How Podcasts and Audio Content Drive Environmental Awareness in MENA

The digital era has opened new horizons for spreading environmental knowledge across the Middle East and North Africa. Eco-activists, researchers, and sustainability advocates are increasingly turning to podcasts as a powerful medium to educate communities about climate change, renewable energy, and conservation. For content creators looking to launch their own environmental podcast, understanding microphone prices and audio equipment options is the first step toward producing professional-quality content that resonates with audiences.

podcast in lush green surroundings

The Rise of Eco-Podcasts in the Arab World

Environmental podcasts have gained significant traction in recent years, particularly among younger generations seeking accessible information about sustainability. Unlike traditional media, podcasts offer an intimate and convenient way to learn about complex environmental issues during commutes, workouts, or daily routines. From discussions about water scarcity in Jordan to renewable energy developments in the UAE, audio content bridges the gap between scientific research and public understanding.

Why Audio Content Matters for Environmental Education

Studies show that audio learning enhances information retention and emotional connection with topics. When listeners hear passionate voices discussing coral reef restoration or the impact of plastic pollution on marine ecosystems, they develop a deeper sense of responsibility. Environmental organizations across the MENA region are leveraging this medium to share success stories, interview experts, and mobilize communities toward sustainable practices.

educational podcasts

Getting Started with Your Environmental Podcast

Launching an eco-podcast requires minimal investment compared to video production, yet delivers substantial impact. Essential equipment includes a quality microphone, audio interface, and editing software. Many successful environmental communicators started with basic setups and gradually upgraded their gear as their audience grew. The key is to begin sharing valuable content consistently while focusing on topics that matter to local communities.

As the MENA region faces pressing environmental challenges from water scarcity to desertification, the need for accessible environmental education has never been greater. Podcasts represent a democratic and scalable solution for spreading awareness and inspiring action.

Whether you are an established environmental organization or an individual passionate about sustainability, audio content offers an effective channel to amplify your message and contribute to a greener future for the Middle East.

Can Treated Wastewater Help Algeria Overcome Water Scarcity?

Water scarcity is among the most critical environmental and socio-economic challenges confronting Algeria. Located largely within arid and semi-arid climatic zones, the country experiences highly variable rainfall, frequent droughts, and limited renewable freshwater resources. Per capita renewable water availability in Algeria is estimated at around 404 m³/year, placing the country well below the internationally recognized water scarcity threshold of 1,000 m³/year [1]. Climate change projections indicate further reductions in precipitation, rising temperatures, and increased evapotranspiration, all of which are expected to intensify water stress in the coming decades [2]. In this context, the search for alternative and non-conventional water resources has become a national priority, with treated wastewater increasingly recognized as a strategic option for enhancing water security.

wastewater treatment plant in algeria

Globally, treated wastewater reuse has emerged as a key component of integrated water resources management, particularly in water-scarce regions. Wastewater is no longer viewed solely as a waste product but rather as a reliable and climate-resilient water source that can supplement conventional supplies [3]. In the Middle East and North Africa region, municipal wastewater generation is estimated at more than 20 billion cubic meters per year, yet only a fraction of this volume is safely treated and reused [4]. Expanding wastewater reuse can significantly reduce pressure on surface water and groundwater resources while supporting agricultural production, industrial activities, and environmental protection.

Algeria has made considerable investments in wastewater treatment infrastructure over the past two decades. More than 230 wastewater treatment plants have been constructed across the country, increasing the national treatment capacity substantially [5]. These facilities are distributed across coastal, high plateau, and southern regions, reflecting a national effort to improve sanitation coverage and reduce pollution loads discharged into the environment. Despite these investments, the actual reuse of treated wastewater remains limited. Estimates suggest that less than 10% of treated effluent is currently reused, primarily for agricultural irrigation, while the majority is discharged into wadis or the sea [6]. This gap between treatment capacity and reuse highlights a significant untapped potential.

Agriculture represents the most promising sector for wastewater reuse in Algeria. The sector accounts for the largest share of national water withdrawals and is particularly vulnerable to water shortages. In arid and semi-arid regions, irrigation relies heavily on overexploited groundwater resources, leading to declining water tables and increasing salinity [7]. Treated wastewater offers a dependable alternative supply for irrigation, especially for forage crops, cereals, industrial crops, and tree plantations. Studies conducted in several Algerian regions, including the Mitidja Plain and the M’Zab Valley, have shown that treated wastewater can be used for irrigation without significant adverse effects on soil or crops when appropriate treatment levels and management practices are applied [8-9]. Moreover, treated wastewater contains nutrients such as nitrogen and phosphorus, which can partially substitute for chemical fertilizers and reduce production costs.

Beyond agriculture, treated wastewater can support other water-intensive activities. Industrial reuse is increasingly recognized as a viable option, particularly for cooling, washing, and process water in industries where potable quality is not required. International experience shows that industrial reuse can significantly reduce freshwater demand and improve overall water efficiency [10]. In Algeria, where industrial development is expanding, especially in coastal and high-plateau regions, reclaimed wastewater could provide a reliable supply while reducing competition with domestic and agricultural water uses. Similarly, treated wastewater can be used for landscape irrigation, green belts, road cleaning, and dust control, contributing to improved environmental quality and urban livability without consuming valuable freshwater resources.

The role of treated wastewater in climate change adaptation is particularly relevant for Algeria. Climate change is expected to increase the frequency and severity of droughts, making traditional water sources less reliable [11]. Unlike rainfall-dependent resources, wastewater generation is closely linked to population size and water consumption patterns, making it a relatively stable supply even during dry periods. By integrating wastewater reuse into national water planning, Algeria can enhance the resilience of its water systems to climate variability. Furthermore, wastewater reuse aligns with circular economy principles by closing water loops, reducing pollution, and promoting resource efficiency [12].

Despite its potential, several barriers hinder the large-scale adoption of wastewater reuse in Algeria. Technical challenges include the limited availability of tertiary treatment processes, which are often required to meet reuse standards, particularly for unrestricted irrigation. Many treatment plants operate with primary or secondary treatment only, resulting in variable effluent quality [6]. Institutional and regulatory challenges also persist. While Algeria has established regulations governing wastewater reuse, enforcement and monitoring remain inconsistent, and coordination among water, agriculture, and environmental authorities is often limited [5]. In addition, public perception and social acceptance pose significant challenges. Concerns about health risks and environmental impacts can reduce willingness among farmers and communities to use reclaimed water, underscoring the need for transparent communication, capacity building, and stakeholder engagement.

wastewater-treatment-processEconomic considerations further influence the feasibility of wastewater reuse. Although reuse can be cost-effective compared to alternatives such as desalination or long-distance water transfers, initial investments in wastewater treatment upgrades, distribution networks, and monitoring systems can be substantial. However, studies in comparable arid regions demonstrate that the long-term economic benefits of wastewater reuse including reduced water scarcity impacts, improved agricultural productivity, and job creation, often outweigh the costs [4,10]. In Algeria, targeted financial incentives, public–private partnerships, and integration of reuse into agricultural and industrial development programs could accelerate adoption.

Treated wastewater should not be viewed as a standalone solution to Algeria’s water scarcity but rather as a complementary component of a diversified water portfolio. The country has invested heavily in seawater desalination to secure drinking water supplies, particularly in coastal regions. While desalination provides a reliable source of potable water, it is energy-intensive and costly. Combining desalination with wastewater reuse allows for a more balanced allocation of resources, reserving high-quality desalinated water for domestic use while employing reclaimed wastewater for non-potable applications [13]. Such an integrated approach enhances overall system efficiency and sustainability.

Conclusion

The treated wastewater has significant potential to help Algeria overcome its growing water scarcity. The existing wastewater treatment infrastructure provides a strong foundation, but greater efforts are needed to translate treatment capacity into effective reuse. By upgrading treatment technologies, strengthening regulatory frameworks, promoting stakeholder acceptance, and integrating wastewater reuse into broader water and climate strategies, Algeria can transform wastewater from an underutilized by-product into a strategic resource. While wastewater reuse alone cannot fully resolve water scarcity, it is an essential pillar of sustainable water management and a key contributor to long-term water security in Algeria.

References

[1] Ait Mimoune Hamiche,Amine Boudghene Stambouli,Samir Flazi.A review on the water and energy sectors in Algeria: Current forecasts, scenario and sustainability issues. Renewable and Sustainable Energy Reviews. Volume 41, January 2015, Pages 261-276.

[3] Asano, T., Burton, F. L., Leverenz, H. L., Tsuchihashi, R., & Tchobanoglous, G. (2007). Water reuse: Issues, technologies, and applications. McGraw-Hill.

