Things You Should Know About the Energy Mix in the UK

We take fuel in our home for granted, rarely contemplating how the energy that lights our rooms, charges our smartphones, and heats our dinners arrives at those switches, sockets, and hobs. But with the world facing a climate crisis, the sources of our power are moving from the coal-smoky shadows into the sunlight, and into the centre of politics.

The energy infrastructure in UK is rapidly evolving to use more renewable resources and emit fewer pollutants, a transformation that is impacting every sector of our economy and that some have compared in its scale to the Industrial Revolution that first delivered power to our homes.


Confronting climate change will require we stop taking power from granted and be more aware of the path every kilowatt hour of our electricity took, from a power station or a wind-powered turbine churning in to the North Sea to our lights and devices. And on a more down-to-earth level, you shell out a considerable amount to your energy supplier every year—the average duel fuel household receiving energy from one of the Big Six suppliers paying £1,117 a year—and you might want to know exactly what you’re paying for.

Energy Mix in the UK

The UK meets its energy needs—348 terawatt hours per year in 2017—through a combination of coal, gas, nuclear, solar, water, and wind resources. The percentage of demand met from each resource fluctuates, with windy days seeing a boost to wind power and cold snaps seeing the UK fall back on its coal power stations. You can see a live estimate of the distribution of energy sources on the National Grid Status site.

In the second quarter of 2018, the UK generated 42% of its electricity using natural gas, 31.7% using renewable resources (including solar and wind power), 21.7% using nuclear power, 3% using gas, and just 1.6% using coal—a sharp decline from the 43% of demand that was met using coal just six years ago in 2012.

The exact mixture of energy your supplier is feeding into the grid will vary, with special green energy providers relying exclusively on renewables. Your provider should publish information about their fuel mix on their websites or you can consult this table, breaking down the energy sources of all the UK’s domestic energy suppliers.

From Coal, Sun, and Wind to Electricity

So how does a lump of coal or a ray of sun become the electricity that our lightbulbs, computers, and appliances can use? Let’s take a closer look at electricity generation for the UK’s main fuels.

1. Coal

Pulverised thermal coal is burned in power stations, creating heat that turns water into steam. At high pressures this steam is used to turn turbines connected to electrical generators. The UK has seven active coal-fired power stations, distinguished in the landscape by their mammoth cooling towers. All are slated to close by 2025 as the UK moves decisively away from coal.

2. Gas

The same stuff that runs your boilers and cookers is used to generate electricity, either by being burned similarly to coal to create steam that turns turbines or with a gas turbine, where pressurised gas causes the turbine blades to spin, producing electricity. Voila, volts that can power our gadgets, from the gas that heats our dinners.

3. Nuclear

Heat released by nuclear reactions spins steam turbines, generating electricity. This process is conducted at fifteen reactors at the UK’s seven nuclear power plants.

4. Solar

Solar panels consist of silicon cells, the electrons of which are excited by photons of light delivered by the suns rays, generating electricity. Although the UK is notoriously overcast, as of 2020 we now boast 13.9 GW of solar electricity capacity, both in large solar farms like the 72MW Shotwick Solar Farm in Chester and in panels installed on homes.


5. Wind

Airflow mechanically turns turbines that produce electricity, on both offshore and onshore wind farms. The UK is a global leader in wind power, home to the world’s largest wind farm, the Walney Extension, where 87 190m turbines spread over the area of 20,000 football pitches off the coast of Cumbria generates enough electricity to power 600,000 homes.


6. Natural Gas

Most British homes use two sources of fuel: electricity and natural gas, which powers boilers and cookers. Natural gas is extracted through offshore drilling, delivered to the coast, and is fed into the National Transmission System, which processes gas and transmits it through a series of pipelines to power stations and to gas distribution companies, which route it to your home and hob.

Swapping To An Off-Grid Life

A sustainable, eco-friendly lifestyle is something more people strive for every day. For some, the answer is to give up the ease of municipal life to go off the grid. While this route is certainly far from easy, the rewards of freedom and a more ethical footprint make the entire struggle worth it.

The Freedom an Off-Grid Life Offers

Most people who choose to go off-grid do so in pursuit of a dream or ideal. Moving away from modern conveniences and providing for oneself off the land offers a desirable lifestyle for the people who choose it.

Living sustainably off the grid can provide homesteaders a sense of pride and self-reliance while making a positive difference in the environment around them. Choosing to swap to an off-grid life can be a matter of ethics or self-discovery.

living off the grid

Others choose to forego modern luxuries like municipal electricity and water to free up their time and energy. A self-sustaining homestead can reduce the costs of living to almost nothing, freeing up a homesteader to pursue whatever their heart desires. For these people, the minimalist off-grid lifestyle offers the opportunity to spend their time on more fulfilling activities than a nine-to-five grind.

The Struggle

Of course, a complete overhaul of one’s entire life will necessarily come with a few growing pains. For a new homesteader used to the conveniences of municipal life, it can be easy to forget how many of life’s luxuries one pays for.

After an entire life of paying for air conditioning, for example, a new homesteader may be surprised to find how challenging it can be to cool a home without electricity.

Getting a drink of water becomes a lot harder when you can’t just turn on the tap, as well. What can be done almost unconsciously in seconds on the grid takes forethought and planning off the grid. First, locating a source to get the water from and finding a way to make it usable, a homesteader may even manage to build their own running water system. Transitioning off the grid means getting acquainted with how much goes into daily survival.

Why It’s Worthwhile

Even with all that’s required to build a self-sustaining, off-grid homestead, most new homesteaders agree that it’s worth it. Living off the grid and creating one’s own web of resources brings with it a sense of self-confidence that’s hard to find any other way. Plus, a sustainable homestead reduces the homesteader’s environmental impact, which is a goal worth having.

Off Grid House

The way to a better life is always just outside one’s comfort zone, and swapping to an off-grid life is no exception. Giving up modern conveniences is a shock for nearly all new homesteaders, no matter how prepared they feel at the outset. There’s almost always something to forget after years of being lulled into a sense of ease. But the freedom of designing one’s own life around their unique dreams and priorities is worth every ounce of struggle along the way.

Everything You Should Know About Landfill Gas

Landfill gas is generated during the natural process of bacterial decomposition of organic material contained in municipal solid waste landfills or garbage dumps. The waste is covered and compressed mechanically as well as by the weight of the material that is deposited above. This material prevents oxygen from accessing the waste thus producing ideal conditions for anaerobic microorganism to flourish. This gas builds up and is slowly released into the atmosphere if the landfill site has not been engineered to capture the gas.

The rate of production is affected by waste composition and landfill geometry, which in turn influence the bacterial populations within it, chemical make-up, thermal range of physical conditions and biological ecosystems co-existing simultaneously within most sites. This heterogeneity, together with the frequently unclear nature of the contents, makes landfill gas production more difficult to predict and control.

landfilll gas

Composition of Landfill Gas

Landfill gas is approximately forty to sixty percent methane, with the remainder being mostly carbon dioxide. Landfill gas also contains varying amounts of nitrogen, oxygen, water vapour, hydrogen sulphide, and other contaminants. Most of these other contaminants are known as “non-methane organic compounds” or NMOCs.

