Energy Perspectives for Jordan

The Hashemite Kingdom of Jordan is an emerging and stable economy in the Middle East. Jordan has almost no indigenous energy resources as domestic natural gas covers merely 3% of the Kingdom’s energy needs. The country is dependent on oil imports from neighbouring countries to meet its energy requirements. Energy import costs create a financial burden on the national economy and Jordan had to spend almost 20% of its GDP on the purchase of energy in 2008.

In Jordan, electricity is mainly generated by burning imported natural gas and oil. The price of electricity for Jordanians is dependent on price of oil in the world market, and this has been responsible for the continuous increase in electricity cost due to volatile oil prices in recent years. Due to fast economic growth, rapid industrial development and increasing population, energy demand is expected to increase by at least 50 percent over the next 20 years.

Therefore, the provision of reliable and cheap energy supply will play a vital role in Jordan’s economic growth. Electricity demand is growing rapidly, and the Jordanian government has been seeking ways to attract foreign investment to fund additional capacity. In 2008, the demand for electricity in Jordan was 2260 MW, which is expected to rise to 5770 MW by 2020.

In 2007, the Government unveiled an Energy Master Plan for the development of the energy sector requiring an investment of more than $3 billion during 2007 – 2020. Some ambitious objectives were fixed: heating half of the required hot water on solar energy by the year 2020; increasing energy efficiency and savings by 20% by the year 2020, while 7% of the energy mix should originate from renewable sources by 2015, and should rise to 10% by 2020. 

Concerted efforts are underway to remove barriers to exploitation of renewable energy, particularly wind, solar and biomass. There has been significant progress in the implementation of sustainable energy systems in the last few years to the active support from the government and increasing awareness among the local population.

With high population growth rate, increase in industrial and commercial activities, high cost of imported energy fuels and higher GHGs emissions, supply of cheap and clean energy resources has become a challenge for the Government. Consequently, the need for implementing energy efficiency measures and exploring renewable energy technologies has emerged as a national priority.  In the recent past, Jordan has witnessed a surge in initiatives to generate power from renewable resources with financial and technical backing from the government, international agencies and foreign donors. 

The best prospects for electricity generation in Jordan are as Independent Power Producers (IPPs).  This creates tremendous opportunities for foreign investors interested in investing in electricity generation ventures. Keeping in view the renewed interest in renewable energy, there is a huge potential for international technology companies to enter the Jordan market.  There is very good demand for wind energy equipments, solar power units and waste-to-energy systems which can be capitalized by technology providers and investment groups.

Republished by Blog Post Promoter

EcoMENA – Vision and Mission

The MENA region is plagued by a host of issues including water scarcity, waste disposal, food security, industrial pollution and desertification. Providing free access to quality information and knowledge-based resources motivates youngsters in a big way. EcoMENA provides encouragement to masses in tackling major environmental challenges by empowering them with knowledge and by providing them a solid platform to share their views with the outside world.

Salman Zafar, Founder of EcoMENA, talks to the Florentine Association of International Relations (FAIR) about the vision, aims, objectives and rationale behind the creation of EcoMENA. The original version of the interview can be viewed at http://goo.gl/dnfa4K

 

FAIR: What is EcoMENA and what is its primary mission?

Salman Zafar: EcoMENA came into existence in early 2012 with the primary aim to raise environmental awareness in the MENA region and provide a one-stop destination for high-quality information on environment, energy, waste, water, sustainability and related areas.

EcoMENA has made remarkable progress within a short period of time and has huge knowledge base in English as well as Arabic catering to all aspects of sustainability sector, including renewable energy, resource conservation, waste management, environment protection and water management.

FAIR: How did the idea of such an activity come from?

Salman Zafar: While doing research sometimes back, I noticed lack of easily-accessible information on Middle East environmental sector. EcoMENA was launched to empower masses with updated information on Middle East sustainability sector and latest developments taking place worldwide.

EcoMENA is an online information powerhouse freely accessible to anyone having an interest in sustainable development. Our articles, reports and analyses are well-researched, well-written and of the highest professional standards.

FAIR: What is the “state of the art” in the field of sustainability and environment protection in the MENA countries?

Salman Zafar: Unfortunately environment protection is not given due importance by regional countries, though there has been some high-profile initiatives like Masdar City in Abu Dhabi. Sustainability is, no doubt, making its way in the Middle East but the progress has been slow and unsatisfactory.

The MENA region is plagued by a host of issues including water scarcity, waste disposal, food security, industrial pollution and desertification. A regional initiative with a multi-pronged strategy is urgently required to protect the environment and conserve scarce natural resources.

FAIR: What are EcoMENA aims and initiatives for the future?

Salman Zafar: One of the major objectives of EcoMENA is to provide a strong platform for Middle East youngsters to showcase their talents. We are mentoring young students and providing them opportunities to display their innovativeness, creativity and dedication towards environment protection.

Providing free access to quality information and knowledge-based resources motivates youngsters in a big way. EcoMENA provides encouragement to people in tackling major environmental challenges by empowering them with knowledge and by providing them a solid platform to share their views with the outside world. With soaring popularity of social media, networking plays a vital role in assimilation of ideas, knowledge-sharing, scientific thinking and creativeness.

