Solar Skins: The Ultimate Guide to Aesthetic Urban Energy Solutions

Cities are built from surfaces—glass, metal, stone, and shade. Solar skins turn those surfaces into quiet power plants, weaving electricity generation into façades, canopies, railings, and street furniture without sacrificing design intent. Instead of treating energy as an add-on, solar skins make it part of the architectural language and the public realm.

For metropolitan teams shaping growth in sunbelt markets, the fit is especially clear. Firms delivering land development services in San Antonio can capture value from high-irradiance hours by treating façades and shade structures as productive assets from day one of site planning.

building-integrated photovoltaic (PV)

What Are Solar Skins?

Solar skins are building-integrated or infrastructure-integrated photovoltaic (PV) products designed to perform as envelope systems while generating electricity.

They include:

  • BIPV cladding: opaque or translucent modules that replace spandrels, rainscreens, soffits, or parapet infills.
  • Solar glazing: semi-transparent glass with micro-cells or thin-film layers that deliver both daylight and power.
  • Flexible PV films: lightweight laminates that conform to curves, metal skins, and composite panels.
  • Urban furniture PV: canopies, bus shelters, acoustic barriers, guardrails, bike stations, and wayfinding totems with embedded PV.

Panels aren’t scattered; they’re drafted. Module dimensions, joint lines, and edge details are coordinated to the façade grid so the result reads architectural. With structural and envelope input from day one, you can tap innovations in green structural engineering—such as ventilated PV rainscreens that both cool the envelope and produce electricity.

Why Solar Skins Belong in Urban Design

1. Use the city’s surface area

Dense districts have limited roof real estate but abundant vertical and sloped planes. Solar skins monetize those planes—especially east and west faces that catch morning and late-day sun when grids are most stressed.

2. Reduce peak loads

Façade-integrated PV often produces power in late afternoon, shaving demand charges precisely when utilities price electricity highest.

3. Improve building physics

PV cladding can function as a ventilated rainscreen, lowering heat gain and protecting sublayers. In hot climates, that pairing—electricity plus thermal moderation—elevates comfort and trims operating costs.

4. Make sustainability visible

A transit shelter lit by the PV canopy above or a school with solar spandrels turns climate action into a daily, legible story for the community.

How Solar Skins are Reshaping Sustainable City Planning

This technology unlocks a new paradigm for architects and urban planners. No longer is the solar array an isolated piece of machinery; it becomes an integral part of the building’s identity. This is a leap from additive sustainability to innate sustainability, where the energy-generating capability is baked into the design from the very first sketch.

The implications for urban resilience are profound. Cities are dense consumers of energy, and their vast surfaces—roofs, walls, even noise barriers along highways—represent an untapped resource. Solar skins transform these passive surfaces into active, power-generating assets. This distributed energy model lessens the strain on centralized grids, particularly during peak demand hours.

Solar Skins Urban Use Cases

Transit corridors

PV canopies at bus stops power lighting, e-ink schedules, cameras, and emergency call stations. Off-grid options reduce trenching and speed approvals.

Retail and mixed-use podiums

Glass-glass PV over arcades generates power while providing shaded, dappled light for cafés and queues.

Campus and civic buildings

Libraries, labs, and arenas can deploy PV fins on east/west façades to capture peak-producing sun, with public dashboards that translate kWh into relatable impacts.

Parking and mobility

EV charging roofs with solar glazing support chargers, wayfinding, and micro-mobility docks—often with battery buffering to flatten peaks.

District energy sharing

Multiple buildings can aggregate solar-skin output into shared storage, underwriting common-area loads and essential services.

Performance by Orientation and Climate

  • South façades deliver steady output; overhanging PV louvers can be tuned to equinox/solstice angles for balanced yield and shading.
  • East/West façades excel at peak-time generation (morning/evening), which tends to carry higher economic value than mid-day kWh.
  • Diffuse-light regions still benefit: semi-transparent PV in atria and skylights captures scattered light without harsh glare.
  • Maintenance matters: specify self-cleaning coatings, accessible wash points, and integrate PV zones with façade access systems (BMUs, rails, anchors).

Rule of thumb: Not every square meter must be PV. Target the right surfaces (angle, shading context, visibility, cleaning access) rather than blanket coverage.

Codes, Standards, and Approvals

Treat solar skins as you would any envelope or glazing assembly—with an electrical bonus:

  • Fire, wind, and impact: test assemblies, not just modules, to meet local code and NFPA/EN standards.
  • Electrical safety: conceal raceways; provide labeled combiner points; implement rapid-shutdown per fire department protocols.
  • Historic and design review: matte finishes, color-matched spandrels, and alignment with existing jointing often clear aesthetic hurdles.
  • Documentation: include wiring diagrams, fire service placards, and operations/maintenance plans in submittals.

Position the energy narrative as part of life safety, durability, and resilience—not as a separate gadget spec.

Cost, ROI, and Incentives

The economics differ from rooftop PV because BIPV replaces conventional materials:

  • Shared CapEx: a PV spandrel can offset the cost of a metal panel or stone cladding while producing electricity.
  • Value of time-of-use: late-day output from vertical PV can command higher avoided costs.
  • Durability and warranty: glass-glass PV modules often match or exceed premium cladding lifespans.
  • Incentives and green financing: BIPV frequently qualifies for the same credits as rooftop PV; ESG-linked loans and green bonds can lower the cost of capital.

Procurement tip: Specify performance targets (kWh/m²/year by orientation) in the façade package, so bidders price both the look and the yield.

Implementation Roadmap (From Concept to Commissioning)

1. Discovery and envelope strategy

Map solar resource to the massing early. Identify “Tier 1” surfaces (high-yield, high-visibility), “Tier 2” (supporting), and “No-go” (heavily shaded or inaccessible).

2. Schematic design

Lock module dimensions to the façade grid; choose transparency levels; fix colorways and reflectance; pre-coordinate junction boxes and wire paths.

3. Engineering and mockups

Test structural loads, thermal movement, acoustic performance, and glare. Build a full-size visual mockup to validate color consistency and masking patterns.

4. Commercial structure

Decide on direct purchase, PPA, or lease. Align metering (behind-the-meter vs. front-of-meter) with ownership and incentive rules.

5. Permitting and utility interconnection

Bundle electrical, structural, and fire documentation. Engage AHJs early; share shutdown protocols and placards.

6. Construction and QA/QC

Coordinate tolerances between façade installers and electricians. Verify string continuity, insulation resistance, and labeling before close-out.

7. Commissioning and handover

Calibrate monitoring. Train facilities teams on cleaning cycles, visual inspections, and performance thresholds.

Risk Management

  • Glare and reflectance: simulate at pedestrian, cyclist, and driver eye heights; specify anti-reflective coatings and frit patterns to keep luminance within comfort thresholds.
  • Soiling and pollution: in urban canyons, schedule gentle wash cycles; avoid horizontal ledges; detail drip edges.
  • Replacement strategy: keep 2–3% spare modules per façade family; confirm interchangeability and end-of-line availability.
  • Vendor diligence: require third-party test results, production quality certifications, and bankability references.

Key Metrics to Track

  • kWh/m²/year by orientation (design vs. actual)
  • Peak demand reduction (kW shaved in late afternoon)
  • Envelope U-value and SHGC with PV vs. baseline
  • Lighting and plug load offsets (which meters are impacted)
  • Payback and IRR under current tariffs and incentives
  • Embodied carbon tradeoffs vs. alternative cladding (for ESG reporting)

Consistently measuring these indicators turns a showcase façade into a replicable playbook.

Frequently Asked Questions

Are solar skins as efficient as rooftop panels?

Module-level efficiency can be comparable, but orientation and shading matter. The economic win often comes from time-of-use value and material substitution, not just raw percentage efficiency.

Will solar skins change the look of my building?

They can match many façade palettes using ceramic inks and coatings. The best results happen when module sizes and joint patterns are coordinated from schematic design.

What about maintenance?

Treat PV surfaces like premium glazing: periodic rinsing, visual inspections, and simple electrical checks. Specify coatings and access systems during design to keep O&M routine.

Do they work in cloudy climates?

Yes—diffuse light still produces power. Semi-transparent PV in atria and skylights performs well in overcast regions without sacrificing daylight quality.

How do I finance a project like this?

Options include direct purchase, green bonds, power purchase agreements (PPAs), and on-bill financing. The right path depends on ownership goals, tariff structures, and incentive eligibility.