Some inorganic contaminants (for example mercury) are also known to be present in landfill gas. There are sometimes also contaminants (for example tritium) found in landfill gas. The non-methane organic compounds usually make up less than one percent of landfill gas.

Hazards of Landfill Gas

This gas starts creating pressure within the surface of earth when no exit route is present. Excessive pressure leads to sudden explosion that can cause serious harm to people living in the surrounding areas. Due to the constant production of landfill gas, the increase in pressure within the landfill (together with differential diffusion) causes the gas’s release into the atmosphere. Such emissions lead to important environmental, hygiene and security problems in the landfill.

Accidents due to landfill gas explosions are not uncommon around the world. For example a mishap took place at Loscoe, England in 1986, where migrating landfill gas, which was allowed to build up, partially destroyed the property. Landfills in the Middle East are notorious for spontaneous fires and toxic emissions. Due to the risk presented by landfill gas there is a clear need to monitor gas produced by landfills.

In addition to the risk of fire and explosion, gas migration in the subsurface can result in contact of landfill gas with groundwater. This, in turn, can result in contamination of groundwater by organic compounds present in nearly all landfill gas.

Treatment of Landfill Gas

Depending on the end use, landfill gas must be treated to remove impurities, condensate, and particulates. Minimal treatment is needed for the direct use of gas in boiler, furnaces, or kilns. Using the gas in electricity generation typically requires more in-depth treatment.

Primary processing systems remove moisture and particulates. Gas cooling and compression are common in primary processing. Secondary landfill gas treatment systems employ multiple cleanup processes, physical and chemical, depending on the specifications of the end use.

Uses of Landfill Gas

Landfill gas can be converted to high calorific value gas by reducing its carbon dioxide, nitrogen, and oxygen content which can be piped into existing natural gas pipelines or in the form of CNG (compressed natural gas) or LNG (liquid natural gas). CNG and LNG can be used on site to power hauling trucks or equipment or sold commercially. The gas can also be used for combined heat and power generation or industrial heating purposes.

For example, the City of Sioux Falls in South Dakota installed a landfill gas collection system which collects, cools, dries, and compresses the gas into an 11-mile pipeline. The gas is then used to power an ethanol plant operated.

Landfill Gas Recovery Projects in Middle East

The number of landfill gas projects, which convert the methane gas that is emitted from decomposing garbage into power, has seen significant increase around the world, including the Middle East. These projects are popular because they control energy costs and reduce greenhouse gas emissions. Landfill gas recovery projects collect and treat the methane gas, so it can be used for electricity or upgraded to pipeline-grade quality to power homes, buildings, and vehicles.


Landfill gas recovery project at Al Qusais Landfill in Dubai

Dubai Municipality has commissioned the region’s largest landfill gas recovery system at its Al Qusais Landfill site. The Al Qusais Landfill is one of the largest sites for municipal waste collection in Dubai receiving about 5,000 tons daily. Construction work for the landfill gas project involved drilling of horizontal and vertical gas wells 22 metres deep into the waste to extract the landfill gas.

The Government of Jordan, in collaboration with UNDP, GEF and the Danish Government, established 1MW landfill gas recovery cum biogas plant at Rusaifeh landfill near Amman in 1999.  The project consists of a system of twelve landfill gas wells and an anaerobic digestion plant based on 60 tons per day of organic wastes from hotels, restaurants and slaughterhouses in Amman.

7 Easy Ways to Make Organic Liquid Fertilizer

Many organic farmers struggle to find natural ways of enhancing their soil. While organic fertilizers are readily available, it makes more sense to produce them as only then can one be sure of the components used. When produced appropriately, homemade organic liquid fertilizers can be as good as their commercially made counterparts. There are different types of organic liquid fertilizer available. For instance, compost tea is a powerful fertilizer while coffee grounds are said to provide sufficient nitrogen to plants.

A huge percentage of organic fertilizers are made from kitchen waste. However, there are many more things one can convert into potent fertilizer for use in their organic garden rather than disposing them off.

how to make organic liquid fertilizer

Homemade Fertilizers

Organic farmers can make their own organic liquid fertilizer by infusing their components of choice in water for some days. The soluble nutrients then drain in the water solution.

Farmers can choose to terminate the process and utilize the fertilizer in their gardens or even continue if they intend to ferment the component. Some farmers have reported great success from fermented organic liquid fertilizer.

DIY Organic Liquid Fertilizer

Below are examples of organic liquid fertilizers you can make at home:

1. Banana Peels

Banana peels come with loads of potassium. Fertilizers that are rich in potassium are good for flowers and fruit plants. This, however, may not be appropriate for foliage plants such as spinach and lettuce.

Use banana peel organic liquid fertilizer on squash plants and tomatoes. In a mason jar, put the banana peels, fill it with water, and cork it. Allow it to sit for three days and use it on your garden.

2. Eggshell Fertilizer

Eggshells are rich in calcium and contain a small percentage of potassium. Crush them, put in a mason jar, and fill it with water. Let it sit for a week and use the water on your plants. It is ideal for tomatoes and houseplants. Calcium helps prevent blossom-end rot.

3. Vegetable Cooking Water

After boiling vegetables, do not dispose it off. Let it cool then dilute it with water. Use it on houseplants and at the organic garden. To avoid the bad smell, use it all at once. This water is rich in vitamins that the vegetables lose during the cooking process.

4. Epsom Salts

Epsom salts contain sulfur and magnesium. In a gallon of water, add a tablespoon of Epsom salts. Put the mixture in a sprayer and use it on peppers, tomatoes, roses, and onions. Spray them two times a month.

5. Compost Tea

In a bucket, begin by placing compost, followed by water and a lid. Ensure the bucket is not tightly locked. Let it sit for one to two days and pour the water in a different bucket. Dilute it in a ratio of one to ten and use the mixture in the organic garden.

6. Weed tea

Unseeded weeds can be used to make fertilizer. Add grass clippings to make it richer. Grass and weeds contain nitrogen and the water accelerates its breakdown to make the nutrients available.

Place grass and weed clippings in a 5-gallon container and add water. Ensure the water goes slightly above the components, cover and let it sit for three days. Drain the liquid and dilute with water in a ratio of one to ten. Use it to water plants in the organic garden. Put the remaining components in the compost.

7. Droppings Tea

Collect chicken, rabbit, or goat droppings, put them in a bucket and add water until it’s slightly above the droppings. Let it sit for two to three days and drain the water. Dilute it with a one to twenty water ratio and use it to water plants in the organic garden. Droppings tea is rich in nitrogen.


Ensure that the plants are sufficiently watered before using an organic liquid fertilizer on them. This prevents them from absorbing excess salts. If the plants appear withered for lack of enough water, it is advisable to water them sufficiently first and wait for twenty-four hours before applying the fertilizer.

Water-Energy Nexus in the Arab Countries

Amongst the most important inter-dependencies in the Arab countries is the water-energy nexus, where all the socio-economic development sectors rely on the sustainable provision of these two resources. In addition to their central and strategic importance to the region, these two resources are strongly interrelated and becoming increasingly inextricably linked as the water scarcity in the region increases.