We have a strong pool of expert writers from different parts of the world, and remarkably supported by a handful of volunteers from across the MENA region. Apart from being an information portal, EcoMENA also provide expert guidance and mentorship to entrepreneurs, researchers, students and general public.

FAIR: Do you think there is enough attention and sensitiveness in the sustainable development?

Salman Zafar: Things are slowly, but steadily, changing in most of the MENA countries and a more concerted and organized effort is required to bring about a real change in the prevalent environmental scenario.

A green MENA requires proactive approach from all stakeholders including governments, corporates and general public. Strong environmental laws, promotion of clean energy and eco-friendly projects, reducing reliance on fossil fuels, institutional support and funding, implementing resource conservation, raising environmental awareness and fostering entrepreneurial initiatives are some of the measures that may herald a ‘green revolution’ in the region.

FAIR: In your opinion, what is the “added value” of your mission?

Salman Zafar: EcoMENA endeavor to create mass awareness about the need for clean and green environment in the Middle East through articles, projects, events and campaigns. EcoMENA is counted among the best and most popular Middle East sustainability initiatives with wide following across the world.

Our goal is to transform EcoMENA into a regional cleantech and environmental hub by providing quality information, professional solutions and high level of motivation to people from all walks of life.

Republished by Blog Post Promoter

Sustainability in MENA Cement Industry

The population in the MENA countries has doubled during the last 30 years (from ca. 110m in 1980 to almost 220m in 2010). As per conservative estimates, the rate of urbanisation in the MENA countries will exceed 70% five years from today (average for all developing countries: 54%). The proceeding urbanisation and the population increase involve several problems and challenges for the national governments and also for the cement industry. The cement production of countries in the MENA region has almost tripled during the last 15 years up to approximately 500m tons  Since the start of national revolts and demonstrations in MENA countries in 2011 the problems of especially young Arabs have attracted the attention worldwide.

Environmental problems that accompany a fast growing population and increasing urbanisation are, among others, increasing consumption of energy and raw materials, increasing land use in order to satisfy the increasing food demand, infrastructure development, disposal of increasing amounts of waste and development of sewage systems. Solving these generation spanning problems is a challenging task for the national governments.

Naturally, such high growth rates also affect the cement industry. In the MENA countries it consists of various companies, part of them listed on the stock exchange. A number of cement companies has, partly for cost aspects, responded to the negative consequences of the rapid population growth. The following paragraphs describe the cement industry’s approaches to push a sustainable development in certain sectors. They are partly driven by own responsibility and partly by regulations of the national governments. In this context it should be mentioned that the growth of the cement industry is already partly limited by factors that are directly connected with sustainability and raw material supply.

Although the factors differ from country to country and cannot be generalised, there are a few major concerns, for example:

  • Fuel shortage
  • Dependence on oil
  • Lack of investment in innovations

Let’s have a closer look on the limiting factors and innovation potential based on practical examples.

Saudi Arabia

In many industrialised countries the continuous and tailored supply of the industry with fossil fuels is only a question of price.  But the fact that of all countries, it was cement plants in the own country that repeatedly reported shortages of fossil fuel supply (heavy fuel oil), was certainly an important reason for the government to get closely involved in this matter.

Cement producers in the Kingdom of Saudi Arabia obtain state-subsidised natural gas at a price of US$ 0.75/mmbtu from the state-owned oil company “Saudi Aramco”. Formerly, the cement production costs resulting thereof were on average US$ 28.8/ton of cement (costs in neighbouring countries: Kuwait US$ 59.2/ton, UAE US$ 47.8/ton, Oman US$ 37.0/ton) which made it redundant to deal with the topic of energy. In India, a country with one of the highest energy costs in the world, the production of one ton of cement costs US$ 70.0/ton in 2010.

Due to such low energy prices and a steadily growing demand the production capacities grew constantly. Currently, the industry accounts for approximately 40% of the overall energy demand of the country. Analysts estimate that this demand will even double within the next 15 years. However, it is planned to reduce this disproportionate energy demand of the industry.

Under the patronage of HRH Prince Abdulaziz bin Salman, the state-owned oil company “Saudi Aramco” is developing a so-called “Mandatory Energy Efficiancy Program” (MEEP) for the entire Saudi-Arabian industry. The plan of MEEP is to “establish mandatory policies and regulations with the objective of reducing existing and future energy consumption levels in the industrial sector”.

For the national cement industry this approach implies investments in energy-saving measures. Key points for an energy-efficient industry are identified as

  • Use of alternative raw materials
  • Use of alternative fuels
  • Training and education in energy efficiency

As the use of alternative fuels and raw materials is not yet common in the Kingdom of Saudi Arabia, guidelines and a regulatory framework have to be defined which set standards for the use of alternative or waste-derived fuels like municipal solid wastes, dried sewage sludge, drilling wastes and others. It has to include:

  • Types of wastes and alternative fuels that may be used by the cement industry
  • Standards for the production of waste-derived fuels
  • Emission standards and control mechanisms while using alternative fuels
  • Standards for permitting procedures

Appropriate standards also need to be established for alternative raw materials that are to be used for clinker and cement production. In order to achieve an energy-efficient production special education, further training and workshops for the involved staff have to be carried out.