Conclusion: Making the City’s Skin Work Harder

Solar skins invite architects, engineers, and city leaders to think of surfaces as infrastructure. They make power generation visible and useful at the places people live, work, wait for the bus, and gather. When integrated thoughtfully—composition first, performance specified, and maintenance planned—solar skins can cut peak demand, elevate design, and broadcast civic intent without visual compromise.

If your next project brief mentions resilience, cost control, or public trust, bring solar skins into schematic design—right alongside massing, envelope, and daylight studies. Treat them not as tech, but as craft. Done well, the city’s skin does more than look good; it works.

The Promise of Equitable EdTech: Debunking Common EdTech Myths

Equitable EdTech or education supported by technology has become a debate topic for the entire world. Moreover, the pandemic has fueled talking about the pros and cons of incorporating education with technology.

But if you really pay attention to the talks of the correct and learned people, you will realize that equitable EdTech is the future. It exists for a better future. It gains its name equitable EdTech because you need equal amounts of education and technology for a brighter future.

If you ask ib extended essay writer or experts in journalism, they will give you a great perspective of equitable EdTech that will lead us to a future that we all dream of.

But there have been some myths circulating about EdTech which are misleading people especially parents. They are confused about whether they should support EdTech or continue relying on the traditional methods of education.

So here are some common myths related to EdTech which we are going to bust for you.

Debunking Common EdTech Myths

1. EdTech will replace teachers

How in the world is it possible to replace teachers? It is practically impossible. In fact, teachers are synonyms for learning.

EdTech will not replace teachers but it will provide them with materials and ways for an enhanced teaching experience. EdTech ensures that teachers have their upper hand at teaching. In fact, without teachers, even EdTech will have no meaning.

The interactive classrooms already have eased the teacher’s tasks and improved students’ learning. For example, a simple Pythagoras theorem could be taught while the triangle moves along in 3d and builds itself. These visuals will help the students to grasp the teachings early and remember them as well.

Thus, no teachers will extinguish if equitable EdTech is practiced.

2. Students will suffer from increased screen time

First of all who are we comparing students’ screen time to? Because adults spend more than half of the day in front of the screens. And if you compare them with the past generations, well internet and stuff were not easy to access then.

But yeah it is important to limit screen time but it is also important to educate. And if education gets entertaining, interactive, and engaging through screens, then it is better to give a break than completely stop it. Here is where EdTech comes to play.

Equity EdTech demands students to balance screen time and do on-ground research. It pushes students to read books, discover learning materials practically, and physically explore the environment.

Thus, EdTech does not mean only screen and technology for the students. It is actually providing the best of both worlds.

3. EdTech will replace physical classrooms

Again this is a big no-no.

How can students learn the importance of staying in a community unless they go out and explore the world? And a child’s first community learning experience apart from home is school.

online education

So no matter how much the world advances, the physical classroom can never be replaced.

Yes, virtual classrooms have taken over but teachers and students are cringing to go back to school. In fact, EdTech has ensured that even in the pandemic education does not come to a standstill.

So no matter how advanced the technology gets, the love and need for physical classrooms will always exist.

Conclusion

Implementing equitable educational technology is the need of the hour. Every educational institute must weigh its pros against the cons. In fact, EdTech has a proven record of students learning and grasping better than the traditional education system. It has known to make the children sharper and sensible, but with the help of teachers!

Simple Study Habits That Can Transform Your Grades

Let’s be real – we’ve all had that moment of staring at an open textbook, hoping the words will magically make sense. The truth is, studying doesn’t have to feel impossible. Developing smart, consistent study habits can completely change how well you learn (and how calm you feel during finals week).

Studyfy’s 2025 research found that students who used structured routines improved their grades by 29% within one semester. That’s proof that simple, realistic changes in daily learning habits make a huge difference.

A laptop rests on a desk next to an open book and a pen, suggesting a good study environment.

And for students juggling part-time jobs, family, or sports, managing time is tough. That’s why many turn to helpful tools like do homework for me, where the homework help service team helps students stay organized while focusing on mastering key concepts. Daniel Walker, an education expert at Studyfy, says, “The right tools don’t replace effort – they multiply it.”

So, let’s explore some practical, science-backed good study methods that will make you more productive, confident, and ready to ace your next test.

Create a Consistent Study Schedule

The first step to success? Consistency.

Building a regular routine helps train your brain to focus faster and retain more information. According to Studyfy’s survey, 67% of top-performing students study at the same time each day.

Time of Study Average Retention Rate (%) Recommended Duration
Morning (8-11 a.m.) 78% 2 hours
Afternoon (1-5 p.m.) 72% 2-3 hours
Evening (6-9 p.m.) 69% 1.5 hours

Consistency builds a mental rhythm – your brain starts expecting focus at certain times, making it easier to get into “study mode.”

Tips to keep your routine steady:

  • Use a planner or app to track sessions.
  • Stick to the same study spot to create a mental association.
  • Schedule breaks (seriously, your brain needs them).

The key is to make your schedule realistic, not rigid. A routine that works with your life will always beat one that fights against it.

Set Clear Goals for Each Study Session

Studying without goals is like driving without directions. Clear, achievable targets turn vague effort into visible progress. Students who set micro-goals – such as “learn five definitions” or “summarize Chapter 3” – were 38% more likely to retain material long-term.

Here’s a simple framework for setting study goals:

  1. Define your objective: What exactly do you want to achieve?
  2. Set a time limit: Keep it short and focused (30-50 minutes).
  3. Reward yourself: A snack, walk, or quick scroll on social media after finishing helps keep motivation high.

Example:

Instead of saying, “I’ll study biology today,” say, “I’ll understand photosynthesis and answer three related questions.”

Small goals make learning more fun and help you see progress faster – a big win for motivation.

Take Effective Notes and Review Regularly

Writing isn’t just recording – it’s processing. Studyfy’s data shows that students who take handwritten notes remember 22% more than those who only read. But it’s not just how you write – it’s what you do after.

Note-Taking Style Retention Increase (%) Best For
Cornell Method 30% Organizing complex topics
Mind Maps 25% Visual learners
Summary Notes 18% Quick reviews before exams

To make reviewing effective, try these steps:

  • Revisit your notes within 24 hours of class.
  • Summarize main ideas in your own words.
  • Quiz yourself – active recall cements memory.

This combo of writing, reviewing, and self-testing is one of the most effective ways to study.

Use Active Learning Techniques

Passive studying – like rereading – gives you a false sense of mastery. Active learning, on the other hand, gets your brain working harder, which improves retention and understanding.

Studyfy’s research on good study skills tried to answer how to study better and found that students who practiced active learning performed 41% better on exams than those who relied only on reading.

Active learning can look like this:

  • Teaching the concept to a friend (or even to your dog).
  • Using flashcards or apps like Quizlet.
  • Solving practice problems instead of rewatching lectures.
  • Applying what you’ve learned in real scenarios or group discussions.

Think of studying as a workout – reading is stretching, but practicing is lifting weights. That’s how your brain builds strength.

Prioritize Rest, Nutrition, and Balance

You can’t study effectively if you’re running on fumes. Rest, food, and relaxation aren’t “breaks” from studying – they’re part of it.

Studyfy’s 2025 report found that students who slept 7-8 hours nightly had 24% better focus than those who didn’t. And yes, breakfast helps too – students who ate before studying showed a 16% boost in recall performance.

To keep your brain happy:

  • Get consistent sleep (no more all-nighters).
  • Drink plenty of water – dehydration affects concentration.
  • Eat brain foods like nuts, berries, and salmon.
  • Take movement breaks every hour.

Healthy habits might not feel like “study hacks,” but they make every study session count.

Seek Help When You Need It

No one succeeds alone – even top students rely on guidance. Whether it’s from teachers or peers, asking for help is a sign of strength, not weakness.

Studyfy’s 2024 report also found that 59% of students who reached out for assistance during tough semesters improved their GPA by at least one full point. That’s huge.

Here’s how to ask for help effectively:

  • Identify where you’re stuck – be specific.
  • Don’t wait until the last minute before exams.
  • Use multiple sources – professors, classmates, online tutors, or homework help service
  • Review feedback carefully to avoid repeating mistakes.

If you’re buried under assignments or struggling to manage time, professional support options can take some pressure off. These tools don’t do the work for you – they guide you to understand and manage it better.

Studyfy’s researchers note that students who use guided learning platforms and professional tutoring report a 33% increase in confidence and time management efficiency. Sometimes, the smartest move isn’t doing it all alone – it’s knowing when to ask for help.

Conclusion: What Are Good Study Habits For You?

Building good study habits isn’t about studying harder – it’s about studying smarter. The secret lies in routines that match your energy, strategies that make learning active, and support systems that keep you motivated.