In the water value chain, energy is required in all segments; energy is used in almost every stage of the water cycle: extracting groundwater, feeding desalination plants with its raw sea/brackish waters and producing freshwater, pumping, conveying, and distributing freshwater, collecting wastewater and treatment and reuse.  In other words, without energy, mainly in the form of electricity, water availability, delivery systems, and human welfare will not function.

water energy nexus


It is estimated that in most of the Arab countries, the water cycle demands at least 15% of national electricity consumption and it is continuously on the rise. On the other hand, though less in intensity, water is also needed for energy production through hydroelectric schemes (hydropower) and through desalination (Co-generation Power Desalting Plants (CPDP)), for electricity generation and for cooling purposes, and for energy exploration, production, refining and enhanced oil recovery processes, in addition to many other applications.

The scarcity of freshwater in the region promoted and intensified the technology of desalination and combined co-production of electricity and water, especially in the GCC countries. Desalination, particularly CPDPs, is an energy-intensive process. Given the large market size and the strategic role of desalination in the Arab region, the installation of new capacities will increase the overall energy consumption.

As energy production is mainly based on fossil-fuels and this source is limited, it is clear that development of renewable energies to power desalination plants is needed. Meanwhile, to address concerns about carbon emissions, Arab governments should link any future expansion in desalination capacity to investments in abundantly available renewable energy.


Water-energy nexus in the UAE should be resilient and adaptive

There is an urgent need for cooperation among the Arab countries to enhance coordination and investment in R&D in desalination and treatment technologies. Acquiring and localizing these technologies will help in reducing their cost, increasing their reliability as a water source, increasing their added value to the countries’ economies, and in reducing their environmental impacts. Special attention should be paid to renewable and environmentally safe energy sources, of which the most important is solar, which can have enormous potential as most of the Arab region is located within the “sun belt” of the world.

Despite the strong relation, the water-energy nexus and their interrelation has not been fully addressed or considered in the planning and management of both resources in many Arab countries. However, with increasing water scarcity, many Arab countries have started to realize the growing importance of the nexus and it has now become a focal point of interest, both in terms of problem definition and in searching for trans-disciplinary and trans-sectoral solutions.

There is an obvious scarcity of scientific research and studies in the field of water-energy nexus and the interdependencies between these two resources and their mutual values, which is leading to a knowledge gap on the nexus in the region.  Moreover, with climate change deeply embedded within the water-energy nexus issue, scientific research on the nexus needs to be associated with the future impacts of climate change.

Research institutes and universities need to be encouraged to direct their academic and research programs towards understanding the nexus and their interdependencies and inter-linkages. Without the availability of such researches and studies, the nexus challenges cannot be faced and solved effectively, nor can these challenges be converted into opportunities in issues such as increasing water and energy use efficiency, informing technology choices, increasing water and energy policy coherence, and examining the water-energy security nexus.


  1. Siddiqi, A., and Anadon, L. D. 2011. The water-energy nexus in Middle East and North Afirca. Energy policy (2011) doi:10.1016/j.enpol.2011.04.023.
  2. Khatib, H. 2010. The Water and Energy Nexus in the Arab Region. League of Arab States, Cairo.
  3. Haering, M., and Hamhaber, J. 2011. A double burden? Reflections on the Water-energy-nexus in the MENA region. In: Proceedings of the of the First Amman-Cologne Symposium 2011, The Water and Energy Nexus. Institute of Technology and resources Management in the Tropics and Subtropics, 2011, p. 7-9.

Hydrogen Economy for Arab Countries: Perspectives

Arab world is facing major sustainability challenges in achieving social, economic and environmental goals. Hydrogen economy can help Arab governments, companies, and citizens to save billions of dollars each year from reduced energy bills and sustainable waste management, while at the same time reducing carbon footprints – a win-win solution.

Extremely arid climate, acute water scarcity, high energy consumption and polluting oil and gas industry present a unique challenge in Arab countries. Almost one-fifth of the Arab population is dependent on non-commercial fuels for different energy uses. All sectors of the economy — residential, commercial, transport, service and agriculture — demands modern energy services.

hydrogen economy

Gaseous emissions from the exploration and burning of fossil fuels is heavily polluting the atmosphere in the Arab world. Waste management has emerged as a major environmental issue with mountains of wastes accumulating in big cities across the Arab world. Compared to other countries, Arab countries are experiencing higher emissions of oxides of nitrogen, sulphur dioxide and volatile organic compounds.

Hydrogen is the Future

Hydrogen can be produced efficiently and may be used as a source of electricity, heat, transportation fuel, specialty chemicals, industrial production and even for drinking water production. Green hydrogen has tremendous potential to generate clean energy which can be off-grid and decentralized or can fed directly into the existing utility grid.

The surplus heat is a by-product in fuel cells during electricity production, and which can be used for industrial application or district heating. Water is an invaluable product of hydrogen production process in fuel cells and can act as a game-changer for arid countries of the Arab world which are facing severe water shortages.

The energy future of the world lies in hydrogen, fuel cells and batteries for electric mobility on the road, on rails, in the air, and on the water. Climate change is taking a threatening and menacing turn and urgent steps are needed to tackle it. New and innovative transportation solutions are required to fight the climate change in the form of electric vehicles.

The Promise of Hydrogen-Powered Vehicles

Electric engines in any vehicle are powered by electricity from batteries or fuel cells, produced by conversion of clean and environmental-friendly hydrogen (and oxygen from the air) in fuel cells, directly onboard the vehicle. After approximately 500 km and more, the hydrogen tank is filled up at a hydrogen filling station, and the journey can be continued. There are significant advantages over the charging time of battery-powered electric vehicles (cars, lorries, buses, trains, boats, ships, or aircrafts). Even batteries can be charged at home or at charging stations in the city within hours.

Urban electric transportation solutions will help to avoid air pollution, in addition to conservation of fast-depleting fossil fuels. In the coming years, we urgently need to set-up the course for the introduction and market launch of different electric vehicles, and as the pre-requisite, the infrastructure in form of hydrogen filling stations for clean and affordable hydrogen gas, or electric charger stations, all over the Arab world.

The fight against climate change

How to escape the climate disaster and how to build a clean and affordable energy infrastructure? The solution is mass deployment of clean energies, CO²-free and low-carbon fuels, especially hydrogen and fuel cells.

Today the world is more active in climate protection than ever before. Air, water and soil, must be protected, any resource consumption should significantly be reduced, and all type of wastes should be reutilized. People need clean, affordable energy worldwide, and Arab world is no exception.

More than 40 percent of the Arab population in rural and urban poor areas do not have adequate access to energy services. It is also noted that almost one-fifth of the Arab population relies on non-commercial fuels for different energy uses.

A Glance at Basic Principles

  1. Water is life, energy and a fuel
  2. Water is composed of hydrogen and oxygen
  3. Water changes its state into hydrogen and oxygen and then back to water
  4. Nothing is lost in the world. Everything only changes its status and can be used over and over again: from the solid to the liquid state to the gaseous state This is the hydrologic and hydrogen circle.
  5. Our energy is utilized in the form of oil, gas, coal, or wood; all are hydro-carbon elements and compounds.
  6. Take away the carbon and use only the hydrogen as C02-free energy for universal use

Sustainable urban development

Clean energy, urban transport, urban planning and clean air solutions are important component of climate change mitigation. If these sectors work together, plan at an early stage and develop themselves on the basis of hydrogen and fuel cells, we will see the emergence of sustainable communities in cities of the Arab world.