[4] Qadir, M., Drechsel, P., Jiménez Cisneros, B., Kim, Y., Pramanik, A., Mehta, P., & Olaniyan, O. (2020). Global and regional potential of wastewater as a water, nutrient and energy source. Nature Reviews Earth & Environment, 1, 681–695.

[5] MH. (2024). National water strategy. Ministry of Hydraulics, Algeria.

[6] Benderradji, L., Kettab, A., & Boudoukha, A. (2022). Wastewater treatment and reuse in Algeria: Current status and future challenges. Environmental Monitoring and Assessment, 194, 1–15.

[7] Bouarfa, S., Kuper, M., & Errahj, M. (2019). Water scarcity, groundwater overexploitation and irrigation sustainability in North Africa. Water Resources Management, 33, 259–273.

[8] Kettab, A., Boudoukha, A., & Benderradji, L. (2017). Wastewater reuse in Algeria: Stakes and perspectives. Desalination and Water Treatment, 91, 1–9.

[9]Hadj-Said, S., Chenchouni, H., & Kettab, A. (2020). Reuse of treated wastewater for irrigation in arid regions: Environmental and agronomic impacts in Algeria. Journal of Water Reuse and Desalination, 10(4), 473–486.

[10] OECD. (2018). Water reuse in the circular economy. OECD Publishing.

[11] IPCC. (2022). Sixth Assessment Report: Impacts, Adaptation and Vulnerability. Intergovernmental Panel on Climate Change.

[12]European Commission. (2020). A new circular economy action plan. Brussels.

[13] Ghaffour, N., Missimer, T. M., & Amy, G. L. (2015). Technical review and evaluation of the economics of water desalination. Desalination, 309, 197–207.

Long-Term Solutions to Address Water Scarcity in Jordan

Jordan, characterized by its arid desert climate, is among the most water-scarce countries in the world. The nation’s renewable water resources amount to less than 100 m³ per capita annually—far below the water scarcity threshold. Overexploitation of groundwater, climate change, and rapid population growth have triggered an acute water crisis, leading to soil degradation, desertification, rising water costs, economic constraints, biodiversity loss, and public health challenges. Jordan primarily relies on surface water from rivers, groundwater, rainwater harvesting, and treated wastewater for reuse, while planning seawater desalination at Aqaba.

skyline of Amman

To address the escalating water shortage, a long-term strategy integrating cloud seeding, desalination, rainwater harvesting, and wastewater treatment and water reuse is essential. These technologies collectively offer resilience against water scarcity in a country with extremely limited resources.

Water Crisis in Jordan

Jordan ranks among the most water-stressed nations globally. Overdrafting of aquifers, urbanization, and refugee influxes have intensified pressure on water resources. Extreme water scarcity is defined as less than 500 m³ per person per year. In 1946, water availability was approximately 3,600 m³ per person annually, but this figure has plummeted to less than 100 m³ by 2017.

Prolonged droughts during the 1970s increased evaporation and exacerbated irregular rainfall patterns. Climate change has further reduced precipitation and raised temperatures, increasing volatility in water supply. Precipitation has declined by about 20% over recent decades, and 92% of Jordan’s land area receives less than 200 mm of rainfall annually. Evaporation accounts for roughly 88–93% of total precipitation, while infiltration remains minimal.

Groundwater levels in aquifers are dropping by up to two meters annually due to overexploitation. Additional losses occur through leakage in distribution systems, where cracks in main pipelines and faulty connections cause significant water loss. Studies indicate that only 30–50% of produced water reaches households due to leakage.

Population growth, improved living standards, and economic development have increased water consumption, thereby generating more wastewater. Wastewater is highly concentrated due to low per-household water use, making it rich in organic matter, nitrogen, phosphorus, and minerals. However, high salinity can negatively affect soil fertility and crop production.

Climate projections for 2100 suggest temperature increases of 2.1–4 °C and precipitation declines of 15–35%, impacting agriculture, marine ecosystems, and multiple sectors. Globally, forecasts indicate that water scarcity will affect 40% of the world’s population by 2030.

In 2019, 54.4% of Jordan’s water consumption came from groundwater, 30.8% from surface water, 14.5% from treated wastewater, and only 0.3% from desalinated seawater. Additionally, about 26% of water resources are shared with neighboring countries through transboundary basins governed by agreements. The Jordan and Yarmouk Rivers flow through Israel and Syria, making access uncertain.

Wastewater Treatment and Reuse

Jordan has long invested in wastewater reuse, particularly for agricultural irrigation. The country operates 32 treatment plants that process wastewater for irrigation purposes. Many plants meet basic standards for Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD), but microbial quality and salinity remain challenges. Membrane Bioreactor (MBR) technology offers high water quality and requires less space, though it demands higher energy and poses risks of membrane fouling.

wastewater treatment plant

In 2008, treatment plants were overloaded, resulting in poor quality. Conditions improved by 2018 with the establishment of new facilities and expanded connections, reducing load to 68% of design capacity and improving outcomes. Today, approximately 75% of treated water meets national irrigation standards.

Desalination of Seawater and Brackish Water

The most common desalination method is Sea Water Reverse Osmosis (SWRO), combined with energy recovery systems to reduce costs. Seawater desalination at Aqaba is a cornerstone of Jordan’s long-term strategy. The National Carrier Project in Aqaba is expected to deliver about 300 million m³ of desalinated seawater annually to Amman, powered by solar energy.

Environmental challenges include brine disposal, which can harm coral reefs and coastal ecosystems. Mitigation measures include high recovery rates, blending with cooling water, and advanced discharge designs.

seawater desalination project in qatar

مشاريع المياه تعتبر من المشاريع المكلفة

Brackish water desalination from 50 BWRO plants in the Jordan Valley produces about 7.7 million m³ annually for agricultural use. The cost of brackish water desalination ranges from $0.33–$0.48 per cubic meter, significantly lower than seawater desalination at $0.50–$0.70 per cubic meter.

Cloud Seeding Technology

In 2016, Jordan successfully conducted cloud seeding experiments using ionization technology, which increased rainfall during the project period. The technique involves dispersing small particles of silver iodide or dry ice into clouds to stimulate condensation. The United Arab Emirates has established an extensive research program—the UAE Research Program for Rain Enhancement Science (UAEREP)—to advance this technology.

how cloud seeding works

Cloud seeding is theoretically cost-effective, with estimated costs of $0.01–$0.04 per cubic meter of harvestable rain, according to UAE studies. However, its effectiveness varies significantly with cloud conditions and requires advanced radar monitoring.

Future Strategies

Jordan faces an impending water crisis. Precipitation scenarios for 2080 predict declines of 10–28% depending on region, alongside increased evaporation and temperature rises of up to 4.5 °C. Extreme weather events, such as heavy rainfall, may cause flooding and increased water salinity, further reducing flows in the Jordan River.

Long-term strategic investments are essential to secure water for domestic, industrial, and agricultural needs. Despite high initial costs, these investments are economically viable in the long run. A combined approach—solar-powered desalination for drinking water, leakage control to reduce water losses, rainwater harvesting, reuse of treated wastewater for agriculture and industry, and cloud seeding as a complementary measure—is critical to building resilience against water scarcity.

References

Al-Addous, Bdour, M., Anaief, M. M., Rabaiah, S., & Schweimanns, N. (2023, October 25). Vattenresurser i Jordanien: En översikt av nuvarande utmaningar och framtida möjligheter.Vattenresurser i Jordanien: En översikt av nuvarande utmaningar och framtida möjligheter

Alhanaqtah, O. J. (2023, December 17). Forecasting of the waste generation in Jordan: Alternative econometric approaches. International Journal of Economics and Finance, 16(2), 35–49 https://doi.org/10.5539/ijef.v16n2p35

Almansoori, H., & Badran, A. (2020). Cloud seeding in the UAE research paper. (PDF) Cloud Seeding In The UAE Research Paper

EcoPeace Middle East. (n.d.). Water desalination in the Jordan Valley. Water Desalination in the Jordan Valley – EcoPeace Middle East

Kharabsheh, N. M., & Al-Zboon, K. K. (2021, September). Wastewater treatment and reuse in Jordan: 10 years of development. Desalination and Water Treatment, 238, 15–27. 238_2021_15.pdf

Qtaishat, T. H., Al-Karablieh, E. K., Salman, A. Z., Tabieh, M. A., Al-Qudah, H. F., & Seder, N. (2017, April 17). Economic analysis of brackish-water desalination used for irrigation in the Jordan Valley. Desalination and Water Treatment, 72, 13–21. 72_2017_13.pdf

Salameh, E., Al-Alami, H., & Hamdan, I. (2024). Navigating environmental challenges in Jordan: A comprehensive study on degradation, remediation, and future imperatives. Advances in Environmental Studies, 8(1), 598–616.