Egypt

The current political developments in Egypt influence the local cement industry significantly. The government expects additional sources of revenue on the one hand from selling licences for the construction of new cement plants and on the other hand from a reduction of subsidies for fossil fuels. Since these news are not a surprise for the local cement plants, they started to invest in the implementation of alternative – mostly biomass-derived fuels. One of them is CemexAssiut that not only started using different kinds of biomass, but also, most notably and exemplary, established plantations for the production of biomass (here: “Casuarina”) that are irrigated with pretreated sewage water from the city Assiut.

Egypt is the 14th biggest rice producer in the world and the 8th biggest cotton producer in the world. Egypt produced about 5.67 million tons of rice and 635,000 tons of cotton in 2011. The area of cotton crop cultivation accounts for about 5% of the cultivated area in Egypt. The total amount of crop residues is about 16 million tons of dry matter per year. Cotton residues represent about 9% of the total amount of residues. Such high production rates should be welcomed by the cement industry since these materials comprise cotton stalks, rice husks and rice straw which serve ideally as alternative fuels.

The use of waste-derived alternative fuels is, however, more complicated. Although for example Cairo produces some 15,000 tons of waste each day, it is not easy for the cement plants to obtain this waste since they are in direct competition with the informal sector that controls approx. 60% of the local waste total. So-called Zabbaleen or scavengers – mostly young people who do not have other options – make their living by collecting and selling waste-derived recyclables.

Tunisia

Some years ago, Tunisia already invested in the establishment of an organised waste management system in form of a state-owned agency named “ANGED”. Funded by the national German KfW development bank, numerous waste collection points as well as organised landfills have been built. Additionally, a special collection centre for hazardous waste was erected in Jradou. This centre was operated by MVW Lechtenberg’s Partner Nehlsen AG, the German Waste Management Group, collecting and processing wastes like used oils and solvents. Such wastes are ideal alternative fuels. A fact that is also known to the local cement companies that planned to use them in their plants. Unfortunately, due to public opposition the centre was closed and the projects for the processing of alternative fuels have been suspended since then.

Tunisia is one of the biggest producers and exporters of olive oil in the world. It also exports dates and citrus fruits that are grown mostly in the northern parts of the country. It seems paradox that for example olive kernels – the waste from Tunisian olive production – is exported to European power plants in order to save fossil fuel-derived CO2 emissions there, while Tunisia imports approximately 90% of its energy demand, consisting of fossil fuel.

Morocco

The Moroccan cement industry has already achieved a greater success regarding the use of alternative fuels. Cement plants, mostly owned by the international companies Lafarge, Cimpor, Holcim and Italcimenti, already invested years ago in the environmentally friendly use of alternative fuels and alternative raw materials due to the development of world market prices. Also the only local competitor, CIMAT, has started preparing for the implementation of alternative fuels immediately after completion of its new plant (a 5-stage double string calciner from Polysius) in Ben Ahmed, near Casablanca.

In the year 2003 an agreement on the use and import of alternative fuels (used tyres at the time) was made between the Association Professionelle de Ciment and Moroccan government. Since last year attempts are being made to agree on an industry regulation that sets standards for the use of all appropriate special waste available in Morocco.

United Arab Emirates

The United Arab Emirates, represented by Dr. Rashid Ahmad Bin Fahd, Minister of Environment and Water, recently issued a decision streamlining the activities of cement plants all over the country. The resolution will affect all existing and new cement factories across the country. Its provisions obligate the industry to prepare a report assessing the impact of cement plants on the environment.

According to the decision, this report has to be prepared by a consulting firm having expert knowledge regarding environmental protection in the cement industry. This is certainly the first step to evaluate the current situation which will be followed by an investigation of alternatives towards a sustainable development. Interest in the implementation of alternative fuels already exists among the national cement industry which is proven not least by the numerous planned investment projects.

Conclusions

The cement industry in the MENA region will change significantly within the next years. This change will focus on the improvement of energy efficiency and on the increased use of alternative raw materials and alternative fuels. This will include high investments in technology and in the human resources sector where the creation of new jobs, especially in the field of environmentally friendly and sustainable development, provides a perspective for the growing, young population of the MENA countries.

Republished by Blog Post Promoter

Environmental Best Practices for MENA Cement Industry

Cement production in MENA region has almost tripled during the last 15 years, mainly on account of high population growth rate, rapid urbanization, increasing industrialization and large-scale infrastructural development. The growth of cement industry in MENA is marked by factors that are directly connected with sustainability, energy efficiency and raw material supply. Although the factors differ from country to country and cannot be generalized, there are major concerns regarding shortage of raw materials, GHG emissions, dependence on fossil fuels and lack of investment in technological innovations.

For the MENA cement sector, key points for an environment-friendly industry are use of alternative raw materials and alternative fuels, energy-efficient equipment and green technologies. As the use of alternative fuels and raw materials is still uncommon in the Middle East, guidelines and regulatory framework have to be defined which can set standards for the use of alternative or waste-derived fuels like municipal solid wastes, dried sewage sludge, agricultural wastes, drilling wastes etc.

Sewage Sludge

An attractive disposal method for sewage sludge is to use it as alternative fuel source in a cement kiln. Dried sewage sludge with high organic content possesses a high calorific value. Due to the high temperature in the kiln the organic content of the sewage sludge will be completely destroyed. The resultant ash is incorporated in the cement matrix. Infact, several European countries, like Germany and Switzerland, have already started adopting this practice for sewage sludge management.