Whether it’s setting micro-goals, improving focus, or seeking help from a trusted homework help service, consistent effort pays off. Students who plan strategically, rest regularly, and stay curious not only raise their grades but also enjoy learning more.

So next time you sit down with your notes, remember – every small, smart step brings you closer to mastery. Studying isn’t just about passing exams; it’s about shaping how you think, learn, and grow for life.

References:

الاقتصاد الأخضر والتمويل

شهد العقد الماضي انتقالاً ملموسا للبلدان العربية نحو الاقتصاد الأخضر. فمن الصفر تقريباً في اعتماد انظمة اقتصاد أخضر أو استراتيجية مستدامة، أصبح هناك أكثر من سبعة بلدان وضعت استراتيجيات من هذا القبيل أو أدرجت عناصر الاقتصاد الأخضر والاستدامة في خططها. وقد ترجمت الاستراتيجيات الخضراء في مجموعة من التدابير التنظيمية والحوافز التي أدخلت في هذه البلدان لتسهيل التحول. وأعطى ذلك إشارة قوية للقطاع الخاص لزيادة الاستثمارات في قطاعات الاقتصاد الأخضر أضعافاً، وخاصة الطاقة المتجددة، وهو أمر واضح في المغرب والأردن والإمارات، حيث تم استثمار البلايين في مزارع الطاقة الشمسية وطاقة الرياح. وينفذ المغرب خطة لتوليد أكثر من نصف كهربائه من الموارد المتجددة بحلول سنة 2030.

a sustainable world

أدى هذا التحول إلى زيادة الوعي والاعتراف بالمكاسب الاقتصادية والاجتماعية والبيئية الحقيقية الناجمة عن الانتقال إلى اقتصاد أخضر ومستدام. وينعكس ذلك في زيادة فرص العمل التي تخلقها الاستثمارات الخضراء، والكفاءة في استخدام الموارد الطبيعية والقدرة التنافسية والوصول إلى الأسواق. ويمكن تنويع الاقتصاد وتنشيطه من خلال خلق أنشطة وفرص جديدة مثل: الطاقة المتجددة، مصادر المياه المتجددة الجديدة من خلال معالجة مياه الصرف وإعادة استخدام المياه المعالجة وتحلية المياه، الزراعة المستدامة والعضوية، المنتجات الصناعية الخضراء، المجتمعات المستدامة، المباني الخضراء، نظام النقل العام الأخضر، السياحة البيئية، جنباً إلى جنب مع النظم المتكاملة لإدارة النفايات الصلبة التي يمكنها توليد الطاقة وإنتاج السماد العضوي وإعادة استخدام المواد.

وقد أدرجت مصر والمغرب وقطر والإمارات بالفعل قوانين المباني الخضراء في مجتمعات حضرية وساحلية جديدة، مثل مدينة جلالة ومدينة العلمين الجديدة في مصر ومدينة مصدر في أبوظبي ومدينة محمد السادس الخضراء في المغرب. وقد اعتمدت بعض استراتيجيات السياسة العامة، مثل رؤية السعودية 2030، نوعاً من المحاسبة للرأسمال الطبيعي، بوضع قيمة سارية للموارد الطبيعية. وتعطي رؤية السعودية 2030 مثالاً على تحول جذري، مقارنة بالمحاولات السابقة الأقل جرأة للإصلاح. وأدت الإجراءات المالية التي اتخذتها المصارف المركزية في لبنان والإمارات والأردن إلى زيادة حادة في عدد وقيمة القروض التجارية التي تقدمها المصارف للمشاريع الصديقة للبيئة. وهي تشمل المشاريع الكبيرة التي ينفذها القطاع الخاص، بالإضافة إلى المنشآت المنزلية التي تعزز الكفاءة، ولا سيما في مجال الطاقة الشمسية والمتجددة بشكل عام. واطلق الأردن سنة 2017 سلسلة مشاريع تعتمد الاقتصاد الأخضر.

شهد العقد الماضي انتقالاً ملموسا للبلدان العربية نحو الاقتصاد الأخضر

وقد أعطى اعتماد أهداف التنمية المستدامة عام 2015 زخماً جديداً للبلدان في جميع أنحاء العالم، بما في ذلك المنطقة العربية، لتكثيف الجهود الرامية إلى وضع استراتيجيات وسياسات مستدامة وخضراء لتحقيق هذه الأهداف.

وفي حين ازداد حجم الموارد المالية الموجهة لتمويل الاستثمارات الخضراء في المنطقة العربية،  لكنه بقي أقل من المطلوب. لكن من المتوقع أن توجه حصة متزايدة من إجمالي الاستثمارات إلى مشاريع التنمية الخضراء والمستدامة في السنوات المقبلة. وأحد المؤشرات على الاتجاه الجديد هو أن تمويل عمليات التنمية، خاصة للبنى التحتية، من المؤسسات الإنمائية الوطنية والإقليمية العربية خلال الفترة 2006-2016 بلغ 51 بليون دولار أميركي، أي نحو 57 في المئة من إجمالي التمويل التراكمي (90 بليون دولار أميركي) على مدى فترة الأربعين سنة منذ عام 1975.

ومع ذلك، فهناك حاجة إلى ما يتجاوز هذا بكثير، إذ يتعيّن على الدول العربية تخصيص مبلغ إضافي لا يقل عن 57 بليون دولار سنوياً من مصادر محلية وخارجية لدعم تنفيذ أهداف التنمية المستدامة. ولا يتوفر الآن سوى جزء صغير من هذا المبلغ.

Al-Ghabawi Landfill in Jordan: Progress and Challenges

Every day, 4,000 tons of waste, mostly municipal solid waste (MSW), is transported to Jordan’s largest and most modern landfill, Al-Ghabawi. Situated in a semi-arid desert area 40 km from Amman, the site encompasses a 2000 km2 area of land unsuitable for cultivation  with the nearest residential area 7 km away. Most of the waste  originates from Amman, with smaller quantities coming from Russeifa and Zarqa, collectively accounting for 50% of the country’s total waste. Specialized steel-wheeled tractors drive over  the waste heaps, compacting the material and removing oxygen, which subsequently  facilitates anaerobic decomposition.

alghabawi landfill

Of the nine landfill’s cells, cells no. 1, 2, 3, and 4 are capped, filled, and closed, while cell 5 is  expected to be closed soon. Cell no. 6, however, is currently being filled and is expected to  hold approximately 5.15 million tons of waste. The estimated lifespan for cells 1–9 is  projected to extend until 2035. However, monitoring of the structure and electricity  generation will continue for a prolonged period afterward.

The landfill cells occupy half of the Al-Ghabawi site, and the remaining 1000 km2 area can be  utilized for new cells or other innovative waste management projects after 2035. The gas  collection system engineered within the cells generates approximately 4.8 MW of electricity per hour, supplying 50% of the Greater Amman Municipality’s electricity consumption. The  electrical capacity is expected to be expanded upon the completion of the remaining waste  cells.

leachate pond at alghabawi landfill

Leachate collection pond at the Al-Ghabawi Landfill

Leachate from the waste in the cells is collected via designed pumps and directed to  collection ponds. Insulating protective material placed beneath the open ponds prevents  infiltration into the groundwater and soil, allowing the pond water to evaporate at its own  pace. Isolation materials are also used as a foundation for the cells, serving as protection  against soil contamination and leakage. As part of the circular economy, the compost  production from mixing food waste, horse manure and leaves has led to success since 2023. The success of the project has been the close collaboration of Greater Amman Municipality, AL-Ghabawi landfill and the German Federal Ministry for Economic Cooperation and Development and financial support of the EU.

The composition of leachate primarily depends on the climatic conditions of the geographical location,  the waste composition, and the age of the landfill; regardless, there is a risk of heavy metal  content. Nevertheless, the Ministry of Water’s new project, the construction of a wastewater treatment plant in Al-Ghabawi, which aims to develop and expand the water management  system, will also address the leachate in the ponds. The sludge from the leachate, however,  will be managed by Al-Ghabawi for recycling. The Ministry of Water’s innovation has been awarded a bronze accolade by the EBRD for its project, in recognition of its planning and  solution-oriented approach to sustainable water management in practice.

composting plant at al ghabawi landfilll

Development and Progress

Jordan has a comprehensive legal and regulatory framework for environmental protection  and solid waste management, including the Environment Protection Law No. 6 of 2017 and  the Solid Waste Management Framework Law No. 16 of 2020, both enforced by the Ministry  of Environment (MoEnV). This framework entails fines starting from 50 JD and upwards  because of improper waste disposal, depending on the nature, form, and location of the  littering. In response to the Ministry’s frustration over littering, fines were raised from 20 JD to 50 JD in 2020. Enforcement of the laws is followed by the Greater Amman Municipality and  the Royal Department for Environment and Tourism.