SciDevNet. (2017, February 9). Jordan resorts to cloud seeding tech for water. Jordan resorts to cloud seeding tech for water

UNDP. (2022, August). Jordan’s 2022–2050 national climate change policy. climate_change_policy_of_jordan_september2022.pdf

WeatherTec. (n.d.). Ett nytt sätt att bekämpa vattenbrist: Skörd av atmosfärisk luftfuktighet.

The 31% Race: How Jordan Must Double Down on Distributed Solar to Win its Energy and Economic Future

According to the 2024 energy balance report published by the Ministry of Energy and Mineral Resources (MEMR) in Jordan, renewable sources supplied a record 26.9% of the nation’s 23.3 TWh electricity consumption. However, the underlying data reveals a more urgent story. Electricity consumption from 2020 to 2024 was 18.4, 19.3, 20.6, 21.8, and 23.3 TWh respectively as shown in the figure below, resulting in a Compound Annual Growth Rate (CAGR) of 6.07%—a pace expected to accelerate just as the country aims for a 31% renewable share by 2030. Achieving this target will require strategic action.

renewable energy trends in jordan

Among the possible scenarios, one decisive approach is to supercharge the growth of solar PV on local distribution grids, thereby transforming a technical goal into a catalyst for national energy independence and job creation.

Surging Demand and the Rising Renewable Target

Several interconnected factors are driving a significant increase in electricity demand, which in turn amplifies the challenge of meeting renewable energy targets.

  • Population and Economic Growth: A growing population and a rising GDP directly increase base electricity consumption for homes, businesses, and industry.
  • Climate Adaptation: Intensifying heat waves are drastically increasing cooling needs. According to recent UN reports, the number of days exceeding 40°C (104°F) is projected to reach 100 per year in the near future. This not only drives the installation of more—and larger—air conditioning units (as older, smaller units become insufficient in extreme heat) but also increases electricity demand for critical water pumping.
  • Transport Energy Transition: The accelerating adoption of electric vehicles (EVs) is adding a substantial new load to the grid.
  • Fuel Substitution: The strategic electrification of heating to reduce costs and emissions is further shifting energy demand onto the electrical grid.

This confluence of drivers means the absolute volume of renewable energy required to meet the 31% target by 2030 is a moving target, rising faster than baseline projections. Simply maintaining the current pace of renewable additions will result in a strategic shortfall.

The Transmission Grid: Foundation Built, Capacity Unleashed

Large-scale projects form the current backbone of Jordan’s renewables success, contributing roughly two-thirds of clean electricity generation. Recent policy dismantling of key barriers has set the stage for the next wave of utility-scale development. The September 2024 removal of the 1MW project cap unlocked the transmission grid for larger commercial and industrial players.

This regulatory shift is now translating into gigawatts in the pipeline: a 200MW MEMR tender in May 2025 and a landmark 100MW industrial sector solar PV agreement for community solar PV signed in December 2025. Government tenders for wind and solar-with-storage projects are imminent.

The Critical Frontier: Why Distribution Grids Hold the Key to 2030

The author’s analysis points to distributed generation as the decisive variable for reaching 31%, based on the following points:

Current Capacity: Distribution grids host 1,196 MW of solar PV (per 2024 electricity distribution companies reports), generating approximately one-third of 2024’s renewable electricity.

Current Growth Rate: Annual additions are steady at ~100 MW.

Required Growth Rate: To compensate for rising demand and hit the target, the author is expecting annual installations to jump 20-80%, to between 120 MW and 180 MW annually.

This acceleration is not merely a numbers game. It leverages Bylaw 58 (2024) standards for efficiency (1.2 DC:AC ratio, 1,800 kWh/kWp/year) to deliver direct economic benefits: reducing grid losses, stabilizing local electricity costs, and creating clean energy jobs aligned with the Economic Modernization Vision.

The Integrated Solution: Synergy Between Grids and Strategy

The path forward requires a synchronized, two-tiered approach:

Transmission Grid as the Bulk Power Engine: Continue rapid deployment of cost-effective, large-scale wind, solar, and storage to decarbonize the base load.

Distribution Grid as the Resilient Growth Platform: Actively approve installation between ~120-180 MW/year solar PV through streamlined regulations, financing mechanisms, and grid modernization to host more distributed resources.

The imminent update to the Jordan Energy Strategy 2020-2030 is therefore more than a routine revision; it is an opportunity to raise ambition. The 31% target is a metric for energy security—displacing imports with local sun and wind—and a proxy for economic modernization, public health, and climate resilience. The question is no longer if Jordan can reach its goal, but how decisively it will empower and invest in upgrading the national grids to get there. The new renewable energy target must be accompanied by a plan and financial mechanism to upgrade the grids.

How Algal Blooms Affect The Environment

Algal blooms are thick layers of small green plants that appear on the surface of lakes and other water bodies due to excess nutrients, especially phosphorus and nitrogen. This covering on the surface of lakes and other water bodies is known as eutrophication. The excess level of nutrients that algae depend on results from human activities that cause pollution, such as fertilizer, wastewater, manure, and sewage runoff.

environmental impacts of algal blooms

Eutrophication can also be a natural occurrence from moderate accumulation of organic matter, silt, nutrients, and sediments gradually from the watershed. Algae come in different colors ranging from green, red, yellow, and brown. The most common algal blooms are blue-green cyanobacteria and microalgae, also known as red tides.

Algal blooms affect the environment in various ways, including causing harm to both humans and animals. Its presence contaminates water and makes it unfit for consumption. Algae multiplication depletes oxygen in the water leading to the death of aquatic life. There’s a need for awareness creation among communities on dealing with algal blooms to conserve the environment. Awareness can be created through informative forums where researchers and community leaders, among other vital people, discuss important topics like the Indian river lagoon algae bloom.

This article will discuss some causes of algal blooms and how they affect the environment. Read on to learn.

Causes Of Algal Blooms

Below are some causes of algal blooms:

1. Dead Organic Matter In Water

Dead organic matter and nutrients in water promote the growth of algae bacteria, leading to algal blooms.

2. Light Conditions

Cyanobacteria, also known as blue-green algae, grow faster and in fluctuating light conditions. They can thrive in intermittent high-light and low-light conditions.

3. Drainage Of Nutrients

The growth of algal blooms is increased by excess amounts of phosphatic and nitrogenous fertilizers drained by rain from farms into the water bodies like lakes, rivers, and streams. Untreated raw sewage rich in nitrates and ammonia also flows into water bodies through drainage systems, causing the growth of algal blooms.

4. Global Warming

As the ozone layer is gradually destroyed, temperatures rise. These high temperatures cause nutrients such as ammonia and nitrates to decompose speedily and are used up by algae bacteria and quickly form algal blooms.

5. Slow-Moving Water

Algal blooms thrive best in large and still water masses. Blue-green algae, for instance, grow well in slow-moving water, less turbulence, and light winds. This is why they may not grow in fast-moving streams and rivers.

How Algal Blooms Affect The Environment

The following are some of the effects of algal blooms on the environment.

1. Threaten Human Health

Algal blooms contaminate water, thus affecting aquatic life. Humans may fall sick from drinking water and eating infected seafood. The water also has toxins that irritate the skin when people come into contact with it when swimming.

2. Kill Aquatic Life

Animals that live in water depend on oxygen to survive, similar to algal blooms. Their fast and dense growth causes competition for oxygen, leading to the suffocation of sea animals.

why algal blooms are bad for the environment

3. Cause High Accumulation Of Biomass

Biomass is highly accumulated as algal blooms grow, destroying the environment by blocking light, clogging fish gills, and depleting oxygen after algal cells decompose.

4. Affect The Food Chain

As discussed earlier, algal blooms destroy aquatic life. This happens through the toxins that they produce. The food chain is affected when small fish and shellfish, which are food to other sea animals like turtles, dolphins, and sea lions, are harmed. These animals are physiologically stressed, and their feeding is threatened since they avoid toxic prey. As a result, the energy flow within the ecosystem is affected.

5. Pollution By Ozone

Ground-level ozone, formed by nitrogen oxides from nitrogen compounds in the air, causes visibility constraints. The ozone can be transferred by the wind far away from urban to rural areas causing damage to trees and vegetation.

6. Acid Rain

Acid rain results from nutrient pollution, where Sulphur Dioxide and Nitrogen Oxide are released into the atmosphere and react with water, oxygen, and other chemicals to form sulfuric and nitric acids. This combination damages water bodies, grasslands, and forests.

Conclusion

As discussed above, algal blooms produce toxins that affect the environment in various ways. It could threaten human health and aquatic life. Algal blooms also contribute to the high production of biomass.

Awareness of the dangers of algal blooms will help you be extra cautious. Therefore, be careful about discolored and smelly waters, as they could be home to algal blooms. The water is contaminated and therefore not fit for consumption and recreational activities like swimming because it irritates the skin.