The MENA region produces huge quantity of municipal wastewater which represents a serious problem due to its high treatment costs and risk to environment, human health and marine life. Sewage generation across the region is rising by an astonishing rate of 25 percent every year. Municipal wastewater treatment plants in MENA produce large amounts of sludge whose disposal is a cause of major concern.

For example, Kuwait has 6 wastewater treatment plants, with combined capacity of treating 12,000m³ of municipal wastewater per day, which produce around 250 tons of sludge daily. Similarly Tunisia has approximately 125 wastewater treatment plants which generate around 1 million tons of sewage sludge every year. Currently most of the sewage is sent to landfills. Sewage sludge generation is bound to increase at rapid rates in MENA due to increase in number and size of urban habitats and growing industrialization.

The use of sewage sludge as alternative fuel is a common practice in cement plants around the world, Europe in particular. It could be an attractive business proposition for wastewater treatment plant operators and cement industry in the Middle East to work together to tackle the problem of sewage sludge disposal, and high energy requirements and GHGs emissions from the cement industry.

Use of sludge in cement kilns will led to eco-friendly disposal of municipal sewage

Use of sludge in cement kilns will led to eco-friendly disposal of municipal sewage

Sewage sludge has relatively high net calorific value of 10-20 MJ/kg as well as lower carbon dioxide emissions factor compared to coal when treated in a cement kiln. Use of sludge in cement kilns can also tackle the problem of safe and eco-friendly disposal of sewage sludge. The cement industry accounts for almost 5 percent of anthropogenic CO2 emissions worldwide. Treating municipal wastes in cement kilns can reduce industry’s reliance on fossil fuels and decrease greenhouse gas emissions.

Municipal Solid Wastes and Biomass

Alternative fuels, such as refuse-derived fuels or RDF, have very good energy-saving potential. The substitution of fossil fuel by alternative sources of energy is common practice in the European cement industry. The German cement industry, for example, substitutes approximately 61% of their fossil fuel demand. Typical alternative fuels available in MENA countries are municipal solid wastes, agro-industrial wastes, industrial wastes and crop residues.

The gross urban waste generation quantity from Middle East countries has crossed 150 million tons per annum. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita solid waste generation. Solid waste disposal is a big challenge in almost all MENA countries so conversion of MSW to RDF will not ease the environmental situation but also provide an attractive fuel for the regional cement industry. Tens of millions of tyres are discarded across the MENA region each year. Scrap tyres are are an attractive source of energy and find widespread use in countries around the world.

Agriculture plays an important role in the economies of most of the countries in the Middle East and North Africa region.  Despite the fact that MENA is the most water-scarce and dry region in the world, many countries in the region, especially those around the Mediterranean Sea, are highly dependent on agriculture. Egypt is the 14th biggest rice producer in the world and the 8th biggest cotton producer in the world. Similarly Tunisia is one of the biggest producers and exporters of olive oil in the world. Such high biomass production rates should be welcomed by the cement industry since these materials comprise cotton stalks, rice husks and rice straw which serve ideally as alternative fuels. However it is ironical that olive kernels – the waste from Tunisian olive production – is exported to European power plants in order to save fossil fuel-derived CO2 emissions there, while Tunisia imports approximately 90% of its energy demand, consisting of fossil fuels.

Drilling Wastes as Alternative Raw Material

The reduction of clinker portion in cement affords another route to reduce energy consumption. In particular, granulated blast furnace slags or even limestone have proven themselves as substitutes in cement production, thus reducing the overall energy consumption. The Middle East oil and gas industry has made a lot of effort in order to reduce the environmental impact of their activities. The use of drilling wastes and muds is preferable in cement kilns, as a cement kiln can be an attractive, less expensive alternative to a rotary kiln. In cement kilns, drilling wastes with oily components can be used in a fuel-blending program to substitute for fuel that would otherwise be needed to fire the kiln.

Conclusions

The cement industry can play a significant role in the sustainable development in the Arab countries, e.g. by reducing fossil fuel emissions with the use of refused derived fuels (RDF) made from municipal solid waste or biomass pellets. The cement companies in the Middle East can contribute to sustainability also by improving their own internal practices such as improving energy efficiency and implementing recycling programs. Businesses can show commitments to sustainability through voluntary adopting the concepts of social and environmental responsibilities, implementing cleaner production practices, and accepting extended responsibilities for their products.  

The major points of consideration are types of wastes and alternative fuels that may be used, standards for production of waste-derived fuels, emission standards and control mechanisms, permitting procedures etc. Appropriate standards also need to be established for alternative raw materials that are to be used for clinker and cement production.

Republished by Blog Post Promoter

Biomass Potential of Date Palm Wastes

Date palm is one of the principal agricultural products in the arid and semi-arid region of the world, especially Middle East and North Africa (MENA) region. There are more than 120 million date palm trees worldwide yielding several million tons of dates per year, apart from secondary products including palm midribs, leaves, stems, fronds and coir. The Arab world has more than 84 million date palm trees with the majority in Egypt, Iraq, Saudi Arabia, Iran, Algeria, Morocco, Tunisia and United Arab Emirates.