Simultaneously, the Amman Municipality educates its employees and the public through  lectures and courses on waste separation, recycling, sustainability, and the practical  implications of environmental preservation. Environmental police visit schools to give lectures  on environmental science, striving to instill environmental protection norms from an early  age.

Challenges to Overcome

Continued population growth also leads to an increased volume of waste.  The population in Jordan is expected to increase rapidly towards the year 2050. Some cities  are still recovering from the influx from Syria, which significantly increased waste, while the  country simultaneously faces a high financial burden and lack of large-scale recycling systems.

To keep pace with the high speed of large waste volumes, the “not in my backyard” and “the  tragedy of the commons” mentality must change. When climate campaigns theoretically  and visually convey that waste undergoes a long process—from collection, transportation, sorting, encapsulation, related pollutant emissions, along with technological and economic  limitations, people understand that garbage does not vanish from existence after being thrown into the container.

Furthermore, cities need to implement lidded waste separation containers at all residential  buildings. This would prevent cats or dogs from accessing the waste, thereby preventing them  from tearing the waste bags and spreading the refuse on the sidewalks.

The Role of Waste Hierarchy in Waste Management

The waste hierarchy is made up of prevention, re-use, recycling, recovery, and finally landfill disposal, which stands in direct contrast to today’s global “buy and discard” culture.

Prevention: The first step at the top of the hierarchy refers to minimizing purchases. It  is advised not to buy food when hungry and not to buy a garment immediately. Write a shopping list of what you need. If one sees a nice sweater they want to buy,  they should wait a week before purchasing to ensure it is not a result of marketing  automation used by the fashion industry, which triggers our brain’s reward system  and makes us associate purchasing with happiness.

Re-use: Lending or borrowing clothes from friends is a much more environmentally  friendly alternative. Circulating goods as much as possible extends the product’s life  cycle, thus reducing the climate footprint and the burden on landfills. Or perhaps one  can repurpose the garment by sewing on beads? Use your creativity.

Recycle: Separate the materials if prevention is not possible.

Recovery: Convert waste material into energy (electricity or heat) or send to landfill if it cannot be  recycled.

Disposal: Landfill or incinerate it.

لماذا تظل أشجار القرم في الإمارات عُرضة للخطر

تمتلك دولة الإمارات العربية المتحدة العديد من الكنوز الخفية، مثل أشجار القرم. تكمن وظيفتها في عزل الكربون (carbon sequestration) وليس إنتاج الأكسجين. يُطلق على نوع أشجار القرم الموجود في الإمارات اسم “القرم الرمادي” (Avicennia marina)، وغالبًا ما يوجد في منطقة الخليج. وقد اختارت هذا الموقع تحديدًا بسبب مياهه المالحة وشبه الاستوائية ألضحله. خلال العقدين الماضيين، واجهت أشجار القرم تهديدات هائلة مع تزايد التطور الساحلي السريع في الإمارات (حسيبة، 2025).

mangroves in the UAE

إشكالية الهشاشة

إحدى التهديدات الرئيسية التي تواجه أشجار القرم في الإمارات هو تطوير الجزائر الاصطناعية. لإنشاء جزيرة اصطناعية، يتم استصلاح الأراضي عن طريق التجريف. يتم التجريف عن طريق الحفر العميق للمناطق المستهدفة، مما يزيل الرواسب المختلفة ويخلق طبقة أكثر سمكًا من الأراضي القابلة للسكن. هذه العملية يمكن أن تقتل بذور القرم الصغيرة. تتكسر جذور أشجار القرم وتتراكم على سطح الماء، مما يمنع ضوء الشمس من الوصول إلى الأنواع البحرية المختلفة تحت الماء في الأعماق (سوسيولوجي وآخرون، 2019).

أثيرت المخاوف بشأن النظم البيئية لأشجار القرم في الإمارات بسبب مشروعات التطوير الساحلية في جزيرة السعديات وجزيرة اللؤلؤ، وكلتاهما تقعان في أبوظبي. وكان هذا سببًا معقولًا للقلق، حيث يمكن أن يؤدي استصلاح الأراضي إلى تغيير تدفقات المد والجزر ونقل الرواسب، وهما أمران حيويان لصحة أشجار القرم.

في الوقت الحالي، هناك مراقبة محدودة لأشجار القرم، حيث تزدهر الإمارات بشكل رئيس اعتمادًا على صناعات معينة مثل العقارات والنفط والتجارة. ومع التمويل المحدود، يقل احتمال قيام العلماء بإجراء أبحاث حول مواضيع بيئية ذات تأثير ضئيل. كما يساهم نقص الوعي في قلة “العلم المدني” (citizen science) الذي يضطلع به الأفراد.

كيف تعيقنا الأساليب الحالية لاستعادة أشجار القرم؟

في الإمارات، غالبًا ما تصبح التربة الساحلية المتأثرة بأعمال البناء أو التلوث متراصة (مضغوطة)، مما يمنع المياه من التسرب إلى داخل الأرض. يؤدي هذا النقص في تسرب المياه إلى تعطيل الظروف المشبعة بالمياه التي تحتاجها أشجار القرم للنمو والازدهار. كما تتم إزالة العناصر الغذائية بسبب ذلك، مما يجعل من الصعب حدوث التجدد الطبيعي.

تُعرف الإمارات بأخذها مسألة استعادة أشجار القرم على محمل الجد. ومع ذلك، فإن زراعة البذور لا تؤدي دائمًا إلى النجاح، خاصة عند اختيار المواقع دون دراسة كاملة لظروف النمو الضرورية. حتى لو تم استيفاء معظم المعايير، فإن فقدان عامل أو عاملين رئيسين فقط – مثل تدفق المد والجزر أو ملوحة التربة – يمكن أن يؤثر بشكل كبير على بقاء أشجار القرم، نظرًا لأن هذه الأشجار شديدة الحساسية للتغيرات البيئية.

على سبيل المثال، في مشروع تجريبي عام 2023 بالقرب من منطقة الظفرة، تمت زراعة آلاف شتلات القرم في منطقة ساحلية تفتقر إلى الفيضانات المدية المتسقة. مع أنّ التفاؤل الأولي، انخفض معدل البقاء حيٌّ يُرزَق بشكل حاد في غضون أشهر، مما يسلط الضوء على كيف يمكن أن يؤدي سوء اختيار الموقع إلى إهدار الموارد وتثبيط الجهود المستقبلية.

يوضح الشكل 2 كيف تغير الغطاء النباتي لأشجار القرم في الإمارات على مر السنين، بناءً على دراسة أجريت عام 2023. ومع ذلك، كان قياس مناطق أشجار القرم بدقة أمرًا صعبًا. في بعض الأحيان، كانت النباتات البرية القريبة تُحسب عن طريق الخطأ على أنها أشجار قرم، أو كانت مناطق أشجار القرم تتقلص عند إزالة النباتات البرية. هذه المشكلات تجعل من الصعب على العلماء تحديد المدى الدقيق للغطاء النباتي لأشجار القرم.

كيف تتحسن جهود استعادة أشجار القرم

الاستشعار عن بعد

في مشروع الإمارات الجديد لزراعة 50,000 شتلة قرم، سيتم استخدام الاستشعار عن بعد لمراقبة التقدم. ستستخدم هيئة البيئة تقنية الطائرات دون طيار (الدرونز) من شركة “ديندرا” (Dendra)، حيث تمتلك الوسائل اللازمة لزراعة بذور القرم بدقة باستخدام نظامها الآلي لنشر البذور. كما أن الطائرات دون طيار مزودة بالذكاء الاصطناعي، مما يجعلها مفيدة جدًا لتتبع صحة البذور ومراقبة الاضطرابات لمزيد من البحث.

خصوصية الموقع

في أم القيوين، وجد مشروع استعادة أطلقته هيئة البيئة أن التربة التي تحتوي على المزيد من العناصر الغذائية والطين كانت قادرة على الاحتفاظ بالمياه من المد العالي ومساعدة شتلات القرم على الإنبات. ونتيجة لذلك، أصبح هذا الموقع نموذجًا لاختيار مناطق الاستعادة المستقبلية ذات المواصفات المماثلة للتربة.