Going Green in 2026: 5 Eco-friendly New Year Resolutions

As the new year approaches, it’s not just about setting resolutions for personal growth. It’s also the perfect opportunity to reflect on how we can take steps toward a healthier planet. In this article, we will discuss the 5 impactful New Year resolutions you can adopt in 2026 to save the environment.

1. Rethink Your Waste

Small adjustments in your day-to-day life can make a huge difference when it comes to reducing waste. Switching from single-use plastics to reusable items is an effective first step.

plastic bag alternative

Single-use plastics harm the environment and contribute to landfills. Instead of grabbing that plastic water bottle, why not opt for a reusable one? For food storage, consider using glass or metal containers which are safer and long lasting. In addition, they are devoid of harmful chemicals found in plastic items.

Plastic takes hundreds of years to degrade which means the plastic items we use today will still be around for generations to come. By making a switch to eco-friendly containers, you become part of the solution.

Implementing eco-friendly habits in our daily lives should not be a complex exercise. A simple habit, such as carrying a reusable shopping bag, can make a significant effect because the demand for plastic bags is reduced. Likewise, you may replace paper napkins with cloth napkins at home which will reduce paper waste, besides adding a touch of elegance to your meals.

2. Adopt Alternate Transportation

Vehicular emissions are among the biggest contributors to carbon emissions. In fact, every mile not driven saves one pound of carbon emissions. This is where alternate transportation, such as public transport, comes into play. Buses, trains, and subways are excellent alternatives. By using public transport more frequently, you can reduce your carbon footprint significantly. Many cities are proactively improving their transit systems.

green living tips for seniors

Setting a biking or walking goal for short trips is not only good for your health and also beneficial for the environment. Instead of driving, walking to the grocery store is a minor change which can lead to big rewards. Tracking your carbon savings can help motivate you in your sustainability journey. You can use apps or journals to log how many miles you’ve saved by not driving.

3. Eating Sustainably

Your eating habits can also make a profound impact on the planet. With rising concerns about climate change and public awareness about sustainable living, it is important to adopt an eco-friendly diet. Choosing nutrient-dense, ethically sourced products like Best of the Bone can be a great start.

One of the most effective strategies is to experiment with plant-based recipes. Vegan meals are both nutritious and delicious. Dishes like a hearty lentil stew or a creamy cashew pasta can not only satisfy your hunger cravings but also lower carbon emissions compared to meat-based meals. But if you choose to eat meat, try to source it from local farms where ethical animal farming is practiced.

Vegan Recipes for College Students

Involving your friends and family in your sustainable eating mission is a good way to foster sustainability. Host a cooking night where everyone brings a sustainable dish is an interesting way to bond over healthy eating.

The food processing industry is a significant contributor to environmental problems and every meal you prepare and eat contributes to your carbon footprint. Meal planning can help you use ingredients more efficiently and reduce your dependence on takeouts, thus leading to plastic waste reduction.

4. Conserve Energy at Home

Energy conservation at home can lead to significantly impact your wallet as well as the Earth. Vampire power, often called standby power, is energy that appliances consume when they’re not in use but still plugged in. Make it a habit to turn off and unplug devices when not in use. Plug multiple devices into one strip and switch it off when you’re done. Replacing old appliances with energy-efficient models may have a higher initial cost but can lead to substantial savings in the long run.

Ways to cut energy bills at home

Energy-efficient appliances use less energy, which means a lower utility bill. Refrigerators run all the time, so investing in one that is energy-efficient is a real pay-off. Similarly, new washing machines use much less water and energy than traditional models. Making a switch to energy-efficient LED bulbs can significantly reduce your energy consumption.

Home solar panels can harness the sun’s energy and convert it into power for your home. The installation costs may be a bit high, but it can be an attractive investment for future. Many regions also offer tax incentives to help offset costs. Tracking your home energy usage can give you a clear picture about your energy conservation efforts. Smart meters or energy monitors can provide real-time data on your energy consumption and help identify areas of improvement.

5. Limit Water Usage

Water is essential for life but your daily habits can waste huge amount of water. Small adjustments in daily water usage can lead to significant changes. For example, switching to low-flow bathroom fixtures can substantially decrease the amount of water you use while bathing. Likewise, low-flow faucets in the kitchen is an effective method to cut down water waste.

water-leakage

In case of laundry, wash your clothes only when you have full loads in order to save water as well as energy as the washer runs less often.

A ripple effect is created when you educate others so talk to your friends and family about the importance of water conservation and share your experiences or knowledge on water-saving methods.

Aim for 2026 and Beyond

As we look forward to 2026, let’s challenge ourselves with simple yet effective environmentally-friendly new year’s resolution to make it happen. Start today by embracing these sustainable new year’s resolutions, and watch how your small actions can help to create a greener future.

Why Delaying Climate Investment Today Will Cost the MENA Region Far More Tomorrow

Climate change is no longer a distant or abstract risk. Across the Middle East and North Africa, its costs are already visible in mounting heat stress, water scarcity, food system pressures, infrastructure damage, and rising economic vulnerability. These impacts are not projections for the end of the century; they are current realities shaping development trajectories, public budgets, and social stability. The central question facing policymakers is therefore no longer whether climate change will be costly, but whether societies choose to pay through strategic investment today or through escalating losses tomorrow.

flooding in saudi arabia

Scientific and economic evidence converges on a clear conclusion : delaying climate action substantially increases long-term costs. The assessments of the Intergovernmental Panel on Climate Change (IPCC) demonstrate unequivocally that extreme heat, droughts, floods, and ecosystem degradation are intensifying across regions, with particularly severe consequences for arid and semi-arid zones [1]. In the MENA region, rising temperatures and declining water availability are already undermining agricultural productivity, increasing energy demand, and placing stress on urban systems. These dynamics translate directly into economic losses, higher health expenditures, and growing pressure on public finances.

From an economic perspective, the asymmetry between the cost of action and the cost of inaction is striking. Global assessments show that climate-related damages already amount to trillions of dollars and could rise dramatically by mid-century if emissions remain unchecked [2]. A widely cited global study estimates that annual economic damages could approach USD 38 trillion by 2050, driven by productivity losses, declining crop yields, infrastructure degradation, and heat-related labor impacts [3]. By contrast, the investments required to limit warming and strengthen resilience while significant remain far lower than the cumulative losses avoided. Climate investment is therefore not a drag on growth; it is a safeguard for long-term economic stability.

This logic is particularly relevant for the Gulf and the wider MENA region, where climate exposure intersects with rapid urbanization, water scarcity, and energy-intensive economic structures. Rising cooling demand, growing desalination costs, and climate stress on infrastructure represent mounting fiscal and operational challenges. At the same time, the region possesses substantial financial, technological, and institutional capacity to act early and decisively. Investing in renewable energy, climate-resilient infrastructure, water efficiency, and adaptive urban planning offers an opportunity not only to reduce future losses, but also to modernize economies and enhance competitiveness, in line with long-term national visions and sustainability strategies [4].

Climate inaction also carries profound distributional consequences. The IPCC and the United Nations Framework Convention on Climate Change (UNFCC) highlight that populations who have contributed least to historical emissions, low-income households, rural communities, and developing countries, are often the most exposed and least equipped to adapt [1,5]. Without targeted investment in adaptation, climate stress risks amplifying social inequalities, food insecurity, and economic exclusion. From a policy perspective, failing to invest today effectively transfers costs to vulnerable populations and future generations, undermining the principles of climate justice embedded in international agreements.

The financing gap remains a central challenge. Estimates suggest that adaptation needs in developing and climate-vulnerable regions will reach hundreds of billions of dollars per year by 2030, yet current climate finance flows remain insufficient and unevenly allocated [5-6]. Failure to invest adequately in resilience increases the likelihood of repeated climate losses, emergency expenditures, and fiscal instability. For governments, this creates a vicious cycle in which public resources are increasingly diverted toward disaster response rather than long-term development, innovation, and human capital formation.

From a strategic standpoint, the question is not only how much to invest, but how to invest effectively. Evidence from development banks and global resilience studies shows that well-designed climate investments generate high socio-economic returns. Investments in energy efficiency, resilient infrastructure, sustainable water management, and climate-smart agriculture reduce operating costs, enhance productivity, and significantly lower future damage costs [7]. In many cases, each dollar invested in resilience yields multiple dollars in avoided losses, making early action a fiscally prudent choice.

climate change in jordan

Private capital has a critical role to play, but it depends on clear and credible policy signals. Predictable regulatory frameworks, carbon pricing mechanisms, climate risk disclosure, green taxonomies, and blended finance instruments can significantly reduce investment risk and crowd in private financing [8]. In the Gulf region, sovereign wealth funds, development banks, and institutional investors are uniquely positioned to accelerate this shift, aligning long-term portfolios with climate resilience, sustainable infrastructure, and low-carbon development.