The architecture of buildings will change significantly, and construction will be simplified with decentralized fuel cells in buildings producing on-site electricity and heat to meet the energy requirements. Thus, buildings will no longer depend on large centralized power plants for their power and heating requirements.

New transport concepts, based on electric vehicles, will make life easier for us, in the form of good health, fast mobility, clean air, less noise pollution and conservation of natural resources. We will experience clean air, no noise and absence of vibration from a car’s internal combustion engine or diesel generators which generate electricity in addition to many buildings.

Futuristic waste management

The production of hydrogen via gasification technologies, by means of the steam refurbishment of all biomass waste, will completely solve the major problem of waste disposal in the Middle East which are currently struggling to manage municipal and industrial wastes. Municipal waste, industrial waste and other wastes are subjected to an advanced thermal conversion process resulting in the production of high calorific value synthesis gas and valuable mineral.


The people of the Arab world should know about the latest solutions and innovations to make a smooth transition to low-carbon economy and hydrogen-based economy.

Note: The full report on Hydrogen Economy for Arab Countries can be obtained by sending an email to

The Wisest Green Decisions You Can Make For Your Home

When you own a home, it’s up to you to make decisions about everything from maintenance to furniture. With so many competing issues, it can be difficult to figure out how where to focus your energy — not to mention your dollars. By making thoughtful and wise green decisions for your home, you can keep it in top shape for decades besides protecting the environment and conserving natural resources. Environmental psychology may also play a key role in strengthening the relationship between between you and your surroundings.

Read on for the wisest green decision you can make for your home:

1. Do Frequent Deep Cleans

Don’t like deep cleaning? You’re not alone. It’s not exactly a dream to get down on your knees and scrub at the dust behind the toilet. However, if you own a home, frequent deep cleanings are one of the best things you can do. Each time you clean thoroughly, you remove germs, dust, bacteria, and skin cells. This reduces the chance of sickness and allergies. It also helps you notice and track small problems that can turn into huge structural problems down the line, such as leaks or cracks.

At a minimum, you should do a deep cleaning once per month. This includes the refrigerator, carpets, microwaves, bathrooms, and beds. Clean around the baseboards, sweep under appliances, and clear out your dryer vents. Don’t forget about your refrigerator coils; if they get too dusty, it can make your fridge die faster. Too busy? Hate cleaning? Hire a cleaning service to make your home neat and clean; it’s a little bit of a splurge, but it can help you head off bigger, more expensive issues in the future. Check out the Spring Cleaning Checklist.

2. Buy High-Quality Furniture

One of the best things you can do for your home is to invest in high-quality furniture. Sure, they’re more expensive than pieces from IKEA or Target, but the higher price tag comes with some serious benefits. High-quality furniture uses top-of-the-line materials and excellent construction, which means that it looks better and lasts longer.

Of course, it’s not always easy to shell out thousands of dollars for furniture. When that’s the case, it’s a good idea to prioritize. What items do you use daily? What pieces are most visible? For many people, the highest-priority items are the sofa, bed, dining table, and TV stand. You use them every day, so it’s worth your money to buy pieces that will be comfortable and sturdy for years to come.

The TV stand, on the other hand, is the focal point of your living area. It also needs to support your TV, which is one of the more expensive appliances in your home. In the article “Modern TV Stand Guide: 12 Consoles You’ll Covet!”, Kevin Sykes says that a TV stand is not a purchase you’ll want to skimp on. A TV stand is usually something people plan on having for a long time, so investing in a quality stand will save you the hassle of replacing it earlier than you planned.

Once you’ve invested in these high-quality priority pieces, you can move on to the rest of the furniture in your house, including:

  • Dressers
  • Kitchen cabinets
  • Fixtures like toilets, towers, and tubs

3. Take Care of Crucial Home Maintenance

Home maintenance is easy to forget about, especially if you’re not mechanically minded. If you ignore these tasks, however, they can lead to shorter lifetimes for your expensive equipment and structures. Some of the most important tasks to tackle are:

  • Drain your water heater each year to remove sediment
  • Remove leaves from the gutters
  • Keep window wells clean and dry
  • Balance and clean your garage door opener
  • Remove insect and mice nests
  • Inspect HVAC filters
  • Check water pressure

4. Install Ceiling Fans

A humble ceiling fan can have big benefits for your house — and your heating bills. Fans increase the air circulation in the house, which means that the hot or cool air from your heaters or AC units is dispersed more effectively. As a result, you can usually set your thermostat a little lower in the winter and use less AC in the summer.

Why does a couple of degrees matter? Over time, those small changes can add up to big cost savings, especially if you live in an area with extreme temperature swings. Plus, you’ll reduce the environmental footprint of your home and enjoy a more comfortable atmosphere.

Chances are, you’re planning to live in your home for many years. By making these wise green decisions, you can save money and head off expensive repairs.

السلامة الإحيائية في تونس .. في انتظار صدور القانون

تخطط وزارة الزراعة الأمريكية، وفق تقرير صدر في نهاية فبراير 2017، إلى زيادة صادراتها من فول الصويا إلى تونس “لتلبية الطلب المتزايد منه في قطاع الصناعة”، وهو منتج في غالبيته العظمى معدل وراثيا. ونظرا لافتقاد تونس في الوقت الحالي لأي تشريع وطني بشأن الكائنات المعدلة وراثيا، فمن المتوقع أن تزداد واردات هذا المحصول حتى أفق عام 2025.

وفي خضم النقاش الحاصل حول الهندسة الجينية لا يعلم التونسيون الكثير حولها، فقد كشفت دراسة شملت عينة من 2000 شخص من بينهم 16 شركة صناعية و94 فلاحا و100 شخصية فاعلة في عدة قطاعات و18 جمعية، وعرضت نتائجها خلال أيام التنوع البيولوجي سنة 2015 أن 89 بالمائة من التونسيين لا يمتلكون معارف حول الكائنات المعدلة جينيا.

biosafety in tunisia

ولا تبدو المعلومات حول الكائنات المحورة جينيا في تونس واضحة أو دقيقة وإلى حين المصادقة على مشروع قانون يتعلق بالسلامة الإحيائية، فإن هذا القطاع يشهد إلى حد الآن فراغا قانونيا يفسر حالة الضبابية التي تلف المعلومات حوله. فنحن لا نعرف حتى هل أن المنتجات التي تحتوي، أو مستخلصة، من الكائنات المحورة جينيا عرفت طريقها إلى بلادنا وهل دخلت إلى أسواقنا أو تسللت إلى حقولنا بعد؟

قد لا يمكن الحسم في هذا التساؤل، لكن إمكانية حصول ذلك واردة جدا. فبالنظر إلى تبعية بلادنا إلى الخارج، فإن تونس تستورد النسبة الأكبر من البذور، على غرار بذور الخضار التي تستورد 95 بالمائة منها. وأغلب هذه البذور مصدرها شركة مونسانتو العالمية التي تشتغل في تونس، والتي تسوق حسب ما ثبت المنتجات التي تحتوي على الكائنات المحورة وراثيا، ما يعني أنه من المحتمل إن لم يكن من المؤكد أن هذه المنتجات قد دخلت بلادنا خاصة وأن ممارسات المافيا التي كانت سائدة في قطاع الاستيراد قبل عام 2011 لم تسمح بأي معلومات حول هذا الموضوع.