UAE mangrove conservation

الاستدامة طويلة الأمد

يعتمد تعافي النظام البيئي على أهداف الاستدامة طويلة الأمد. في الإمارات، يتم تنفيذ الحلول القائمة على الطبيعة في المناطق المعرضة للتآكل مثل أم القيوين، والظفرة، وبحيرة القرم الشرقية في أبوظبي، كما هو موضح في “المبادئ التوجيهية لاستعادة أشجار القرم”. تتم دراسة التقنيات المتقدمة مثل نماذج التعلم العميق (مثل UNet++) لمراقبة نمو أشجار القرم ودمج هذه البيانات في المنصات المناخية العالمية. يساعد هذا صانعي السياسات والسلطات البيئية على تتبع عزل الكربون ومواءمة جهود الاستعادة مع الأهداف الوطنية للحياد الكربوني.

الخاتمة: دعوة للعمل

وسط شواطئ الإمارات الذهبية، ترتفع أشجار القرم كرموز للمرونة والتجدد. تبث هذه الغابات الساحلية الحياة في الأرض – فتحميها من التآكل، وترعى التنوع البيولوجي البحري، وتحتجز الكربون من أجل مستقبل أنظف. إن استعادة أشجار القرم ليست مجرد زراعة أشجار؛ إنها زراعة للأمل. فكل بذرة تُزرع هي خطوة نحو الانسجام بين الطبيعة والتقدم.

ترجمة: عبدالله فيصل السلامة

طالب وطموح يسعى لتحقيق التميز في مسيرته الأكاديمية والمهنية. يتقن اللغتين العربية والإنجليزية. يتميز بشغفه الدائم لاكتساب المعرفة وتطوير مهاراته في مختلف المجالات.

Note: The English version of the article is available at this link.

Why New Zealand Has Encountered Atypical Gale-Force Storms in October 2025

New Zealand has just experienced a very atypical weather system of gale-force winds reaching hurricane-force in certain locations across the land. It appears to have been triggered by the warm weather over the Antarctica in the previous month of September, As a result, the whole of New Zealand had to brace itself for abnormally higher temperatures and persistent gale force winds causing havoc across the nation.

aftermath of Cyclone Gabrielle

Temperatures across the land reached nearly 30 degrees on the day of peak impact.  The regions across the land were under severe weather warnings with fire bans and unessential services and activities brought to a sudden halt.

Earth Sciences Meteorology scientists related this threatening weather patterns that pounded across the nation and were traced back to weather conditions encountered across Antarctica in September. In September down at the southern pole region, the upper atmosphere recorded very warm atmospheric conditions that arose suddenly and unexpectedly.  Because of these warmer conditions in the upper atmosphere, there was a weakening in the polar vortex which became ‘wobbly’ and adopted a more oblong shape that the typical wave flow pattern.

The low pressure that was over the continent of Antarctica was displaced over the Southern Ocean and subsequently accentuated the pressure gradient through the atmosphere. As the atmospheric conditions approached and began crossing the island nation of New Zealand, the temperatures were very high and persistent, and the winds intensified into gale-force winds with some regions even reaching hurricane-force winds (over 200kmh).

Spring weather in this part of the globe is highly variable and temperatures can rise above normal but this event was very extreme and severe for those regions that experienced the full force of the weather system’s impact.

It is anticipated that more high winds and hot temperatures may continue and reappear in the coming week or ten days. The land may experience another threatening surge in temperature and in wind. The best forecast is for highly variable weather patterns over the coming weeks. There is also the anticipation of more rain may be brought into the region also.

Cereal Supply Chain in the MENA Region

The cereal supply chain in the Middle East and North Africa (MENA) is highly exposed to disruption risks due to vulnerabilities at both production and post-production stages. Inappropriate climate conditions, water scarcity, fragmented farm structure, insufficient access to input, and inappropriate use of arable land are some prominent production-related problems. On the other hand, high harvest-post-harvest losses, lack of storage capacity, heavy dependence on imports, and lack of investment in technology are among post-production vulnerabilities.

wheat field in the middle east

The World Bank classifies MENA region as comprising 19 countries, spanning from the Atlantic Ocean (adjacent to Morocco) to the Arabian Sea (adjacent to Oman), with only eight of those, namely Algeria, Egypt, Iran, Iraq, Morocco, Saudi Arabia, Syria, and Tunisia have substantial cereal production. Remaining 11 countries; Bahrain, Djibouti, Jordan, Kuwait, Lebanon, Libya, Oman, Palestine, Qatar, and Yemen have very less or no production. In 2022 total wheat and barley production of the region was 38.5 million tons, whereas total consumption was far higher, with around 90 million tons. The gap between production and total consumption fills in with import, leading the region to be one of the largest wheat-barley importing zone in the world (22% of global total imports) by 49 million tons in 2022 (FAO, 2024 a,b).

Individually assessing the countries in the region, none exhibit self-sufficiency in wheat. Bahrain, Djibouti, Jordan, Kuwait, Oman, Qatar, United Arab Emirates, and Yemen have ratios below 10%, demonstrating near-total dependence on imports. Conversely, Algeria, Morocco, Saudi Arabia, Syria, Tunisia, Lebanon, Libya, and Palestine have ratios ranging from 15% to 45%. Lastly, Iran, Iraq, and Egypt possess ratios exceeding 50% (FAO, 2024c). It is crucial to acknowledge that, despite a high self-sufficiency ratio, the majority of cereal imports in the region originate from nations that produce cereal, where 82% of the total population resides.

wheat imports in MENA

Source: FAO 2024c

Measures for mitigating risks and improving resilience of cereal supply chain in MENA

Measures for risk mitigation and improvement of resilience in the cereal supply chain differ upon factors of climatic conditions, cereal production capacities, agronomic practices, land structure, storage and transportation infrastructure, gross domestic product, population growth and import dependency ratio. As conditions of 19 MENA countries differ from each other, measures that should be taken are based on specific conditions of each of them.

For instance, building stockpiles is a critical measure that could be preferred by all MENA countries because of their dependence on import. However, the countries that have no production and heavily dependent on import could embrace this policy more, bearing in mind that stockpiling is exposed to the risks of spoilage and so, a good management is essential.

Scientific literature indicates that countries worldwide are actively pursuing free trade agreements (FTAs) to enhance international economic and trade collaboration, since they provide increased flexibility in regulations and facilitate coordination. This sort of regional and/or free trade agreements with cereal exporting countries could be more binding to ensure sustainable flow of cereals by minimizing exposure to the risks of export restrictions at the time of crises (Zeng et al. 2025).

Countries that have moderate cereal production have more options for mitigating risks and improving resilience in supply chain. In addition to the measures mentioned above, those countries could focus on improving productivity of their domestic production which is significantly low in MENA countries. Use of improved varieties, climate-smart agronomic practices, efficient water management, integrated pest and disease management, advanced mechanization and use of up-to-date technology in production do not only increase productivity but also ensure sustainable use of resources and decrease environmental impacts.

MENA region demonstrates substantial harvest and post-harvest losses, with an average of 14% of the total yield from 2000 to 2022 (FAO, 2024d). This figure is substantially higher than the global average of 4%. Minimizing losses along supply chain will reduce import dependency, increase producers’ income and stabilize domestic prices. Timely harvesting, coupled with appropriately calibrated harvesters, enhanced transportation and storage facilities, and an efficient market that considers the interests of producers can increase production by minimizing losses at harvest and post-harvest stages.

Productivity increase and loss reduction measures can succeed when paired with an inclusive extension program, a target-oriented agricultural research initiative, and substantial infrastructural investments which should be funded by the governments since it could be very costly. A top-down strategy that facilitates the engagement of all stakeholders in the value chain should be favored when establishing programs, ensuring that they incorporate diverse perspectives and ultimately encourage stakeholders to embrace measures and policies developed in collaboration.

Acknowledgements

This work is supported by the CERERE project. CERERE (CEreals REsiliency REvolution for agile supply chain management in the Mediterranean) is funded by the PRIMA Programme 2023 – Section 1 – Food Value-chain 2023 – Topic 1.3.1 (RIA) – Increasing resilience of agri-food supply chain (cereal) in the MENA region, Grant Agreement No. 2331 (Deliverable 2.5: Macroeconomic analysis of cereal supply chain in the MENA region and in the Mediterranean area). The views expressed belong to the author(s) alone and do not necessarily reflect the views of the European Union or the PRIMA Foundation.