The opportunity cost of inaction is often underestimated. Resources spent tomorrow on repairing climate damage are resources not invested in education, healthcare, research, or economic diversification. For economies seeking to transition toward knowledge-based and innovation-driven models, this trade-off is particularly acute. Financial regulators and international institutions increasingly warn that unmanaged climate risks pose a systemic threat to macroeconomic and financial stability [9].

Ethical considerations reinforce this economic rationale. Asking future generations to bear the costs of delayed action violates principles of intergenerational responsibility. Climate investment is ultimately an investment in stability, social, economic, and political. It reduces the likelihood of disruptive shocks, forced displacement, and fiscal crises that undermine long-term prosperity.

For the MENA region, and for countries such as Qatar and its neighbors, the path forward is clear. Investing early in climate mitigation and adaptation strengthens resilience to inevitable impacts while positioning economies at the forefront of global sustainability transitions. It supports regional cooperation on water, energy, and food systems, and reinforces leadership in climate finance and innovation, consistent with the objectives highlighted by regional scientific networks such as MedECC [10].

Climate has a price. The choice is whether that price is paid through deliberate, strategic investment that builds resilient and competitive societies, or through escalating losses that constrain development and deepen inequality. The evidence is unequivocal: investing today costs far less than paying tomorrow. For policymakers, financial institutions, and regional leaders, climate investment is no longer a matter of environmental responsibility alone, it is a cornerstone of economic foresight and sustainable prosperity.

References

[1] IPCC, 2023: Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115, doi: 10.59327/IPCC/AR6-9789291691647

[2] Climate change damage could cost $38 trillion per year by 2050, study finds | Reuters

[3] Top Findings from the IPCC Climate Change Report 2023 | World Resources Institute

[4] https://www.climatepolicyinitiative.org/the-cost-of-inaction/

[5] https://www.ngfs.net/: NGFS Declaration on the Economic Cost of Climate Inaction.

[6] https://unfccc.int/sites/default/files/resource/Yearbook_GCA_2025.pdf?

[7]medecc.org/wp-content/uploads/2024/11/MedECC_SR_coastal-risks_summary-for-policymakers.pdf

[8] Assessing the costs and benefits of climate change adaptation | Publications | European Environment Agency (EEA)

[9] https://unfccc.int/, Yearbook of Global Climate Action 2025.

[10] https://reports.weforum.org/docs/WEF_The_Cost_of_Inaction_2024.pdf?

لماذا تعد مشاريع الطاقة الشمسية المجتمعية أساسية لتحقيق المساواة في الطاقة

عندما تفكر في الطاقة النظيفة، ربما تتخيل مزارع طاقة شمسية كبيرة أو ألواح شمسية لامعة على السطح. ولكن لا يمكن للجميع تثبيت نظامهم الخاص لأنهم إما يستأجرون أو يعيشون في منازل مظللة. لا يستطيع البعض تحمل التكاليف الأولية . تصبح الطاقة الشمسية المجتمعية لا تقدر بثمن في هذه الحالات. يمنحك فرصة للاستفادة من الطاقة النظيفة المشتركة، حتى عندما يكون التركيب التقليدي للطاقة الشمسية غير ممكن. والأهم من ذلك، أنه يخلق مسارًا نحو المساواة في الطاقة، مما يساعد المزيد من الناس على الوصول إلى الكهرباء بأسعار معقولة وموثوقة. تهدف مشاريع الطاقة المتجددة إلى سد الفجوة من خلال توفير وصول أكثر عدلاً إلى الطاقة النظيفة وتقليل الحواجز طويلة الأجل التي تعيق تنمية المجتمع.

a community solar project in Africa

لماذا أنظمة الطاقة الشمسية مهمة؟

في عام ٢٠٢٢، قدر البنك الدولي أن ١٣ مليون شخص في منطقة الشرق الأوسط وشمال إفريقيا لا يحصلون على الكهرباء. يعاني الكثيرون من ارتفاع تكاليف الطاقة أو الطاقة غير مستقره. تعني المساواة في الطاقة أن الجميع بغض النظر عن مستوى الدخل أو نوع السكن أو الموقع لديهم الفرصة للاستفادة من الطاقة النظيفة والمتجددة.  غالبًا ما تعمل الأنظمة المنزلية التقليدية على توسيع الفجوة لأن مالكي المنازل الذين لديهم الظروف المناسبة هم وحدهم الذين يمكنهم تثبيتها. مستويات الطاقة الشمسية المجتمعية هي الملعب من خلال جعل الاشتراك في الطاقة النظيفة قائمًا.

تخيل وجود عائلتين في نفس الحي. يمتلك المرء منزلاً بسقف مشمس ويمكنه تركيب الألواح الشمسية في أي وقت. وأما من يستأجر شقة, فغالباً لا تتوفر لديه خيارات لأنظمة الطاقة. تسمح الطاقة الشمسية المجتمعية لكلا الأسرتين بالمشاركة على قدم المساواة، والوصول إلى تكاليف أقل، وتقليص بصمتهما الكربونية معًا.

 ومع مرور الوقت, يساهم هذا النهج المتكامل في تقوية الأحياء ودعم شبكة خدمات أنظف وأكثر استقراراً للجميع كما تشجع النماذج المجتمعية على المزيد من المشاركة المحلية. غالبًا ما يصبح السكان جزءًا من منظمات المشتركين في الطاقة الشمسية المجتمعية، والتي تساعد في تثقيف الجيران وتوزيع الاشتراكات والحفاظ على تشغيل النظام بسلاسة. هذه المجموعات ضرورية للوصول إلى المجتمعات التي تعاني من نقص الخدمات والتي لديها فرص أقل لتبني التقنيات النظيفة.

أبرز التحديات الشائعة في الطاقة الشمسية المجتمعية

تتمثل إحدى المشكلات الشائعة في عدم وجود أدوات مقارنة واضحة وسهلة الاستخدام. يرغب العديد من الأشخاص في الانضمام، لكنهم يواجهون صعوبة من أجل فهم الخطط والأسعار والفوائد المختلفة. هذا هو المكان الذي يصبح فيه سوق الطاقة الشمسية المجتمعي مفيدًا. من خلال دمج مشاريع متعددة في منصة واحدة يسهل الوصول إليها، تبسط الأسواق عملية مقارنة خيارات الاشتراك، ومراجعة هياكل رسوم الاشتراك، واختيار مزود طاقة شمسية مجتمعي موثوق يناسب ميزانيتك.

يتشارك السوق الجيد أيضًا مع شركة موثوقة للطاقة الشمسية والتي تجلب الخبرة الأساسية في التصميم والتمويل والعمليات طويلة الأجل. يضمن هذا الدعم المهني تشغيل المشاريع بسلاسة، وتقديم المدخرات الموعودة، والحفاظ على أنظمتها لعقود. إنه يعالج مخاوف الموثوقية ويعطي المجتمعات الثقة في أن اشتراكهم سيدعم حقًا توفير الطاقة النظيفة والفواتير.

كيف تساهم الطاقة الشمسية المجتمعية في إتاحة الطاقة النظيفة للجميع

تسمح لك مشاريع الطاقة الشمسية المجتمعية بالاشتراك في جزء من مجموعة الطاقة الشمسية المشتركة الموجودة في منطقتك. بدلاً من وضع الألواح على السطح، يمكنك الاستفادة من منشأة مركزية للطاقة الشمسية والحصول على أرصدة فاتورة الطاقة الشمسية بناءً على حصتك من توليد الطاقة الشمسية. إنها فكرة بسيطة ذات تأثير قوي: تحصل على طاقة نظيفة ومصاريف اقل دون إجراء أي تغييرات على منزلك.

هذه الأنظمة المشتركة ذات قيمة خاصة للأسر ذات الدخل المنخفض. عندما تقوم بالفعل بالتوفيق بين النفقات الشهرية، فإن أي شيء يساعد على خفض تكاليف الطاقة يحدث فرقًا. من خلال برامج الطاقة الشمسية المجتمعية، يحصل المشتركون عادة على رصيد على فواتير الكهرباء الخاصة بهم. يساعد هذا الإجراء لخفض التكاليف الأسر على إدارة ارتفاع الأسعار والتغيرات الموسمية في استخدام الكهرباء.

كما أنه يعزز الوصول إلى الطاقة الشمسية للمستأجرين وسكان الحضر. حتى لو لم يكن لديك سقف خاص بك، فلا يزال بإمكانك الانضمام إلى مشروع والمساهمة في الحد من انبعاثات الكربون. في العديد من المجالات، تعزز السياسات مثل قياس صافي المدخرات، مما يجعل الطاقة الشمسية المجتمعية أكثر جاذبية للمستخدمين العاديين.

