)
  • Michael L. Ross, 2008, “Oil, Islam, and Women.” American Political Science Review 
  • OECD-MENA Investment Programme, 2013, Gender inequality and entrepreneurship in the Middle East and North Africa : A statistical portrait
  • World Bank, 2007, The Environment for Women’s Entrepreneurship in the Middle East and North Africa Region

Republished by Blog Post Promoter

Use of Sewage Sludge in Cement Industry

The MENA region produces huge quantity of municipal wastewater which represents a serious problem due to its high treatment costs and risk to environment, human health and marine life. The per capita wastewater generation rate in the region is estimated at 80-200 litres per day. Sewage generation across the region is rising by an astonishing rate of 25 percent every year.

Municipal wastewater treatment plants in MENA produce large amounts of sludge whose disposal is a cause of major concern. For example, Kuwait has 6 wastewater treatment plants, with combined capacity of treating 12,000m³ of municipal wastewater per day, which produce around 250 tons of sludge daily. Similarly Tunisia has approximately 125 wastewater treatment plants which generate around 1 million tons of sewage sludge every year. Currently most of the sewage is sent to landfills. Sewage sludge generation is bound to increase at rapid rates in MENA due to increase in number and size of urban habitats and growing industrialization.

Use of Sewage Sludge in Cement Industry

An attractive disposal method for sewage sludge is to use it as alternative fuel source in a cement kiln. The resultant ash is incorporated in the cement matrix. Infact, several European countries, like Germany and Switzerland, have already started adopting this practice for sewage sludge management. Sewage sludge has relatively high net calorific value of 10-20 MJ/kg as well as lower carbon dioxide emissions factor compared to coal when treated in a cement kiln. Use of sludge in cement kilns can also tackle the problem of safe and eco-friendly disposal of sewage sludge. The cement industry accounts for almost 5 percent of anthropogenic CO2 emissions worldwide. Treating municipal wastes in cement kilns can reduce industry’s reliance on fossil fuels and decrease greenhouse gas emissions.

The use of sewage sludge as alternative fuel in clinker production is one of the most sustainable option for sludge waste management. Due to the high temperature in the kiln the organic content of the sewage sludge will be completely destroyed. The sludge minerals will be bound in the clinker after the burning process. The calorific value of sewage sludge depends on the organic content and on the moisture content of the sludge. Dried sewage sludge with high organic content possesses a high calorific value.  Waste coming out of sewage sludge treatment processes has a minor role as raw material substitute, due to their chemical composition.

The dried municipal sewage sludge has organic material content (ca. 40 – 45 wt %), therefore the use of this alternative fuel in clinker production will save fossil CO2 emissions. According to IPCC default of solid biomass fuel, the dried sewage sludge CO2 emission factor is 110 kg CO2/GJ without consideration of biogenic content. The usage of municipal sewage sludge as fuel supports the saving of fossil fuel emission.

Sludge is usually treated before disposal to reduce water content, fermentation propensity and pathogens by making use of treatment processes like thickening, dewatering, stabilisation, disinfection and thermal drying. The sludge may undergo one or several treatments resulting in a dry solid alternative fuel of a low to medium energy content that can be used in cement industry.

Conclusions

The use of sewage sludge as alternative fuel is a common practice in cement plants around the world, Europe in particular. It could be an attractive business proposition for wastewater treatment plant operators and cement industry in the Middle East to work together to tackle the problem of sewage sludge disposal, and high energy requirements and GHGs emissions from the cement industry.

Republished by Blog Post Promoter