References

FAO (2024a, December 20). Crops and livestock products. Retrieved January 23, 2025, from https://www.fao.org/faostat/en/#data/QCL

FAO (2024b, December 20). Crops and livestock products. Retrieved January 23, 2025, from https://www.fao.org/faostat/en/#data/TCL

FAO (2024c, December 20). Part-5- Metadata. Retrieved January 23, 2025, from https://www.fao.org/4/i2490e/i2490e05.pdf

FAO (2024d, December 20).  Food balances (2010 -). Retrieved January 23, 2025, from https://www.fao.org/faostat/en/#data/FBS

Zeng H, Chen S, Zhang H and Xu J (2025) The effects and mechanisms of deep free trade agreements on agricultural global value chains. Front. Sustain. Food Syst. 8:1523091. doi: 10.3389/fsufs.2024.1523091

السواك : فرشاة الأسنان العربية العضوية

منذ القدم, استخدم الإنسان العديد من التقنيات الطبيعية للحفاظ على صحة الفم والأسنان, ومن هذه الأدوات استخدم أغضان وجذور الأشجار المتواجدة طبيعياً في المناطق التي قطنها, ومن هذه الأشجار شجرة الآراك أو Salvadora persica  المنتشرة في المنطقة العربية. تسمى الأعواد المشتقة من شجرة الآراك بالمسواك أو السواك, يرجع إستخدام السواك في المنطقة العربية إلى عصر ما قبل الإسلام,  لكن كان للإسلام عظيم الأثر في إنتشار وإستمرارية إستخدام السواك في العالم, فكما ورد في الأحاديث الشريفة عن الرسول محمد صلى الله عليه وسلم يعتبر إستخدام السواك جزءاً مهماً من الطقوس الدينية الإسلامية للحفاظ على نظافة الفم وصحة الأسنان واللسان, كما نسبت الأحاديث  النبوية العديد من الفوائد الصحية الأخرى للسواك بما في ذلك تعزيز الذاكرة والبصر، والمساعدة على الهضم، وتخفيف الصداع، وتخفيف ألم الطواحين وتقوية مخارج نطق الكلام وتصفية الصوت والتخلص من بحة الصوت.

natural toothbrush

شجرة الآراك

تنتمي شجرة الآراك إلى الفصيلة الآراكية, وهي شجرة دائمة الخضرة تعيش في المناطق الحارّة والإستوائيّة والصحراويّة, أزهارها صفراء تميل إلى الخضرة، أما ثمارها والتي تسمى بالكباث فهي صغيرة الحجم بطعم ٍ حلوٍ يكون لونها في البداية أخضراً ومن  ثم يتحول إلى الأحمر وعند النضج  تصبح سوداء اللون, وتتميز شجرة الآراك – أو كما تسمّى أحياناً شجرة السواك- بمقاومتها للجفاف وملوحة التربة.

فوائد الآراك الصحية والإقتصادية

من الناحية الصحية, فإن القيمة العلاجية والطبية الفريدة للسواك مثبتة وبالأدلة العلمية, حيث يمزج السواك بين عنصريين أساسيين للحفاظ على صحة الفم والأسنان وهما: المواد الكيميائية الفعالة ذات الخواص المضادة للجراثيم الضارة, والتقنيات الميكانيكية المرنة التي تساعد على الوصول إلى جميع المناطق في الفم دون القيام بحت الأسنان وبالتالي عدم التسبّب بحساسيتها ودون التسبب بأي أذى للثة. ولقد أظهرت الأبحاث أن السواك إذا ما استخدم بالطريقة الصحيحة فإنه يحافظ على صحة الفم بفعالية عالية ويعمل كمضاد للمايكروبات المسببة لإصفرار الأسنان وتشكل طبقة البلاك plaque ، كما أنه يمتلك خصائص طبية تجعل منه علاجاً فعالاً لإلتهاب اللثة وأداة ممتازة لتبييض وتطهير الأسنان ووسيلة للقضاء على رائحة الفم الكريهة مع توفير رائحة فم لطيفة. كما ولقد ثبت علمياً أن تركيب السواك يحوي مكونات طبيعية مفيدة تعمل كمواد مضادة للإلتهاب والإحتقان وعلاج تسوس الأسنان والتي لا توجد عادة في معاجين الأسنان التجارية .

وهذا ولقد حصل السواك على قبول عالمي حيث شجعت منظمة الصحة العالمية على إستخدام عصي المضغ كأداة فعالة للحفاظ على النظافة الفموية. أما تجارياً، فلقد أنتجت بعض البلدان مثل السعودية ومصر وسويسرا والهند والباكستان وماليزيا معاجين أسنان تحوي العناصر الفعالة الموجودة في شجرة الآراك.

يعد الآراك أو S.persica    من الناحية الإقتصادية نباتاً متعدد التطبيقات, إذ يستفاد من ثماره كفاكهة تمتاز بحلاوة الطعم ذات قيمة غذائية عالية للإنسان والطير, كما وترعى النوق والأغنام على أوراقه وثماره وأغضانه حيث أنها غنية بالدهون وتساعد على زيادة وزن المواشي وكمية إنتاجها من الحليب, كما وتحوي أوراق وثمار الآراك مواد غذائيّة مهمّة تعمل على تقوّية أجسام الأغنام والإبل, أيضاً يستخرج من الآراك الصمغ والراتنجات (Resin). بالإضافة إلى ذلك، فإنه يستخدم كنبات في تربية النحل والناتج في هذه الحالة عسلٌ غني بالمركبات الطبية الطبيعية. ليس هذا فحسب,  بل وتحتوي بذور الآراك على نسبةٍ عاليةٍ جداً من الزيت تصل إلى 40% من محتوى هذه البذور, هذا الزيت ذو قيمةٍ اقتصاديةٍ مرتفعة حيث يستخدم في صناعة الصابون والمنظفات ويعتبر هذا الزيت بديلاً جيداً لزيت جوز الهند, ويستخدم زيت الآراك موضعياً على الجلد لعلاج الروماتيزم وتمسح به أجساد الأطفال الحديثي الولادة نظراً لخواصه المطهرة .

مما لا شك فيه أن السواك أداة إقتصادية للحفاظ على نظافة الفم نظرًا لوفرتها ولسهولة إنتاجها،  ولكن ومن المدهش أنه وبالرغم من الإستخدام التاريخي والواسع النطاق للسواك في المنطقة العربية, إلا أنه لم يتم بحث إستخدامه سابقاً من الناحية البيئية كأداة للحفاظ على الصحة الفموية ومقارنة ذلك مع تحقيق أهداف التنمية المستدامة, إذ يمكن إستغلال الإستخدام الواسع للسواك في البلاد الإسلامية بيئياً وذلك بتقديم السواك كأداة صديقة للبيئة وفريدة من نوعها  لتنظيف الفم والأسنان كما سيوضح لاحقا.

فوائد الآراك البيئية

أولاً من الناحية الزراعية

تنتشر زراعة الآراك أو S.persica على نطاق واسع في عدة مناطق في شبه الجزيرة العربية وذلك ليس فقط لإستخدام فروعها كفراشي أسنان طبيعية، إنما أيضاً لتوظيف النبات نفسه كمصداتٍ للرياحِ ولتشكيل أحزمةٍ طبيعيةٍ لحماية محاصيل البستنة والزراعة, كما وتُزرع أشجار الآراك في الأودية الصحراويّة لتثبيت التربة ومنع إنجرافها, هذا وتساعد زراعتها في إستصلاح موائل الكثبان الرملية وإستغلال التربة المالحة في الزراعة.

ثانياً من ناحية الحفاظ على المصادر الطبيعية

تعتبر عمليتي إنتاج السواك وإستهلاكه عمليتان مستدامتان وتحافظان على عناصر البيئة من ماء وهواء وتربة,  فمن حيث التركيب فهو يتركب من مادة عضوية بحتة متوفرة طبيعياً,  أما من ناحية الإنتاج فلا تحتاج عملية إنتاجه إلى خبرة أو أية موارد أو مواد إضافية أو مصانع أومعدات ضخمة, كما أنه على عكس عملية تصنيع فراشي الأسنان ومعاجين الأسنان الصناعية, فإن إنتاج السواك لا يولد نفايات صناعية نهائياً ولا يلوث الهواء كما تفعل الصناعات الحديثة, أضف إلى ذلك أن إنتاجه  يعتمد بشكل كامل على الطاقة الشمسية الطبيعية فقط فهو بذلك موفر للطاقة ولا يعتمد على طاقة الوقود الأحفوري الملوثة للبيئة,  أما من ناحية إستهلاك المياه  فإن نبتة S.persica تتمتع بقدرة عالية على تحمل ملوحة التربة حيث يمكن لبذور هذا النبات أن تنمو في ماءٍ مالحٍ معدل ملوحته dsm 15,

كما تتميز هذه النبتة بإستهلاكها الضئيل للماء حيث أن شجرة الأراك قادرة على تحمل بيئة قاحلة للغاية مع متوسط ​​هطول أمطار أقل من 200 ملم سنوياً.  وحتى بعد الإستخدام, فإن السواك صديق للبيئة حيث أن التخلص من بقاياه سهل جداً نظراً لطبيعته العضوية.