كيف تعزز الطاقة الشمسية المجتمعية المجتمعات المحلية

عندما تنضم إلى مشروع شمسي مشترك أو تدعمه، يمكن أن تؤدي مشاركتك إلى تأثيرات موجية إيجابية. غالبًا ما تولد هذه الأنظمة وظائف محلية، من البناء إلى الصيانة. فهي تنشئ مساحات عامة مشتركة، مثل حديقة تعمل بالطاقة الشمسية، وتدعم الهواء الأنظف من خلال زيادة إنتاج الكهرباء المتجددة المحلية. ومع انضمام المزيد من الناس، تصبح المجتمعات أقل اعتمادًا على الوقود الأحفوري وأكثر مرونة أثناء الانقطاعات.

حتى أن الطاقة الشمسية المجتمعية تفتح الأبواب أمام التقنيات المبتكرة. مع توفر مصادر طاقة أنظف، يمكن للمجتمعات دمج ترقيات منزلية أكثر ذكاءً وحلول شحن. كما يمكن أن تقلل من الاعتماد على مصادر الطاقة التقليدية التي تخلق التلوث، مما يساعد على تشكيل مستقبل أكثر صحة للجيل القادم.

a community solar project in the MENA region

كيف تشكل الأهداف الأوسع مستقبل مجتمع الطاقة الشمسية ؟

تؤثر الأهداف الحكومية واستراتيجيات الطاقة على مدى سرعة انتشار الطاقة الشمسية المشتركة. عندما تضع المناطق أهدافًا قوية للكهرباء النظيفة، يتبع ذلك المزيد من التمويل والشراكات والحوافز. ويساعد هذا الزخم على إحياء المزيد من مزارع الطاقة الشمسية المجتمعية، مما يزيد من إجمالي الطاقة الشمسية ويجعل الطاقة المتجددة أكثر سهولة.

ومن الأمثلة الرائعة على ذلك هدف الطاقة المتجددة في منطقة الشرق الأوسط وشمال إفريقيا، والذي شجع البلدان على تسريع الاستثمارات في مرافق توليد الطاقة الشمسية. تخلق هذه الأهداف بيئة مواتية للنماذج المجتمعية، لا سيما في المناطق التي لا يزال فيها الوصول إلى الكهرباء النظيفة غير متكافئ. يشجع التوجه السياسي القوي الابتكار، ويفتح التمويل، ويدعم برامج الطاقة الأكثر شمولاً التي تصل إلى المجتمعات المحرومة.

تساعد أهداف الطاقة الأوسع أيضًا في استقرار شبكة الطاقة. مع وصول المزيد من المشاريع عبر الإنترنت، تقلل الطاقة الشمسية المشتركة من الضغط على الشبكة خلال ساعات الذروة وتحسن الموثوقية على المدى الطويل. هذا يفيد الجميع، حتى أولئك الذين لم يشتركوا بعد.

الخلاصة: جعل الطاقة النظيفة حقاً متاحاً للجميع

تمنحك الطاقة الشمسية المجتمعية طريقة ميسورة التكلفة ومرنة وعادلة للاستفادة من الطاقة النظيفةحتى لو لم تكن أنظمة الأسطح خيارًا. تعمل هذه المشاريع المشتركة على خفض الفواتير وتقليل الانبعاثات وتوسيع نطاق الوصول للأشخاص الذين هم في أمس الحاجة إليها. وعندما تقترن بدعم قوي للسياسات وأسواق مبتكرة ومشاركة مجتمعية، فإنها تصبح أداة قوية لتحقيق المساواة في الطاقة على المدى الطويل.

من خلال دعم الطاقة الشمسية المجتمعية والانضمام إليها، فإنك تساعد في إنشاء مستقبل طاقة أنظف وأكثر شمولاً مستقبل تتمتع فيه كل أسرة بفرصة حقيقية للاستفادة من الطاقة المستدام

ترجمة: صفاء عقيل  الصبّاغ

خريجة بكالوريوس اللغة الإنجليزية ، تعمل في مجال الترجمة من الإنجليزية إلى العربية، وتهتم بتقديم محتوى دقيق وواضح يحافظ على المعنى الأصلي.

Note: The original English version of the article is available here

النفايات الطبية في دول مجلس التعاون الخليجي

كان هناك وعي متزايد بالحاجة للإدارة الآمنة للنفايات الطبية في جميع أنحاء العالم . تتولد النفايات الطبية من جميع القطاعات الصحية بما في ذلك المستشفيات والمختبرات ومراكز التشخيص والبحث، وعيادات طب الأسنان وبنوك الدم والمشارح ومراكز التشريح، والمستشفيات البيطرية والمختبرات الصناعية ,, إلخ . النفايات الطبية التي تشكل أكبر خطر على صحة الإنسان هي النفايات المُعدية (أو النفايات الطبية الخطرة) التي تشكل 15 – 25 في المئة من إجمالي نفايات الرعاية الصحية .

ويمكن أن تشمل النفايات المعدية جميع أنواع النفايات التي تلوثت او يشتبه في تلوثها  بسوائل الجسم مثل الدم ومشتقاته، وأنابيب القسطرة والقفازات، والفحوصات المستخدمة لفحص البكتيريا  ومخازن العوامل المُعدية، ضمادات الجروح، والحفاضات، وعينات التشخيصالتي يتم  التخلص منها، والمواد الملوثة (مسحات والضمادات والشاش و,,)، والأجهزة الطبية التي التخلص منها، الحيوانات المختبرية الملوثة الخ .

كمية النفايات المنتجة في المستشفى يعتمد على مستوى الدخل القومي ونوع المنشأة المعنية. مستشفى الجامعة في بلد ذات دخل مرتفع يمكن أن تنتج ما يصل إلى 10 كيلوغراما من النفايات لكل سرير في اليوم , بكل الفئات مجتمعةً .

النفايات الطبية في دول مجلس التعاون الخليجي

يواصل قطاع الرعاية الصحية في دول مجلس التعاون الخليجي  النمو بوتيرة سريعة للغاية ، الأمر الذي أدى بدوره إلى زيادة كبيرة في كمية النفايات الناتجة عن المستشفيات والعيادات والمؤسسات الأخرى. وفقا لتقديرات معتدلة ، يتم إنشاء أكثر من 150 طن من النفايات الطبية في دول مجلس التعاون الخليجي كل يوم .

السعودية تقود المجموعة مع جيل من نفايات الرعاية الصحية اليومي لأكثر من 80 طنا . . بقدر ما تشعر الإمارات العربية المتحدة بالقلق ، فإنه يتم إنتاج ما يقارب 21.5 ألف طن يوميا من النفايات الطبية في دولة الإمارات العربية المتحدة، منها 12 طن يوميا تنتجه إمارة  أبوظبي وحدها. وتنتج الكويت حوالي 12 طن بينما يولد البحرين 7 أطنان من النفايات الطبية الخطرة يوميا .

هذه الأرقام تدل على حجم المشكلة التي تواجهها السلطات البلدية في التعامل مع مشكلة التخلص من النفايات الطبية في جميع أنحاء دول مجلس التعاون الخليجي . الكمية المتزايدة من النفايات الطبية أصبحت تشكل تحديات كبيرة للصحة العامة والبيئة في المدن الرئيسية في المنطقة. و الوضع تفاقم  من خلال أساليب غير مناسبة للتخلص  منها، عدم كفاية الموارد المادية، وعدم وجود بحوث بشأن إدارة النفايات الطبية .

توليد النفايات الطبية في بعض دول مجلس التعاون الخليجي

حجم النفايات الطبية ( طن في اليوم الواحد )

الدولة

80

المملكة العربية السعودية

21.5

الإمارات العربية المتحدة

12

دولة الكويت

7

مملكة البحرين

الحاجة إلى استراتيجية في إدارة النفايات الطبية

الإدارة غير السليمة لنفايات الرعاية الصحية من المستشفيات والعيادات وغيرها من المرافق في دول مجلس التعاون الخليجي تشكل مخاطرعلى الصحة المهنية والعامة للمرضى وعمال الصحة وحاملو النفايات، والناس عموما . كما من الممكن أن يؤدي أيضا إلى تلوث الهواء والماء والتربة والتي قد تؤثر على جميع أشكال الحياة. بالإضافة إلى ذلك، إذا لم يتم التخلص من النفايات بشكل صحيح، قد تكون فرصة لبعض  أفراد المجتمع لجمع  المعدات الطبية المتخلص منها (وخاصة المحاقن) وإعادة بيع هذه المواد التي قد تسبب الأمراض الخطيرة .