Egypt is the world’s largest date producer with annual production of 1.47 million tons of dates in 2012 which accounted for almost one-fifth of global production. Saudi Arabia has more than 23 millions date palm trees, which produce about 1 million tons of dates per year. Date palm trees produce huge amount of agricultural wastes in the form of dry leaves, stems, pits, seeds etc. A typical date tree can generate as much as 20 kilograms of dry leaves per annum while date pits account for almost 10 percent of date fruits. Some studies have reported that Saudi Arabia alone generates more than 200,000 tons of date palm biomass each year.

Date palm is considered a renewable natural resource because it can be replaced in a relatively short period of time. It takes 4 to 8 years for date palms to bear fruit after planting, and 7 to 10 years to produce viable yields for commercial harvest. Usually date palm wastes are burned in farms or disposed in landfills which cause environmental pollution in date-producing nations. In countries like Iraq and Egypt, a small portion of palm biomass in used in making animal feed.

The major constituents of date palm biomass are cellulose, hemicelluloses and lignin. In addition, date palm has high volatile solids content and low moisture content. These factors make date palm biomass an excellent waste-to-energy resource in the MENA region. A wide range of thermal and biochemical technologies exists to convert the energy stored in date palm biomass to useful forms of energy. The low moisture content in date palm wastes makes it well-suited to thermo-chemical conversion technologies like combustion, gasification and pyrolysis.

On the other hand, the high volatile solids content in date palm biomass indicates its potential towards biogas production in anaerobic digestion plants, possibly by codigestion with sewage sludge, animal wastes and/and food wastes. The cellulosic content in date palm wastes can be transformed into biofuel (bioethanol) by making use of the fermentation process. Thus, abundance of date palm trees in the GCC, especially Saudi Arabia, can catalyze the development of biomass and biofuels sector in the region.

Republished by Blog Post Promoter

Waste-to-Energy Outlook for the Middle East

The high rate of population growth, urbanization and economic expansion in the Middle East is not only accelerating consumption rates but also increasing the generation rate of all sorts of waste. High-income Middle Eastern countries like Saudi Arabia, UAE, Qatar, Bahrain and Kuwait are counted as world’s largest waste producers in terms of per capita waste generation which is more than 2kg per day in some countries. The urban waste generation from the region has now crossed 150 million tons per year which has forced policy-makers and urban planners to look for sustainable waste management solutions, including recycling and waste-to-energy.

Let us take a look at solid waste generation in major countries across the Middle East region:

Country

MSW Generation

(million tons per annum)

Saudi Arabia

15

United Arab Emirates

6

Qatar

2.5

Kuwait

2

Bahrain

1.5

Egypt

20

Tunisia

2.3

Morocco

5

Lebanon

1.6

Jordan

2

In addition, huge quantity of sewage sludge is also generated in the Middle East which presents a serious problem due to its high treatment costs and risk to environment and human health. On an average, the rate of wastewater generation is 80-200 litres per person each day and sewage output is rising by 25 percent every year across the region.

Conversion Pathways

Municipal solid waste is a very good source of biomass in the Middle East. Municipal solid waste is comprised of organic fraction, paper, glass, plastics, metals, wood etc. Almost 50% of the solid waste is contributed by organic matter.

Municipal solid waste can be converted into energy by conventional technologies (such as incineration, mass-burn and landfill gas capture). Municipal solid waste can also be efficiently converted into energy and fuels by advanced thermal technologies, such as gasification and pyrolysis.

At the landfill sites, the gas produced by the natural decomposition of MSW is collected from the stored material and scrubbed and cleaned before feeding into internal combustion engines or gas turbines to generate heat and power. In addition, the organic fraction of MSW can be anaerobically stabilized in a high-rate digester to obtain biogas for electricity or steam generation.

Anaerobic digestion is the most preferred option to extract energy from sewage, which leads to production of biogas and organic fertilizer. The sewage sludge that remains can be incinerated or gasified/pyrolyzed to produce more energy. In addition, sewage-to-energy processes also facilitate water recycling.

Relevance for Middle East

The variety of technological options available means that waste-to-energy can be applied at a small, localized scale primarily for heat, or it can be used in much larger base-load power generation capacity whilst also producing heat. Waste-to-energy conversion can thus be tailored to rural or urban environments in the Middle East, and utilized in domestic, commercial or industrial applications in the entire region.

The world’s dependence on Middle East energy resources has caused the region to have some of the largest carbon footprints per capita worldwide. The GCC region is now gearing up to meet the challenge of global warming, as with the rapid growth of the waste management sector. During the last few years, UAE, Qatar and Saudi Arabia have unveiled multi-billion dollar investment plans to Improve waste management scenario. In particular, the establishment of Domestic Solid Waste Management Centre in Qatar has catalyzed public interest in deployment of waste-to-energy systems in the Middle East.

Energy recovery from MSW is rapidly gaining worldwide recognition as the fourth ‘R’ in sustainable waste management system – Reuse, Reduce, Recycle and Recover. A transition from conventional waste management system to one based on sustainable practices is necessary to address environmental concerns and to foster sustainable development in the region.

Republished by Blog Post Promoter

Wastes as Energy Resource

The tremendous increase in the quantum and diversity of waste materials generated by human activities has focused the spotlight on waste management options. Waste generation rates are affected by standards of living, degree of industrialization and population density. Generally, the greater the economic prosperity and the higher percentage of urban population, the greater the amount of waste produced. A good example are the oil-rich GCC nations who are counted among the world's most prolific per capita waste generators.