السواك وأهداف التنمية المستدامة للأمم المتحدة

وعند الرجوع إلى أهداف التنمية المستدامة للأمم المتحدة (SDG), نجد أن إستخدام السواك كبديل مستدام لفرشاة الأسنان الصناعية يحقق بصورة مباشرة أو غير مباشرة الأهداف التالية :

  1. الهدف الثالث المتمثل بتمتع الجميع بأنماط عيش صحية.
  2. الهدف السادس المتمثل بتوافر المياه للجميع وإدارتها إدارة مستدامة.
  3. الهدف السابع المتمثل بالطاقة نظيفة والمستدامة.
  4. الهدف الحادي عشر المتمثل بمدن ومجتمعات محلية مستدامة.
  5. الهدف الثاني عشر المتمثل بوجود أنماط إستهلاك وإنتاج مستدامة.

الخلاصة

مما سبق يستنتج أنه يمكن تبني السواك بسهولة كفرشاة أسنان صديقة للبيئة وكبديل أخضر لفرشاة الأسنان البلاستيكية التقليدية للحفاظ على نظافة الفم وصحة الأسنان, حيث أنه فرشاة أسنان عضوية طبيعية تتميز بوفرتها وبسهولة إستخدامها وبإنخفاض تكلفتها وتكلفة إنتاجها وتوفيرها للماء والطاقة مع عدم إنتاجها للنفايات الصناعية أو تسببها بالتلوث سواء في أثناء عملية التصنيع أو بعد الإنتهاء من الإستخدام, هذا وإن زراعتها تعتبر إستصلاحاً للتربة المالحة  وذات قيمة إقتصادية وبيئية مهمة.

Are Wooden Gates Worth It?

Gates are important – if situated at the entrance to any property they provide the first impression for visitors – so what impression do you want them to have? Is security and deterrence the key issue, is it aesthetics or is it simply functionality – a convenient way to access fields for livestock – or a combination of these? Whatever your requirement you can be assured that there’s a wooden gate option that will work for you.

Read on to know the multiple benefits of wooden gates:

why wood might be the best choice for your next gate

Wood gates are generally cheaper than metal

Metal gates tend to come in steel or aluminum and in a number of different sizes and designs, the same as wood, however there are many different types of both soft and hard wood that wooden gates can be made from. The more common softwood varieties include the common Redwood, or ‘Scots Pine’, and the remarkably sturdy Red Cedar, whilst hard woods include Iroko and European Oak.

Softwood gates are more cost-effective than their hardwood counterparts, and cheaper than metal gates with a typical lifespan of between 7 and 8 years, subject to regular maintenance and the application of preservative (some gates come with a level of protection added but check carefully prior to purchase).

Depending on the type of more durable hardwood you select the price will be more compatible with metal gates but still generally cheaper. Iroko is a long lasting, stable and attractive wood that offers a fantastic lifespan, and European Oak is a denser wood that is very resistant to fungal and insect attacks, thanks to its high tannin content.

Wooden gates are an affordable option for first-time farmers, or householders and landowners on a budget.

Wooden gates are strong

As well as being cost-effective, wooden gates, when properly treated and maintained, can be more than strong enough for most applications, whilst obviously not being as strong and durable as metal alternatives. Wood gates need to be protected from pests, heavy wind and rain, and harsh UV light. Regular coats of protective sealant or preservative can safeguard a wooden gate and prolong its lifespan for many years.

Wooden gates are easy to repair

Unlike metal gates, wooden gates can be repaired relatively quickly and cheaply, often by someone with competent DIY skills and standard maintenance tools. Metal however requires specialist repair such as welding which can be expensive and inconvenient to arrange. The trick with wood is to ensure against the need for major repairs by undertaking regular checks against small damage that might deteriorate and cause the need for major repairs at a later stage.

You need to ensure wood is properly and appropriately protected. Metal gates might not need such regular maintenance as wood but when metal gates do need repair it is more of a complex and costly undertaking.

Wooden gates are aesthetically pleasing

As well as offering a number of physical benefits, wooden gates are commonly chosen for their classic appearance, especially in a rural or countryside setting where the organic appeal of wood is compelling. After all, wooden gates have been used for centuries, and their aesthetic is something we tend to appreciate as wooden gates create a classic country look to improve the appearance of any outdoor space.

Metal gates on the other hand have a more austere, functional aesthetic. Treated carefully, wooden gates can last many years whilst creating that desired ageing effect that many people, especially homeowners, find aesthetically pleasing.

Wooden gates are versatile

Wooden gates are extremely versatile. They can be installed as a means of entrance or exit for both agricultural and residential properties. There is a huge range of wooden gates to choose from. Make sure you weigh up the pros and cons of each type of wooden gate before you make an informed decision and start the installation process.

When it comes to installing a new gate at your property remember that wooden gates have many advantages over metal alternatives and with such a wide range of options to choose from, you are guaranteed to find a wooden gate to suit you and your individual budget and requirements.

Environmental NGOs as a Trigger for Social Good – a Jordanian Perspective

While growing in number and scope with each passing year, environmental NGOs in Jordan are striving to become a model in civil society participation, collaborative governance and social impact. They are demonstrating how green advocates can lead by example and become a role model for other development leaders. Those non-for-profits are challenged to not only be the watchdogs and outreach arms but also act as community organizers and change agents that our country and region aspire for.

Jordan-GBC

In harmony with the overall awakening of social entrepreneurship and youth movement within MENA region, green startups and community-based initiatives are climbing to the top as platforms for youth to express their views and take action. Jordan might be an exception in that it specifically enjoys the presence of a large educated young population coupled with a huge pressure on infrastructure and resources magnified by the influx of refugees from neighboring countries.  Such circumstances while being a tremendous challenge also form an opportunity to advance innovation and entrepreneurship especially for urban water, energy and environmental solutions.

Recent statistics show that an average of 48 Jordanian NGOs is established each month mounting up to around 3800 in 2014. Out of those, ninety-two are already registered as environmental societies with over half of them located outside the capital Amman. Eight NGOs sharing common environmental goals formed together the first Federation for Environmental NGOs and hope to be more impactful when united.

Whether all of this is enabled by the supportive legal and regulatory framework or powered by increased awareness among the population of the role of civil society in sustainable development; it is an evolution that calls for some reflection! Does this figure reflect a real grass-roots movement towards a sustainable way of living? Are these green NGOs a representation of a stronger public-private-community dialogue on environmental issues? And can we – as Jordanians and environmentalists – sense/measure the impact of real change on the ground?

While no one might have the evidence-based answer to all of those questions, there is no doubt that the green civil society experience in Jordan forms a unique model across the country and the MENA region. It is led mostly by Jordanian professionals and activists with shared inclination to making a difference. Younger generations are more conscious and action oriented when it comes to sustainable development.

In and outside Amman, volunteerism and community-based activities are becoming more innovative and inclusive providing hope for a better future. Nevertheless, NGOs still struggle with their institutional and financial sustainability and mostly fall behind in finding innovative ways to survive the increased competition.

The Beginning and The Evolution

Back in the 60s, the Royal Society for the Conservation of Nature (RSCN) was established as the first entity focusing on wildlife protection and nature management in Jordan, prior to the existence of any environmental authority. RSCN continues to perform its functions via a legal mandate and delegation from the Government of Jordan in the areas of hunting regulation and protected areas management forming an excellent partnership model with the public sector.

Today, RSCN deploys sustainable development principles in the protected areas demonstrating job creation and community development in their good standards. Dana Natural Reserve is an international eco-tourism destination because of those successful partnerships. Nature protection is no longer a hurdle to development but rather a pillar to ensure its sustainability. Aiming to bridge the skill and knowledge gap in nature protection and eco-tourism, RSCN established the international-standard “Royal Academy for Nature Conservation”.

With the first environmental protection law that was issued in 1995 and the further institutional development through the establishment of the Ministry of Environment in 2003; it became inevitable for civil society organizations to be part of the evolution. Introducing environmental management tools such as environmental impact assessment (EIA) required public participation and consultation. Several NGOs were established and trained to take part in those consultations and ensure new projects take both the environment and society into consideration from as early as the planning stage.