ولا تزال مسألة السلامة الإحيائية في تونس تشكو من فراغ قانوني، فمشروع القانون الوطني الأول من نوعه والوحيد المتعلق بالسلامة الإحيائية والذي شرع في إعداده منذ سنة 2005 لم ير النور بعد ولم تتم إلى غاية اليوم إحالته على مجلس نواب الشعب التونسي للمصادقة عليه. وتبرز أهمية مشروع هذا القانون في توفير إطار وطني فعال للتعامل مع القضايا والالتزامات الدولية للسلامة الإحيائية،  المتمثلة أساسا في بروتوكول قرطاجنة التابع لاتفاقية التنوع البيولوجي، وهو اتفاق دولي، كانت قد صادقت عليه تونس عام 2002، يهدف إلى حماية التنوع البيولوجي من المخاطر المحتملة التي تشكلها الكائنات الحية المعدلة وراثيا الناتجة عن التكنولوجيا الحيوية الحديثة.

وتقر وزارة البيئة بوجود فراغ قانوني في مجال نظام السلامة الإحيائية وتعترف بغياب التنظيم وهيكلة الخدمات المختلفة التي يمكن أن تساهم في التحكم في سلسلة الكائنات المحورة جينيا.

ويشير تقرير لدائرة المحاسبات حول منظومة البذور والشتلات، كان قد صدر في منتصف الشهر الثاني من سنة 2016، إلى الفراغ الحاصل على مستوى الإطار التشريعي والقانوني، حيث لاحظ غياب هذا الإطار القانوني لإنتاج البذور والشتلات المحورة جينيا والتي يتطلب استغلالها الأخذ بعين الاعتبار جملة من المحاذير بهدف اجتناب المخاطر المحتملة على المستوى الصحي والبيئي. كما لاحظ أيضا غياب إطار تشريعي خاص بالبذور والشتلات البيولوجية.

ماهي الكائنات الحية المعدلة وراثيا / المحورة جينيا، وما هي استعمالاتها ؟

يعرف نك فاندرغراف، رئيس دائرة وقاية المزروعات في منظمة الأغذية والزراعة وسكرتير الاتفاقية الدولية لوقاية المزروعات، الكائنات الحية المعدلة وراثيا بأنها “كائنات حية فيها تركيبة جديدة من المواد الوراثية التي تم الحصول عليها جراء استخدام الهندسة الوراثية، فهي إذن عبارة عن مجموعة فرعية انبثقت عن الكائنات المعدلة وراثيا.

وتستعمل تقنيات التكنولوجيا الحيوية في مجالات عديدة كالصيدلة والطب، إلا أن ما أثار الجدل في العالم فعلا هو استخدامها في الأغذية والزراعة. فالبذور المحورة وراثيا وشتلات النباتات والأنسجة المزروعة هي بمثابة أجزاء حية من النباتات، ولذلك تُعرف باسم الكائنات الحية المعدلة وراثيا.

إذ بالنسبة للزراعة، استهدفت المحاصيل المحورة جينيا أولا فول الصويا والذرة والقطن وبذور اللفت ثم انتشرت في جميع الخضروات والفاكهة. وقد تم تسجيل ما يقرب من 300 حالة من الإفراج المتعمد للكائنات المعدلة وراثيا في البيئة في الاتحاد الأوروبي، بين عامي 1991 و1994.

وقد بدأ بيع الأغذية المعدلة وراثيا في الأسواق عام 1994 عندما قام مونسانتو بتسويق نوع من الطماطم المتأخر النضج. كما تركز أغلب التعديلات الوراثية خاصة على المحاصيل ذات الطلب العالي من المزارعين مثل فول الصويا، والذرة، وزيت بذور القطن.

ينقسم الباحثون والعلماء إلى مؤيد ومعارض للمنتجات المعدلة جينيا. فهي وإن أثبتت عدة فوائد أبرزها حسب المؤيدين زيادة الإنتاجية والقضاء على الجوع، فقد برزت مخاوف بشأن انعكاساتها على البيئة وإلحاقها الضرر بالتنوع البيولوجي.

مونسانتو والخطر الداهم

قد لا يبالغ الباحث الأميركي وليام انغداهل حين شبه البذور المعدلة وراثيا بأسلحة الدمار الشامل واعتبرها نوعا من الأسلحة البيولوجية التي تستخدمها الولايات المتحدة الأميركية ضمن خططها الجيوسياسية للسيطرة على موارد الطاقة في العالم. فشركة مونسانتو الأمريكية والتي تحتكر نحو 70 بالمائة من صناعة الحبوب تسيطر على سوق البذور العالمية وبالتالي في الإنتاج الزراعي للبلدان التي تتعامل معها.

هذه الشركة وهي واحدة من الشركات المتعددة الجنسيات التي تعمل في مجال التكنولوجيا الحيوية الزراعية، إذ أنها أكبر منتج للبذور،العادية والمعدلة جينيا، يطلق عليها الناشطون للمنتجات الزراعية المعدلة وراثيا لقب “الشيطان”.

ففي أكتوبر من عام 2016 بدأ ناشطون محاكمة شعبية وفقا لصحيفة “ديلي ميل” لشركة مونسانتو، متهمين شركة البذور الأمريكية العملاقة بانتهاك حقوق الإنسان، وارتكاب جريمة “إبادة بيئية”. إلا أنها استطاعت الحصول على حماية قانونية من الكونجرس الأمريكي يسمح لها، وللشركات المماثلة، بزراعة منتجاتها وبيعها حتى وإن كانت تواجه قضايا قانونية تتعلق بأضرار هذه المنتجات صحيا وبيئيا.

وقد ثارت ضدها احتجاجات في ماي 2013 في أكثر من خمسين بلدا في أنحاء متفرّقة من العالم احتجاجا على منتجاتها من الكيماويات والبذور الزراعية المعدلة وراثيا، لاعتقادهم بأنها تضر بصحة الإنسان والبيئة. لاقت الدعوات إلى الاحتجاج استجابة في مصر أيضا، التي تستورد منها الذرة. كما رفضت الكويت شحنة من هذا المنتج للاشتباه لاحتوائه على الكائنات المعدلة وراثيا. وفي البيرو التي تقع في أمريكا اللاتينية تم منع استيراد كافة المحاصيل المعدلة وراثيا لمدة عقد كامل حتى تتضح أضرارها على السلامة، كما قامت المجر بحرق ألف فدان من المحاصيل التي ثبت أنها ملوثة بالحبوب المعدلة وراثيا الخاصة بمونساتو.

وقد انخرطت في انتقادها منظمات بيئية مثل منظمة السلام الأخضر (غرينبيس) وبحسب ما صرحت به المنظمة أن المعلومات الحالية عن الكائنات المعدلة وراثيا هي فقط معلومات سطحية وما خفي كان أعظم. لا يمكن لأحد  في الوقت الراهن أن يقدر حجم التأثيرات الناتجة تجاه الطبيعة والحيوانات على المدى الطويل، حيث يمكنها أن تؤدي إلى حدوث طفرات جينية ومن الممكن أن يكون لها آثار جسيمة على التنوع البيولوجي. وسيظل تنوع النباتات والحيوانات رهين بعض الشركات الكبيرة التي تنتج وتوزع المحاصيل المعدلة وراثيا.