Reduction in the volume and mass of wastes is a crucial issue due to limited availability of final disposal sites in the Middle East. There is, no doubt, an obvious need to reduce, reuse and recycle wastes but recovery of energy from wastes is also gaining ground as a vital method for managing wastes and Middle East should not be an exception.

Wastes can be transformed into clean and efficient energy and fuel by a variety of technologies, ranging from conventional combustion process to state-of-the-art plasma gasification technology. Besides recovery of energy, such technologies leads to substantial reduction in the overall waste quantities requiring final disposal. Waste-to-energy projects provide major business opportunities, environmental benefits, and energy security.  Feedstock for waste-to-energy plants can be obtained from a wide array of sources including municipal wastes, crop residues and agro-industrial wastes. 

Let us explore some of major waste resources that are readily available in Middle East and North Africa region:

Municipal Solid Wastes

Atleast 150 million tons of solid wastes are collected each year in the MENA region with the vast majority disposed of in open fields and dumpsites. The major energy resource in municipal solid waste is made up of food residuals, paper, fruits, vegetables, plastics etc which make up as much as 75 – 80 percent of the total MSW collected.

Municipal wastes can be converted into energy by thermochemical or biological technologies. At the landfill sites the gas produced by the natural decomposition of MSW (called landfill gas) can be collected, scrubbed and cleaned before feeding into internal combustion engines or gas turbines to generate heat and power. The organic fraction of MSW can be biochemically stabilized in an anaerobic digester to obtain biogas (for heat and power) as well as fertilizer. Sewage sludge is a big nuisance for municipalities and general public but it is a very good source of biogas, which can efficiency produced at sewage treatment plants.

Agricultural Residues

Crop residues encompasses all agricultural wastes such as bagasse, straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. Large quantities of crop residues are produced annually in the MENA region, and are vastly underutilised. Wheat and barley are the major staple crops grown in the Middle East region. In addition, significant quantities of rice, maize, lentils, chickpeas, vegetables and fruits are produced throughout the region, mainly in Egypt, Tunisia, Saudi Arabia, Morocco and Jordan. 

Current farming practice is usually to plough these residues back into the soil, or they are burnt, left to decompose, or grazed by cattle. Agricultural residues are characterized by seasonal availability and have characteristics that differ from other solid fuels such as wood, charcoal, char briquette. Crop wastes can be used to produce biofuels, biogas as well as heat and power through a wide range of well-proven technologies.

Animal Wastes

The MENA countries have strong animal population. The livestock sector, in particular sheep, goats and camels, plays an important role in the national economy of respective countries. Many millions of live ruminants are imported each year from around the world. In addition, the region has witnessed very rapid growth in the poultry sector.

The biogas potential of animal manure can be harnessed both at small- and community-scale. In the past, this waste was recovered and sold as a fertilizer or simply spread onto agricultural land, but the introduction of tighter environmental controls on odour and water pollution means that some form of waste management is now required, which provides further incentives for waste-to-energy conversion. The most attractive method of converting these waste materials to useful form is anaerobic digestion.

Wood Wastes

Wood processing industries primarily include sawmilling, plywood, wood panel, furniture, building component, flooring, particle board, moulding, jointing and craft industries. Wood wastes generally are concentrated at the processing factories, e.g. plywood mills and sawmills. In general, processing of 1,000 kg of wood in the furniture industries will lead to waste generation of almost half (45 %), i.e. 450 kg of wood.

Similarly, when processing 1,000 kg of wood in sawmill, the waste will amount to more than half (52 %), i.e. 520 kg wood. Wood wastes has high calorific value and can be efficiency converted into energy by thermal technologies like combustion and gasification.

Industrial Wastes

The food processing industry in MENA produces a large number of organic residues and by-products that can be used as biomass energy sources. These waste materials are generated from all sectors of the food industry with everything from meat production to confectionery producing waste that can be utilised as an energy source. In recent decades, the fast-growing food and beverage processing industry has remarkably increased in importance in major countries of the region.

Since the early 1990s, the increased agricultural output stimulated an increase in fruit and vegetable canning as well as juice, beverage, and oil processing in countries like Egypt, Syria, Lebanon and Saudi Arabia. Wastewater from food processing industries contains sugars, starches and other dissolved and solid organic matter. A huge potential exists for these industrial wastes to be biochemically digested to produce biogas, or fermented to produce ethanol, and several commercial examples of waste-to-energy conversion already exist around the world.

Conclusions

An environmentally sound and techno-economically viable methodology to treat wastes is highly crucial for the sustainability of modern societies. The MENA region is well-poised for waste-to-energy development, with its rich resources in the form of municipal solid waste, crop residues and agro-industrial waste. The implementation of advanced waste-to-energy conversion technologies as a method for safe disposal of solid and liquid wastes, and as an attractive option to generate heat, power and fuels, can greatly reduce environmental impacts of wastes in the Middle East. 

Republished by Blog Post Promoter

Biomass Energy in Middle East

The Middle East and North Africa (MENA) region offers almost 45 percent of the world’s total energy potential from all renewable sources that can generate more than three times the world’s total power demand. MENA region has abundant biomass energy resources which have remained unexplored to a great extent. According to conservative estimates, the potential of biomass energy in the Euro-Mediterranean region is about 400TWh per year. Around the region, pollution of the air and water from municipal, industrial and agricultural operations continues to grow.  The technological advancements in the biomass energy industry, coupled with the tremendous regional potential, promises to usher in a new era of energy as well as environmental security for the region.