وفقا لمنظمة الصحة العالمية، إن الالتهابات المصاحبة للمستشفيات والتي تعرف بال (HAI) تؤثر على ما يقرب  5٪ من المرضى في المستشفيات. مشاكل النفايات الطبية المُعدية و تعقيدها  والارتفاع الأخير في معدل الإصابة بالأمراض مثل الإيدز، ومرض سارس والالتهاب الكبد ” ب ” فتح باب خطر أكبر من التلوث من خلال سوء التصرف والممارسات غير الآمنة.

إدارة النفايات غير الكافية من الممكن أن تسبب تلوثا بيئيا ونمو وتكاثر النواقل مثل الحشرات والقوارض والديدان وربما تؤدي إلى انتقال أمراض مثل التيفوئيد والكوليرا والتهاب الكبد والإيدز من خلال إصابات حاصلة بفعل  الحقن والإبر الملوثة .  بالإضافة إلى المخاطر الصحية المرتبطة بسوء إدارة النفايات الطبية، يجب النظر في تأثير ذلك على البيئة، وخاصة مخاطر تلوث المياه والهواء والتربة.

و يزداد الوضع تعقيدا بسبب الظروف المناخية والبيئية القاسية في المنطقة، مما يجعل التخلص من النفايات الطبية أكثر صعوبة. و بما أن النفايات الطبية هي أكثر خطورة من النفايات العادية، فإنه من الضروري على الحكومات والشركات الخاصة في دول مجلس التعاون الخليجي وضع برنامج ناجحة  لإدارة نفايات المستشفيات تجنبا لانتشار الأمراض وحماية البيئة.

ترجمة

علا محمود المشاقبة , حاصلة على درجة البكالوريوس تخصص ” إدارة الأراضي و المياه ” من الجامعة الهاشمية – الأردن بتقدير جيد جدا , أعمل تطوعيا كعضو إداري مع مجموعة ” مخضّرو الأردن JO Greeners”  منذ ثلاثة سنوات و حتى الأن  , و متطوعة أيضا مع منظمة  EcoMENA  . موهبة الكتابة شيء أساسي في حياتي و قمت بتوظيفها في كتابة و خدمة القضايا البيئية .

8 Top Trends Driving the Modern HVAC Industry

Like other industrial sectors, the HVAC industry is going through a rapid transformation. The development of modern HVAC systems are driven by technological advancements, human-centric design, and sustainable living. In this post, excellencehvac.com will discuss the emerging trends driving the development of modern HVAC systems, and how they are impacting homeowners as well as businesses.

intelligent hvac systems

1. The Home Automation Revolution

Modern HVAC systems have emerged as the main component of an automated home. Nowadays, heating and cooling systems can decode user preferences and daily regimen to automatically set optimum room temperature for resident’s comfort.

Home assistant integrations, such as Amazon Alexa and Apple HomeKit, allows remote temperature adjustments while geofencing technology helps HVAC units to activate the heating or cooling system as the homeowner is close to the dwelling. IoT sensors collect real-time information from the HVAC system to identify performance-related problems and schedule preventive maintenance.

2. Focus on Better Indoor Air Quality

Modern HVAC systems are playing a key role in improving the indoor air quality in your homes and workplaces, especially for allergy-prone individuals. The new generation of health-focused HVACs capture allergens, ultrafine particles, and pathogens from indoor air, besides disinfecting air through UV light treatment. Smart HVACs also introduce fresh outdoor air into the indoor environment

3. Emergence of High-Efficiency Heat Pumps

Heat pumps are garnering renewed focus in cold countries worldwide. The main benefit of a heat pump is its ability to provide both cooling and heating from the same unit, which means it can be used throughout the year. Modern heat pumps, based on cold-climate technology, can operate efficiently even at sub-zero temperatures.

The increasing popularity of electric heat pumps, especially in Europe and North America, is contributing to significant reduction in global carbon emissions. In fact, many homeowners are also installing solar-powered heat pumps or geothermal heat pumps, thus reducing their utility bills and carbon footprint.

hvac manufacturing facility

4. Push for Net-Zero Buildings

Technology-powered HVAC design is helping urban planners to transition to net-zero energy buildings. Net-zero buildings minimize energy demand through energy-efficient design and meeting the building energy requirement with renewable energy resources, such as geothermal energy and solar panels.

Geothermal energy systems make use of earth’s underground temperature, and offer remarkable energy efficiency for building’s heating and cooling requirements. The top HVAC manufacturers have replaced refrigerants with high global warming potential, such as R-410A, with eco-friendly variants, like R-32.

5. Introduction of Variable Refrigerant Flow (VRF) Systems

In a VRF system, refrigerant is the primary cooling and heating medium which circulate between a single outdoor condenser and multiple indoor units. This enables the adjustment of refrigerant flow depending on the heating and cooling needs of a particular zone. Unlike traditional HVACs, this precise control guarantees personalized comfort and better system performance by creating custom climate zones across a building by using automated dampers and multiple thermostats. The zoning system helps in the reduction of energy waste from unused rooms, especially in commercial buildings.

6. Rise of Ductless Mini-Split Systems

Ductless system is one of biggest trends in HVAC sector. Unlike conventional systems, ductless HVACs can directly cool or heat your space leading to the reduction in both utility bills and energy waste. Such systems are ideal for rooms without existing ductwork.

7. Proactive HVAC Management

Like other industrial sectors, big data is making a deep impact on the HVAC industry. Data-driven proactive HVAC maintenance aids in real-time tracking of runtime, cycles, and efficiency metrics. Automated alerts are sent to the users for filter replacements, maintenance requirements, unusual performance dips, and other malfunctions. This predictive maintenance framework helps in increasing the equipment lifespan and prevents costly repairs.

8. Emergence of Human-Centric HVAC Control

The modern HVAC systems are designed to provide personalized comfort, well-being, and energy efficiency. An interesting development in human-centric HVAC control is the use of occupant sensors which adjust airflow and temperature based on room occupancy. Some HVAC manufacturers also provide personalized diffusers whose function is to create a localized climate around the occupant. In addition, radiant HVAC systems makes use of walls or floors to provide draft-free comfort.

Conclusion

The modern HVACs are geared towards intelligent control, and they are harmoniously integrated for a sustainable living. The new generation of human-centric and tech-driven HVAC units lowers utility bills, reduces carbon footprint, provides personalized comfort, and foster healthy indoor environment.

Green Buildings Certification in the MENA Region – Key Challenges

Green building rating systems are increasingly gaining attention in the building industry in the MENA region. During the last 15 years, there has been a regional trend in developing and applying green building ratings systems. In several countries such systems have been developed in an attempt to follow the international green movement.

For example, the Pearl Building Rating System (PBRS) was founded in UAE in 2007, the Green Pyramid (GPRS) and ARZ Building Rating System in Egypt and Lebanon respectively were founded in 2008, the Edama was proposed in Jordan in 2009 and Qatar Sustainability Assessment System (QSAS) was founded in 2010.

palm tower dubai

A new study compared four regional rating systems in the Middle East, in addition to LEED and BREEAM. The study found that the problem with most emerging rating systems is that they imitate the LEED or BREEAM rating systems and are not enough adapted to local environmental, cultural, historical, societal and economic context. Thus certification systems must be adapted to meet the needs of the Middle East regional climate, social, environmental and economic conditions.

The study, conducted in 2013, compared four rating systems (GPRS, SI 5281, QSAS and PBRS) and a cross analysis study was used to answer questions about the strength and weakness of the systems. The four systems use score point system for assessment. The four tools provide programs involving the building life cycle process – pre-design, design and post-design (occupation).

There are many common criteria and categories between the four examined rating systems; such as limiting the consumption of energy and water in the building, improving the environmental quality in both indoor and outdoor, resources and material conservation, service quality, and site strategies. The four rating systems operate from an ecological footprint minimisation paradigm. At the same time, each rating system focuses on certain aspects more than the other ones according to the country’s local context. Surprisingly, there is no agreement on weighing the different environmental criteria.

Problems of Green Building Rating Systems

The study found that the examined rating systems are proposing theoretical models that needs to move to effective market implementation politically (government) and economically (NGOs and the private sector). The rating systems require more adaptation to local and regional context. Rating systems should differentiate themselves from well-established green building rating systems.

green building rating system in middle east

For example, the study believes that water scarcity should be the most important category together with human wellbeing. Already LEED and BREEAM programs are considered the most fairly comprehensive in scope – from registration to calculation to building certification. In the case of the four rating systems, the initiation approaches were bottom down and not bottom up approaches.

Therefore, the uptake and market penetration is slow compared to LEED or BREEAM. In the four countries, there is no encouragement/engagement in the form of working out incentives or law enforcement to apply the four rating systems except for PBRS. In fact, each country in the region is looking to achieve those criteria individually. The entry of the LEED and BREEAM rating system into the Middle East property market coincided with increasing demand for regional and local ratings systems.