الزراعة البيولوجية أو العضوية والمستدامة … جزء من الحل رغم محدوديتها

يعرف البعض الزراعة البيولوجية باسم الزراعة العضوية أيضا، فالمصطلحين يمكن أن يؤديا إلى المعنى نفسه، حيث إن الأخير يشير إلى نظام زراعي خال من الأسمدة الكيمائية والمواد الضارة بالصحة العامة، بالإضافة إلى عدم وجود أي استخدام للسلالات المعدلة وراثيا.

وتثمن منظمة الأغذية والزراعة للأمم المتحدة الفوائد البيئية من الزراعة العضوية وتعتبرها بمثابة نظام يعتمد على إدارة النظام الايكولوجي بدلا من المدخلات الزراعية الخارجية. كما تعتبر المنظمة أن التنوع البيولوجي عنصرا أساسيا وضروريا للأمن الغذائي والتغذية، حيث تشكل الآلاف من الأنواع المترابطة فيما بينها شبكة حيوية من التنوع البيولوجي داخل النظم الإيكولوجية التي يعتمد عليها إنتاج العالم من الأغذية.

وعليه فإنه لا شك بأن الزراعة تعتبر من أكثر الأنشطة الإنسانية المعتمدة على البيئة، ومن هنا فإن استدامة الزراعة هو أمر ضروري بالنظر إلى علاقته المباشرة بحماية البيئة والحفاظ على توازنها. ولعل هذا ما تسعى بعض الجمعيات في تونس إلى نشر الوعي حوله. إذ يؤكد عضو بالجمعية التونسية للزراعة المستدامة عبد الحميد عمامي “أنه لا يمكن بناء نظم بيئية مستدامة بالاعتماد على البذور الهجينة أو المعدلة وراثيا .

ويؤكد قائلا “إن البحث عن بذورنا المحلية الأصيلة بذور الآباء والأجداد في مواجهة طوفان البذور المعدلة وراثيا والمهجنة هي أولوية”. وقد أطلقت الجمعية” قافلة البذور”للبحث عن هاته البذور في ربوع البلاد بغية المحافظة عليها ومحاولة إكثارها،  فحسب رأيه “إن المحافظة على هاته البذور هي قضية على قدر كبير من الأهمية بالنسبة للفلاحين وللتنوع البيولوجي وللصحة وسلامة أرضنا، خاصة بالنظر إلى خطر التغيرات المناخية الكبيرة القادمة التي تهدد بلادنا”.

هذا ما تفطن إليه كذلك أنور البوبكري، وهو صاحب مجمع فلاحي عائلي أطلق عليه إسم “الصحراء الخضراء” من منطقة منزل الحبيب من ولاية قابس بالجنوب الشرقي التونسي، كان قد تم تكريم مشروعه خلال حضوره محادثات الأمم المتحدة حول المناخ في مراكش بالمغرب سنة 2016، حيث بين أن حرصه على استعمال البذور والشتلات المحلية الأصيلة يعود إلى وعيه بقدرتها على تحمل آثار التغيرات المناخية والتأقلم معها.

ويضيف قوله بأن “استعمال البذور الأصلية هي أسلم لي ولحقلي ولا أثق في البذور المستوردة مهما كان مأتاها” وفي سؤاله من أين يحصل على البذور الأصلية التي يستعملها، قال “إن عائلته تتوارثها جيلا بعد جيل من خلال محافظتهم على عادة تميز الفلاحين هناك وهي أن يأكل الفلاح ثلث محصوله ويبيع ثلثه، ويعيد استثمار الثلث الأخير في أرضه”.

ورغم أهميتها لا تبدو الاجتهادات الفردية أو مجهودات المجتمع المدني كافية، ويبقى للدولة الدور الأبرز في إيجاد الحلول اللازمة وفي مقدمتها ضبط الإطار القانوني الذي يسهم في الحفاظ على البيئة واستدامة سلامتها.

قانون السلامة الإحيائية في تونس، الحل الذي لم يكتمل بعد  

يستخدم مصطلح السلامة الإحيائية لوصف تلك الجهود التي تهدف لتقليل وإزالة الأخطار المحتملة والناتجة عن التكنولوجيا الحيوية ومنتجاتها، المتمثلة خاصة في الكائنات المعدلة وراثيا. إلا أنه وفي مشروع القانون المتعلق بالسلامة الإحيائية في تونس، تشير هزار بلي، رئيسة مصلحة بإدارة الإدارة  العامة  للبيئة وجودة الحياة بوزارة البيئة والشؤون المحلية، إلى أنه تمت إضافة الأنواع الغازية الدخيلة والأنواع المرضية إلى جانب الكائنات المحورة جينيا حتى يكون القانون أشمل ويعنى بالعناصر التي تحمل مخاطر على صحة الإنسان وصحة البيئة.

وفي مسودة مشروع القانون التي نشرت على بوابة غرفة تبادل المعلومات حول السلامة الإحيائية، تم تعريف الكائن المرضي بأنه “كل كائن أو أيضه أو نفاياته قادر على أن يسبب المرض للإنسان أو الحيوان أو النبات”.

كما يعرف الأصناف الدخيلة الغازية بوصفها “تلك الأنواع الدخيلة التي تهدد النظام الايكولوجي ومواطن الأنواع الأصلية وتسبب آثارا اقتصادية وإيكولوجية و/أو صحية سلبية”.

هذا وتعرف أطر السلامة الإحيائية الوطنية بأنها نظام يشتمل على آليات قانونية وفنية وإدارية يتم وضعها للتأكد من السلامة في الأبحاث والتطوير واستخدام واستيراد أو تسويق الكائنات المعدلة وراثيا. ولذلك يبين حاتم بن بلقاسم، رئيس مصلحة بإدارة الإدارة العامة للبيئة وجودة الحياة بوزارة البيئة والشؤون المحلية، أن الإطار القانوني ضروري حتى تشتغل باقي المنظومة مبرزا ضرورة توفر الإجراءات المصاحبة لضمان تطبيق القانون وهي عبارة عن تهيئة أرضية اشتغاله المتمثلة أساسا في التأكد من توفر القدرات التقنية والبشرية.

وبخصوص المرحلة التي وصل إليها إعداد مشروع هذا القانون، يفيد حاتم بن بلقاسم أن المشروع قد خرج من الإطار الفني على مستوى وزارة البيئة والآن بصدد طرح استشارة حوله لجمع الآراء من قبل الوزارات الأخرى ذات العلاقة، حتى يتم فيما بعد إحالته إلى مجلس نواب الشعب للمصادقة عليه.

وفي حالة إرساله إلى المجلس، فلا أحد يملك فكرة كم من الوقت سيستغرق البت فيه والمصادقة عليه، فذلك يعتمد على ترتيبه على سلم أولويات البرلمان التونسي خاصة أن الملف البيئي ككل لا يشكل أولوية لدى النخبة السياسية في تونس وفي البرامج الانتخابية للأحزاب السياسية عند تنافسها في الانتخابات البرلمانية وحتى الرئاسية، فلئن اتفقت على العموميات كضرورة الحفاظ على محيط صحي ونظيف، فهي تقريبا لا تغوص كفاية في تفاصيل تنفيذ برامجها البيئية والتي تتمحور غالبا حول المواضيع التي لها علاقة بإشكاليات التلوث والنفايات. أما فيما يخص السلامة الإحيائية، فلا نلاحظ نقاشا عاما بالقدر الكافي حوله رغم أن الموضوع ليس جديدا. فقد بين حاتم بن بلقاسم أن فكرة السلامة الإحيائية في تونس تعود إلى سنة 1993 الذي يمثل تاريخ مصادقة تونس على اتفاقية التنوع البيولوجي.