Triggered by its scarce natural resources and commitment to international environmental treaties, Jordan went as far as integrating environment into its trade agreements. The US-Jordan Free Trade Agreement was the first to include an environmental chapter. Further bilateral and multilateral agreements such as the EU-Jordan Association Agreement included sustainability and environment as a pillar and as a cross-cutting issue that should safeguard cooperation in various development sectors. NGOs needed to cope with all of that and raise the bar for more synergy between environment, community and economic development.

The New Language

For a long time, the core focus of the environmental community has been on protection and conservation. Jordanians still recall the advocacy breakthrough of 2006 when the environmental NGOs exerted exceptional pressure on the legislative and executive bodies to prevent the approval of the Agriculture Law amendments that was foreseen to jeopardize the important forest areas by opening them for purchase by investors.

Today, Jordan is aggressively pursuing green economy targets as the first country in the MENA Region to conduct a scoping study and prepare a strategy for green growth. The ninety-two environmental NGOs would need to be well prepared for a completely different argument. Away from green, the socio-economic dimension will be the winner with more demand for jobs, local economic development and innovation. Environmental mainstreaming into development sectors would be the new strategic planning tool to ensure sustainability. Concepts of smart cities and green infrastructure should start to show on pilot and large scales how quality investment is attracted and high paying jobs are created.

Jordan_ClimateChange

For the first time, green businesses are coming together to establish business associations that advocate for better enabling environment and fuel green economy. Such private sector led organizations work to provide needed platforms and tools to equip green labor force and organize dialogue with the public sector and international community. The progress made by the private sector to become more organized through business association should be leveraged and further expanded to incorporate more companies especially startups and SMEs.

The Leap

In May 2014 and as a marked step towards a stronger impact, eight environmental NGOs decided to formalize their partnership through establishing the “Jordanian Federation for Environmental NGOs”, commencing a new era of green social impact, policy advocacy and good governance. The eight founding NGOs are: Jordan Environment Society (JES), Royal Society for Conservation of Nature (RSCN), Jordan Royal Marine Conservation Society (JREDS), Energy Conservation and Environmental Sustainability Society, Arab Group for the Protection of Nature, Jordan Society for Combating Desertification, Organic Farming Society, and the Jordan Green Building Council. They bring a mix of the old and new united by their shared concerns, passion and vision.

The federation’s internal bylaw stipulates the goals of the “Jordanian Federation for Environmental NGOs” to cover the following areas: policy and legal advocacy, awareness raising and capacity building, coordination and collaboration among members and across the sector, data and information dissemination, and members support. While many are unaware of the existence of the federation, it is only by action that it will prove vital for Jordan and sustainable development as a whole.

A Meaningful Impact

Throughout the years, the relationship between the green sector players had its ups and downs especially in how the public sector managed the engagement with the private sector and civil society. It is evident that this relationship has grown in the past few years triggered mainly by the need for stronger positions towards the huge challenges facing environment in Jordan and the realization of the important role that each party can play in achieving sustainable development goals. NGOs were the main advocate to stop a government decision to merge the Ministries of Environment and Municipal Affairs in 2012.

As mature as it would prove to be, the Federation for Environmental NGOs bears the responsibility of the whole sector’s maturity especially when it comes to improved dialogue and coordination. The visionary leaders who realized the value of uniting for a cause are those who need to cascade such vision to the other sectors. Shifting from reactive to proactive, NGOs are obliged to change mindset of their boards and staff to be able to change communities. The world is more convinced that the private sector holds the promise for green economy, green jobs and better future.

However, very little synergy is found with the educational, research and innovation institutions which are crucial to develop the brains and change the mindset. Innovation in green is not kicking off as it should be in MENA. Research, science and technology continue to be disconnected from market needs. The NGOs and business associations need to step up as drivers for a well integrated change process that assures people as well as the green enterprises of their safe and flourishing future.

Let’s not wait and see but let’s join the movement and make it happen!

How to Convert Scrap Tires into Biofuel

Waste disposal is a serious concern these days, especially with the increasing public awareness of the need to protect the environment. Solid wastes like old tires present complicated disposal problems. Large, hollow, durable, and non-biodegradable, old tires can take up substantial space in landfills. Leaving tires to nature can also be problematic as mosquitoes and other pests may thrive on them.

Scrap_Tires

In the United States, an estimated 300 million scrap tires are produced every year. Around the world, the number jumps to about 2 billion. Fortunately, there are several ways to recycle scrap tires including conversion into biofuels.

What is Tire-Derived Fuel?

Tire or rubber recycling can take on several forms. Tires can be reused in railway lines to reduce vibration. It can also be used as construction materials in playgrounds, running tracks, and other facilities.

One of the best ways to reuse scrap tires is to convert these to biofuel. Generally referred to as tire-derived fuel (TDF), it is a cleaner, more sustainable, and cheaper alternative to fuel. TDF provides an advanced and practical approach to tire recycling, and widely used in industrial facilities worldwide including pulp and paper kilns, cement kilns, and electric utilities.

As a supplemental fuel, it helps companies generate savings in energy costs while increasing boiler efficiency and lowering air emissions. It is estimated that more than half of the scrap tires generated yearly are used as TDF.

With its high heat value, scrap tires are an excellent fuel source. Consider that the heating value of an average passenger tire can go up to 15,000 British thermal units (Btu) per pound, which is even better than the 12,000Btu per pound of coal.

On a grander scale, scrap tires represent a viable energy source. Based on the average discard rate of 300 million tires a year, it is estimated that old tires can produce energy equivalent to around 17 million barrels of oil. This is roughly less than 1% of the energy needs in the United States.

Conversion of old tires into biofuel

There are two physical actions involved in the conversion of tires into biofuel: shredding and pyrolysis, or the decomposition of the tires by exposing it at high temperatures and the use of a special catalyst.

TDF processing may involve whole tires or tires cut down into uniform species. The size of the tire for fuel conversion would largely depend on the kind of combustion unit to be utilized.

In shredding rubber, scrap tires can be entirely placed into the shredder. There is also the option to have the beads extracted before shredding. Shredders are high-shear and low-torque in nature capable of reducing truck tires with an outside diameter of 48 inches to 1 to 4-inch pieces.

After the tires have been cut into smaller pieces, these are then fed into a pyrolysis reactor. In this machine, the rubber is softened by exposing it to high temperatures that can exceed 700 degrees Celsius. At high-temperature heating, rubber polymers would break down into smaller molecules. These would then vaporize and exit from the pyrolysis reactor.

The vapor can be condensed into bio-oil or pyrolysis oil, an oily type of liquid. It can also be burned directly for power production. Some molecules too tiny to condense remain as gas and burned as fuel.

Critical to this process is the heating rate of a tire as it can affect reaction time, product quality and yield, and energy requirement. In instances when the heating temperature is at around 450 degrees Celsius, the product is liquid which is often a mix of hydrocarbon. At heating temperatures above 700 degrees Celsius, the primary product is synthetic gas or syngas primarily because of cracking of the liquids.

Aside from being used as biofuels, the derived byproducts of bio-oil and syngas can be used as feedstock for refining chemical products. Bio-oil is coveted for its low sulfur and residual carbon content aside from having a high calorific value. It is used in paper mills, cement kilns, power plants, foundries, industrial furnaces, and other industries.

The solid residue from scrap tires called char contains inorganic matter and carbon black. It is commonly used as activated carbon or smokeless fuel in the rubber industry.

In Australia, however, a tire recycling process does not require the shredding of scrap tires in order to convert it into biofuel. The Victoria-based Green Distillation Technologies processes all kinds of tires including the super singles with a diameter of 1.2 meters. The tires are loaded into an airtight process chamber. Shredding, crumbling, or chopping of the tires are not required.

The tires are then subjected to high-temperature heating which serves as a catalyst for a chemical reaction. The tires are destructed into various compounds, one of which is gathered and condensed into the oil. This is the same as the bio-oil produced by a pyrolysis reactor.

Application of Tire-Derived Fuel

As mentioned earlier, biofuel from scrap tires is useful in various industries such as cement manufacturing. TDF is used by cement makers to augment their fuel for firing cement kilns. The use of tires as fuel has also been proven to help in reducing the emission of harmful chemicals into the air.

TDF is also tapped by pulp and paper companies to supplement wood waste, the main fuel used in powering pump mill boilers. TDF has a higher heat value than wood waste while helping overcome operating problems such as low heat content and high moisture content. The use of TDF likewise helps pulp and paper mills lower their fuel costs and improve their combustion efficiency. It can also help improve the public image of paper mill boilers.

To conclude, converting scrap tires into biofuels present a practical energy source for many industries around the world. Thermal conversion of tires into an alternative and clean fuel is considered an environment-friendly and practical approach to disposing of a difficult solid waste.