The major biomass producing countries are Egypt, Yemen, Iraq, Syria and Jordan. Traditionally, biomass energy has been widely used in rural areas for domestic purposes in the MENA region, especially in Egypt, Yemen and Jordan. Since most of the region is arid or semi-arid, the biomass energy potential is mainly contributed by municipal solid wastes, agricultural residues and industrial wastes.

Municipal solid wastes represent the best source of biomass in Middle East countries. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita solid waste generation. The gross urban waste generation quantity from Middle East countries is estimated at more than 150 million tons annually. Food waste is the third-largest component of generated waste by weight which mostly ends up rotting in landfill and releasing greenhouse gases into the atmosphere. The mushrooming of hotels, restaurants, fast-food joints and cafeterias in the region has resulted in the generation of huge quantities of food wastes.

In Middle East countries, huge quantity of sewage sludge is produced on daily basis which presents a serious problem due to its high treatment costs and risk to environment and human health. On an average, the rate of wastewater generation is 80-200 litres per person each day and sewage output is rising by as much as 25 percent every year. According to conservative estimates, sewage generation in the Dubai is atleast 500,000 m3 per day.

The food processing industry in MENA produces a large number of organic residues and by-products that can be used as biomass energy sources. In recent decades, the fast-growing food and beverage processing industry has remarkably increased in importance in major countries of the region. Since the early 1990s, the increased agricultural output stimulated an increase in fruit and vegetable canning as well as juice, beverage, and oil processing in countries like Egypt, Syria, Lebanon and Saudi Arabia.

The MENA countries have strong animal population. The livestock sector, in particular sheep, goats and camels, plays an important role in the national economy of respective countries. Many millions of live ruminants are imported each year from around the world. In addition, the region has witnessed very rapid growth in the poultry sector. The biogas potential of animal manure can be harnessed both at small- and community-scale.

The Middle East region is well-poised for biomass energy development, with its rich biomass resources in the form of municipal solid waste, crop residues and agro-industrial waste. The implementation of advanced biomass conversion technologies as a method for safe disposal of solid and liquid biomass wastes, and as an attractive option to generate heat, power and fuels, can greatly reduce environmental impacts of a wide array of biomass wastes. 

 

Republished by Blog Post Promoter

Green Roofs in MENA – Prospects and Challenges

Green roofs are emerging technologies that can provide a wide range of benefits to communities interested in enhancement and protection of their environment. The major benefits of green roofs are reducing energy use as well as air pollution and greenhouse gas emissions, enhancing stormwater management and water quality, decreasing heat island effect by regulating temperature for the roof and the surrounding areas and providing aesthetic value and habitats for many species.  

According to a 2013 MENA renewable energy status report, the Total Primary Energy Supply (TPES) in Middle East and North Africa has reached about 800 million tons of oil.  This equates to a 15% increase in energy demand since 2007. Increased energy consumption in the region is due largely to population growth, with related increases in demand for liquid fuels and electricity for domestic use and devices, heating, cooling, and desalination of water.  With heating and cooling being a reason for the increasing demand on fossil fuels, there is enormous opportunity for investment in green roofs as a way to stabilize or reduce energy consumption in the MENA region.  

Enhancing Stormwater Management and Water Quality

Stormwater is rainwater and melted snow that hits impervious surfaces and runs off into streets, lawns, sidewalks, and other sites. The main concern with stormwater is it can pick up debris, chemicals, dirt, and other pollutants and flow into a storm sewer system or directly to a lake, stream, river, wetland, or coastal water. In many places around the world, including MENA region, anything that enters a storm sewer system is often later discharged untreated into a nearby waterway polluting the same waters we swim, fish, and drink from.

In addition, stormwater runoff can cause flooding and an overflowing of sewer sanitary systems causing serious water quality impairments. In developing countries like Morocco and Algeria, where countrywide stormwater management and municipal waste management systems are deficient, stormwater runoff is a big problem. Rainwater flows from roofs straight onto streets carrying things like petrol, household garbage, bacteria, fertilizers and pesticides to nearby receiving waters.

According to an EPA study, green roofs are capable of removing 50% of the annual rainfall volume from a roof through retention and evapo-transpiration. By reducing the amount of impervious surfaces within a developed zone, green roofs reduce the amount of stormwater runoff.   Also, because green roofs absorb water, they delay the time at which runoff occurs, resulting in decreased stress on sewer systems at peak flow periods.

For conventional non-living roofs with a slope of 2%, a 96% runoff rate is observed.  On the other hand, intensive green roofs may have as low as a 15% runoff rate.  The benefits green roofs have regarding stormwater runoff could be amplified by more green roofs in a close-knit area and using green roofs with a deeper substrate layer. Nevertheless, if implemented, countries in the MENA region in which stormwater management systems are not in place could greatly benefit from the use of green roofs to help reduce hazardous runoff and subsequent contamination of water supplies. 

Decreasing Urban Heat Island Effect

Since the built environment tends to be constructed from materials that are impermeable and non-reflective they tend to absorb a significant proportion of the sun’s radiation and release it as heat. Because urban areas are densely populated with buildings, they tend to be hotter than the surrounding areas, a phenomenon known as heat island effect.  Urban heat islands have many negative impacts such as an in increase energy demand for cooling, an increase in air pollutants and greenhouse gas emissions, and impaired water quality.