As a result, different systems were developed under serious time pressure in the last ten years. The four compared systems are based on American and British standard. In the same time, there are currently no standardisation efforts working at local level to quantify and assess sustainability.

Towards Harmonised Systems

Green Building Councils in the Middle East will have a long way; they have to manage to position themselves as leaders promoting green buildings in the countries where they operate. By comparing and evaluating the four rating systems lesson could be learned and problem could be avoided. Therefore, the author believes that a harmonised system within the Middle East would have distinctly better chances if the following issues are addressed:

Institutional Settings

Since the oil embargo of 1973, Western countries developed local codes and standards, which are revised annually, for the built environment. Those codes correspond to their context and are strongly linked to practice and buildings industry. However, in the four examined countries, the (b) local codes and standards are still not mature when compared to American or British ones. So there is a regulation problem on the institutional level. More importantly, (b) energy and water are heavily subsidized in most of the four countries.The comparison revealed that the certification rates are low and the fees structure is very high (registration, certification, auditing).

Thus, the whole political regulation landscape regarding resources efficiency is contradicting with the rating systems scope and objective. Therefore, it is important to address the

  • efficiency regulations and
  • subsidies policies on the institutional level and avoid the dependence on Western standards, codes and rating systems.

This should be done through facilitating the adjustment and upgrading for the specification of environmental assessment factors in a dynamic, flexible and simple way.

green building in amman

Scientific Rigour and Priorities

Developing an assessment framework should be based on in-situ building performance research and technical knowledge. Technical rigour is very important in this case, for example setting benchmarks and measuring the performance. Furthermore, the investigated rating systems are located in hot climates, with scarce water resources which require a different approach and credits focus. Issues like solar protection, water conservation, life style, solar cooling and urban planning should be more strongly addressed in future developments. This includes advancing environmental footprint issues, like climate change.

Regionalisation

The assessment framework should suite the local context of each country in the Middle East, depending on its culture, issues, stakeholders, practices and institutions. Surprisingly, SI 5281 is the only rating system that was written in a native language, thus it is essential for each country, to design its own indicators to serve its goals in local language. This includes the development of local criteria to quantify the social part of sustainability that includes tradition and culture.

Providing a Platform

Multi-stakeholders should participate in developing rating systems, since they require participative and collaborative work process. Experts, designers, elected officials, working group, agency players, and others should be introduced as key participants in this process. The building industry should be encouraged to get into sustainable track to achieve a real transformation, regarding water and energy. There is a need to link those rating systems to grass root initiatives rather than developing them within academia or elite practicing companies.

According to the study, the examined certification systems need strong adaptation to meet the needs of the Middle East regional climate, social, cultural, environmental and economic conditions. Also there must be a harmonisation effort between regional rating systems aiming to develop and implement a common, transparent regional building assessment methodology. Otherwise, there will be a proliferation of immature systems without accumulated and unifying experience.

Conclusion

There is still a long way before those examined systems examined become mature and widely usable.  Despite that the development of the examined rating systems is intended to facilitate the assessment of sustainable design in the MENA countries; they fail to suit the local context culture issues, resources, priorities, practices and economic challenges. The GPRS, QSAS and PBRS systems neglect the interpretation of essential local sustainability measurements in their assessment set and normative standards.

The study concludes that the existing rating system needs to increase the technical rigor and to put more weight on the most important categories, mainly water, IEQ, pollution and energy. The study suggests a number of recommendations to develop a harmonised green building assessment system in the MENA region. The usefulness of rating systems in the future depends on their flexibility and ability to measure the merits of buildings.

Note: The original version of the article can be viewed at this link.

السياحة البيئية: نظرة على الأردن

تشهد السياحة البيئية في الأردن تطوراً متعدد الجوانب يشمل كلاً من الفرص الاقتصادية البحتة المرتبطة بالسياحة ذاتها إضافة إلى المجالات الأوسع التي تشمل التنمية البيئية والمجتمعية كعناصر أساسية في نمو هذا القطاع. واستجابة لرغبة واهتمامات المسافرين (السوّاح) المحليين والإقليميين والدوليين، توفر السياحة البيئية في الأردن منصة مثالية للشركات المستدامة المسؤولة التي تعمل على جذب الاستثمارات الخضراء وتمكين المجتمعات المحلية من خلال تطوير خدمات ومنتجات مميزة ومتخصصة.

biodiversity in dead sea

الميزة التنافسية

إن ندرة وتفرّد الموارد الطبيعية في دول الشرق الأوسط وشمال إفريقيا، بما في ذلك الأردن، أصبحت توفر ميزة تنافسية تفتح أبوابا جديدة للسياحة البيئية وسياحة المغامرة. كما ويشكل الابتكار الاجتماعي والابتكار في المجال البيئي (الأخضر) بعداً آخر يحفّز انطلاق أفكاراً جديدة للأعمال الصغيرة والمتناهية الصغر في الأردن مما يسهم في إيجاد فرص العمل وتوليد الدخل للمجتمعات المحلية، خاصة لفئات الشباب والنساء. وبينما  يبحث المستثمرون التقليديون عادة عن توجهات وفرص في الأسواق الخارجية،  يوفر قطاع السياحة البيئية فرصا استثمارية محلية قيّمة.

الأردن – النموذج الأمثل

كان الأردن من أوائل دول الشرق الأوسط التي وظفت القيمة الاجتماعية والاقتصادية لبيئتها المتنوعة والفريدة. فمنذ الستينيات، اتخذ الأردن خطوات جادة لحماية بيئته الطبيعية من خلال إنشاء الجمعية الملكية لحماية الطبيعة والتي أنيط بها إنشاء المناطق المحمية وإدارتها.  في عام 1993، ومن خلال إنشاء نموذج  محمية ضانا للمحيط الحيوي، وضع الأردن السياحة البيئية كعنقود تنموي رئيسي لدمج التنمية الاقتصادية والاجتماعية ضمن حماية البيئة. واليوم، يوجد في الأردن عشر محميات طبيعية توفر للسائح تجربة استثنائية للتمتع بالطبيعة ومساعدة المجتمعات المحلية.

تشهد السياحة البيئية في الأردن تطوراً متعدد الجوانب

وقد اكتسبت تجربة الأردن في مجال السياحة البيئية اعترافاً عالمياً وغدت نموذجاً ناجحاً للشراكات ما بين الحكومة والمنظمات غير الحكومية والمجتمعات المحلية. وتشير أرقام الجمعية الملكية لحماية الطبيعة إلى أن مشاريع السياحة البيئية قد ولّدت حوالي 1.5 مليون دينار أردني (حوالي 2.1 مليون دولار أمريكي) في عام 2015 من خلال زيارة  175 ألف شخص للمحميات الطبيعية في الأردن، 65 في المائة منهم من الأجانب.

 الآفاق المستقبلية للسياحة البيئية

ولكي تزدهر السياحة البيئية في الأردن وتحقق أهدافها التنموية، فلا بد من توفر مجموعة من العوامل الممكنة، بما في ذلك البنى التحتية المختلفة. حيث يتحتم على الحكومات والقطاع الخاص والمؤسسات الدولية أن تعمل معاً من أجل توفير هذه البنى ومنها:  تطوير الإطار التشريعي والتنظيمي الملائم، تسهيل استخدام الأراضي، توفير أدوات التمويل المناسبة، تنمية القدرات البشرية والمؤسسية المحلية، وتوفير مناخ جاذب للاستثمار، هذا بالإضافة إلى توفير وسائل النقل المريحة وبكلفة معقولة.

كما أن تمكين الابتكار المحلي وتعزيز الريادة المجتمعية في المجتمعات المحلية سيشكل بدوره القيمة المضافة  الحقيقية  للمحافظة على مستقبل السياحة البيئية في منطقة الشرق الأوسط وشمال إفريقيا.

ترجمة 

د. بان مساعده

حاصله على الدكتوراه في وقاية النبات من جامعة هانوفر/ المانيا. عملت كباحث رئيسي في المركز الوطني للبحث والارشاد الزراعي في مجال أبحاث الزراعة العضوية والمكافحة الحيوية، وعضوا في لجان مأسسة الزراعة العضوية في الاردن، وفي تدريب المجتمعات المحلية على مفاهيم المكافحة الحيوية والزراعة العضوية، وفي مجال إعداد وتقديم البرامج الزراعية التلفزيونية. في قطاع المؤسسات غير الحكومية عملت كمشرف تطوير برامج تنمية المجتمعات المحلية وإعداد مقترحات المشاريع الاجتماعية – الإقتصادية  في مؤسسة  نهر الاردن.