وتجدر الإشارة إلى أنه في ظل غياب الإطار القانوني فلا يوجد تقارير عن تقييم المخاطر أو ما شابه، كما لا تتوفر قاعدة بيانات مفتوحة تحتوي معطيات دقيقة في هذا المجال.

رغم تقدم الإعداد لمشروع القانون المتعلق بالسلامة الإحيائية، فهو يسير ببطئ وسط تزايد التهديدات المختلفة على البيئة في بلادنا ومن بينها التغيرات المناخية. ومع انشغال الطبقة السياسية في المشاكل الاقتصادية والاجتماعية التي تطغو على الساحة منذ 2011، فإن البيئة والمسائل التي تتعلق بها تبدو على الأرجح مؤجلة، في حين أن إقرار هذا القانون وتفعيله قد يحمي تونس من آفات بيئية عديدة كان التدخل للوقاية منها غير متاح لمجرد عدم وجود تشريع ينظم المجال.

Working Towards a Greener Eid Al-Adha Qurbani

In Islam, there are many basic acts that are expected by devout Muslims, also known as the Five Pillars of Islam. These include declaring your faith (Shahadah), performing daily ritual prayers (Salat), paying forward charity to those in need (Zakat), fasting during the month of Ramadan (Sawm) and undertaking the pilgrimage to Mecca (Hajj). With each of these responsibilities, Muslims can feel closer to Allah and feel satisfied that they are living a responsible and good life according to the expectations of Islam.

By taking part in these acts and showing their generosity, there are certain special occasions that Muslims get to enjoy, particularly the two festivals of Eid, Eid ul-Fitr and Eid al-Adha. During these festivals, communities come together to enjoy good food and celebrations, giving small gifts to children and paying forward their Zakat to those less fortunate so others can take part in the festivities as well.

What is Qurbani?

As part of Hajj, the fifth pillar of Islam and the obligatory journey to Mecca includes the rite of Qurbani, in which an animal must be sacrificed in the name of Allah. Qurbani is based on the story of the Prophet Ibrahim, who willingly put forward his son Ismail for sacrifice in the name of Allah proving his dedication to the Almighty, who in turn replaced Ismail with a ram at the moment of sacrifice in reward for the Prophet Ibrahim’s devotion.

When Qurbani is performed, the animal is divided up into shares, of which a certain amount goes towards the family that paid for that animal and the remainder is sent to families who are struggling and unable to pay their own Qurbani. While different charities and Islamic organisations package and distribute their Qurbani shares in different ways, there are ways that could make the process cleaner and eco-friendlier for all. Follow the link for more information on the rules of Qurbani.

How to Have a Greener Qurbani?

For animal sacrifices to be made during Eidul Adha, livestock needs to be kept and cared for prior to the Qurbani taking place. Not only does this require plenty of resource in order to ensure the well-being and health of the animals to be sacrificed, but it can require a lot of space to provide comfortable habitats for the animals. While there isn’t much that can be done to reduce the amount of resource to keep a healthy livestock animal, there are methods that make the process greener.


For example, cows are one of the worst methane producers on the planet, this large amount of methane production affects our atmosphere, thickening the ozone layer and contributing to climate change. Keeping animals that produce less waste materials such as sheep, goats and camels can ensure the process is already less harmful to the surrounding areas and friendly to our earth.

Another process of Qurbani that can be quite harmful to the environment is how the meat is packaged for distribution. Traditionally meat was packed in large plastic bags that are then sealed for delivery. As plastic is another material that is extremely harmful on the environment, with large amounts ending up in the ocean, Qurbani organisations would do better to use recycled materials or biodegradable plastic that will naturally breakdown over time.

Finally, another way to enjoy a greener, eco-friendlier Qurbani is to use less resources during your own celebrations. Consider reusing the previous years’ decorations or give gifts that have use in day to day life like clothing or educational resources, rather than a trinket that will be thrown away. If every Muslim family around the world who can afford to contribute their Qurbani share were a little more conscientious about the resources they use and the waste they create, we can make a greener, happier world for all.

Biofuels in Jordan: Perspectives

Jordan has good biofuels production potential in the form of crop residues, agro-industrial wastes and urban wastes. Biomass energy sector in Jordan is slowly, but steadily, developing. As per a recent World Bank report, the country is currently generating 3.5MW of power from biomass resources which represent 0.1% of the total energy demand in the country. However there is no available data on the amount of biofuels produced in Jordan. Jordan produces significant amount of biofuel feedstock in the form of lignocellulosic biomass, used cooking oil, animal tallow, agro-industrial wastes, industrial effluents etc. 

In Jordan, transportation sector alone is responsible of 51% of final energy consumption (MEMR, 2013) which makes it imperative on policy-makers to find alternative and renewable transportation fuels in the form of biodiesel, bioethanol, biogas, algae fuels etc. However, allocation, development and implementation of alternative fuels go hand in hand with the preparation of adequate policies and targets by the local government. Some of the major driving forces for development of biofuel sector in Jordan include reduced climate change impacts and decreased reliance on imported fossil fuels.

Biofuels and Jordan's Renewable Energy Law

The Jordanian Renewable Energy and Energy Efficiency (REEE) law no. 13 of the year 2012 announced bioenergy as a renewable source of energy and only focused on using biomass feedstock in the production of electricity without mentioning production of biofuels from these sources. In addition the directive on Regulating the Activity of Industrial Fuel from Waste announced two definitions namely biofuel and industrial fuel. Biofuel is defined as a hydrocarbon material produced from all kinds of vegetable oil and/or animal fats and/or used vegetable oils or any other resources, whereas industrial fuel is defined as a liquid or gaseous hydrocarbon materials produced from industrial waste, domestic waste, plastic materials, medical waste, used tires and other high carbonaceous materials. These wastes are considered to be a non-renewable source and the produced oil or gas a non-renewable fuel, regardless of the technology used in its production.

Thus, the current Jordanian energy policy underline biofuels produced from waste resources as a non-renewable source of energy which in the result deprives biofuel sector from being able to benefit from the renewable energy law and tax redemption bylaw No. 13 for the year 2015. In addition bylaw No.13 for the year 2015 only mention exemptions on biomass energy systems which produce electricity, specifically biomethane to electricity and direct combustion of waste to electricity which completely contradicts the definition of the industrial fuel as biomethane can be produced from solid waste using anaerobic digestion process. In addition despite defining biodiesel as a renewable energy source its production systems and production inputs were not added under the exemption by law No. 13 for the year of 2015.

To conclude, policy-makers and urban planners are strongly urged to take these important points into consideration to harness the untapped biofuel potential thus catalyzing the development of biomass energy sector in Jordan. In addition, Jordan can explore the development of commercial energy crop plantations like Jatropha, Pongamia, sweet sorghum, algae farms etc on marginalized lands to spur the growth of biofuels sector.


  2. The Little Green Data Book (2014), World Bank.
  3. The Regional Solid Waste Exchange of Information and Experience Network in Mashreq and Maghreb Countries – Sweep Net (2013). Country Report on Solid Waste Management in Jordan.
  4. Ahmad Al-Rousan, Anas Zyadin, Salah Azzam, Mohammed Hiary (2013) “Prospects of Synthetic Biodiesel Production from Various Bio-Wastes in Jordan” Journal of Sustainable Bioenergy Systems, 3, pp 217-223

Towards an Eco-Friendly Eidul Adha

Eidul Adha, like other religious festivals, often has a major impact on the environmental resources. Extra food, drinks and clothes are made, used and consumed which results in a major environmental footprint. The celebrations and festivity are often extravagant and cause pollution of different forms.

The day starts with the special prayers whereby men, women and children gather to offer prayers. The site of praying after the ritual is often plagued by litter, rubbish and waste scattered all over the place and even blowing in the air and migrating to nearby safe heavens for unaesthetic and unhygienic accumulations.


Muslims on Eid al Adha perform ‘sacrifice of animal’ as a ritual to celebrate the supreme sacrifice given by Prophet Ibrahim to obey God’s command to sacrifice his son Ismael. Many of the residents do the sacrifice at their houses and other communal sites, which often are not cleaned later on from blood, skin, leftover fats, intestines, limbs etc.

After sacrifice or Qurbani, special food and meat in different styles is prepared in houses which are visited by the relatives, neighbours and well-wishers. This cause great food wastage as number of dishes and quantity of food prepared is more than the number of visitors. This practice is repeated in breakfast, lavish snacks, sumptuous lunches and extravagant dinners during the festival days.

We need to understand that the Government makes huge efforts in planning, procuring animals, food stuff and other related items for local consumption. It includes meat, poultry, meat, vegetables, fruits, dairy products etc. Meat and poultry is lavishly eaten during the Eid holidays. The demand of meat (beef and mutton), chicken and related meat products increase to around 50% of the normal demand.

Over the period of years, the festivities are increasing with more buying of consumable items and eatables per head. Consumption of eatables has increased manifolds and people have become more wasteful due to rise in income, living standards and affordability.

But affordability does not mean that wastage should increase. While planning for Eidul Adha celebrations, it is now imperative that we need to think twice before buying, procuring any food items, clothing etc and taking environment into consideration.

Let us change our attitude towards Eid al Adha festivities and celebrate  it in the right spirit by:

  • purchasing limited number of clothes and dressings with minimum packaging,
  • preparing planned meals based on the actual requirements and number of guests to be served,
  • making small or limited servings to the guests to avoid wastage,
  • educating guests in avoiding leftovers and wasting food,
  • serving drinks in small glasses,
  • avoiding disposable cutlery, plates, napkins, tissues etc. and
  • giving leftover food items to the less privileged and poor people.

Let us strive to celebrate Eidul Adha in an eco-friendly way.

Role of Indigenous Knowledge & Innovation in Water Management

Our ancestors have created astounding water management systems and applications that helped them combat the harsh climate and scarce natural resources in many parts of this universe. Read on to know how ancient civilizations used indigenous knowledge in water management, and how innovation and entrepreneurship can ward off the water crisis facing the entire MENA region.

The Golden Past

Within MENA and since the 4th century BCE, the strongest civilizations made it through arid and semis arid conditions mainly due to their robust water technologies and hydraulic engineering. In the 14th century, the deliberations of the great Tunis-born social scientist and scholar Ibn Khaldun indicated that resilient dynasties were supported by the establishment of cities. He also highlighted the provision of freshwater as one of the few critical requirements for anchoring cities and sustaining civilizations.

The Nabataeans

Petra, a 2,000-year-old capital of the Nabatean Kingdom (South of Jordan nowadays), contains invaluable evidence of such indigenous innovations. Using sophisticated water technology, the Nabataeans were able to ensure a continuous water supply throughout the year and simultaneously mitigate the dangerous effects of flashfloods. They focused on the deep understanding of all sources of water available and on adopting techniques to best monitor, harness, maintain, and utilize those resources. They balanced their reservoir water storage capacity with their pipeline system and utilized particle-settling basins to purify water for drinking purposes.


The Nabataeans’ extensive understanding of their constraints and strengths allowed them to create a system that maximized water flow rates while minimizing leakage and supported a prosperous life for many years later.


Innovation is not about engineering and science only; water markets and decentralized management of water resources are important aspects in times when regulatory bodies and water user associations struggle to master. Oman enjoys one of the most ancient community-based water management schemes that was based on water rights, institutions, and markets.

Water prices were adjusted to respond to changes in demand and supply. Well established water rights, transparent management and allowing for water trading were major contributors to improved management of irrigation water back then.

The Future is Here

While the potential to innovate in the water sector is limitless, it is still under exploited in the MENA region. Information technology, data management, telecommunication, artificial intelligence, and many other tools create opportunities to innovate and contribute to robust water management solutions and to socioeconomic development.

In the MENA region, innovation and entrepreneurship have never been as central to development plans as they are today. Creating an enabling environment for tech startups that would attract investment, create jobs, and boost socioeconomic development is a common goal across the region.  As far as water is concerned, and despite the strategic significance of the sector, water innovations that could enter the market and find their way within and beyond the region are very few.

Most recently, the trending concepts of green growth and climate-smart solutions are reigniting the spark for more locally anchored water innovations to help alleviate both the economic and social stresses associated with water scarcity and poor management systems. In parallel, impact investing is becoming more popular, and today’s investors are searching for companies with a strong environment, social and governance (ESG) framework to invest in.


If one is to find a positive side for the COVID-19 pandemic, it would be the refocus it brought to local production and self-dependence. Whether in food, energy, or water; availability and affordability cannot be jeopardized. Since 2019, programs targeting innovations and startups in the food security and agri-tech domain have been expanding. Special innovation hubs, accelerators, incubators, and competitions were launched to support the water, energy, and food nexus with a strong link to climate change and social inclusion.

One example is the WE4F MENA Regional Innovation Hub which supports innovators with proven solutions tackling water and/or energy issues in urban or rural food production to scale up through multiple financial and non-financial tools. As such efforts gain more momentum, local needs started to emerge including up-skilling and knowledge management. Young graduates carry a relatively enough theoretical information about a single topic/specialty, yet most of those engineering, science and business graduates lack the practical skills and understanding of the nexus and the interconnectivity between water, food, energy, society, and environment. This led to the design of several upskilling and training programs to bridge the knowledge gap and introduce the young generation to the future.

A promising example of such upskilling modules is the one implemented through a partnership between The Sahara Forest Project and Al Hussein Technical University (HTU) in Jordan. This Upskilling Program for Female Engineers in Agritech and Food Security is being piloted on 30 young females from various Jordanian governorates that got selected based on an open application and preset criteria. The participating trainees are exposed to field training at The Sahara Forest Project in Aqaba, technical lectures and seminars by practitioners, mentorship by female leaders, and inspirational talks by market experts.

sahara forest project

The objective of such programs should not be to only help the unemployed youth find jobs but rather to widen their perspective to be able to create opportunities for themselves and for their peers and local communities. Re-anchoring the value of agriculture, water, energy, and nature is by itself a trigger for transformation in the future of work in the MENA region.