The heat island effect causes internal temperatures of buildings to rise which subsequently increases the demand for air-conditioning to moderate the buildings internal temperatures.  This in turn leads to higher emissions from power plants, as well as increased smog production as a result of warmer temperatures.  Additionally, hot rooftop surfaces transfer their excess heat to stormwater causing the runoff water to be much warmer than the streams, lakes, and other waterways it enters.  In many cases dealing with this rapid change in temperature causes stress to aquatic ecosystems.

Urban heat island effect is especially worrisome for areas like Middle East and North Africa, where out of a population of 300 million, 170 million people reside in urban areas. Furthermore, according to UN projections the MENA population will reach 430 million by 2020, of which 280 million are expected to be urban.  In order to combat the potential for the heat island effect in the MENA region, communities can utilize green roofs. 

The vegetative surfaces of green roofs utilize a relatively large proportion of the absorbed radiation in the evapo-transpiration process and then release water vapor into the air which helps to cool air temperatures.  Additionally, the shade provided by trees and other shrubbery greatly helps to reduce the rooftop temperatures and the overall heat island effect. 

Roof Lifespan

Rooftop vegetation moderates the factors that accelerate a rooftops breakdown such as extreme temperatures, UV radiation, and cold winds, thus dramatically expanding the life of a roof.  According to a study in Germany, a vegetated roof on average can be expected to prolong the service life of a conventional roof by at least 20 years. The result of this is not only cost savings to the building’s owner but also a reduction of landfill wastes. 

Habitats for Species

One of the more altruistic aspects of green roofs is the creation of wildlife habitats. Green roofs can provide habitat (food, shelter, water and breeding grounds) for many different species. Because of their high density, cities severely restrict green space and threaten or destroy habitats so the creation of such green space assumes particular importance in these areas.  Urban habitats are often seen as too degraded and depauperate to support biodiversity. 

Various recent studies in Europe have indicated that green roofs in large cities have high potential as habitat for species negatively impacted by land-use changes. For example, in Basel, Switzerland, surveys of birds, spiders and beetles on green roofs found high diversity levels for all groups, including many species considered rare or threatened.

For modern Middle Eastern citiies like Dubai, Jeddah, Cairo, Beirut and Tehran, creation of habitats for species could be very valuable.  Across the MENA region natural habitats are few and far, and green roofs can provide living space for plants and animals, especially for species such as invertebrates and birds. 

Aesthetic Value

Green roofs have the ability to significantly improve the beauty of buildings, the visual and environmental diversity which can have positive impacts psychological well-being. Studies across several countries have all shown the correlation between daily contact with nature and human well-being. In fact, the results of a large survey in the Netherlands showed that the amount of green space in the residential environment was positively related to the health condition people said they experienced in their daily life.

When people have contact with green space research has indicated a positive effect in levels of stress, health levels due to green space encouraging a higher level of use of the outdoor spaces, and mental well-being due to positive psychological effects plants and nature has on humans.

Current Scenario

While green roofs in Northern Scandinavia have been around for centuries, in North America green roofs are still a relatively new technology. In Europe, these technologies have become very well established mainly due to governments and legislatives financial support.  This support has led to the creation of a vibrant, multi-million dollar market for green roof products and services in Germany, France, Austria and Switzerland among others.

Currently, implementation of green roofs is rare in the MENA region.  However, there is a definite market potential as the benefits of green roofs address many of the major environmental concerns of this area.  Furthermore, the concrete architecture in the Middle East is ideal for a green roof implementation.  The structural soundness of concrete buildings has the potential to support the weight load of both intensive and extensive roofs. The swift progress of green buildings industry in the Middle East  promises a deeper penetration of green roofs in domestic as well as commercial constructions in the years to come.

However, one issue that may surface is that roofs are often fully accessible and are often used to dry laundry or to hold social events like weddings and other celebrations.  This may pose an issue for home owners if their green roof takes up too much of their roof to perform their daily functions.  An intensive roof may be more suitable for homeowners in this region as they lend well to daily visits and offer space to hold social functions.

Conclusion

Due to their extensive range of environmental and economic benefits, particularly their insulation and cooling properties, ability to significantly reduce rainwater runoff and urban heat island effect, as well as improve air quality and their value in promoting biodiversity and habitat in urban areas, green roofs have become important elements of sustainable and green construction in many countries.  While the green roof industry is growing in popularity, the industry is still young with many areas needing advancement.

The major barriers to green roof expansion in the Middle East include a lack of governmental support, high installation costs, lack of awareness and education about green roofs, and limited data quantifying green roof benefits.  However, with proper support these barriers can be easily overcome through research and innovation in design by the green roof industry. 

 

References

  1. After the Storm". (2013). 2013, from http://water.epa.gov/action/weatherchannel/stormwater.cfm#what
  2. Akbari, H. (2005). Energy Saving Potentials and Air Quality Benefits of Urban Heat Island Mitigation. 1-19. http://www.osti.gov/scitech/servlets/purl/860475
  3. Beattie, D., Berghage, R., Jarrett, A., O’Connor, T., Razaei, F., & Thuring, C. (2009). Green Roofs for Stormwater Runoff Control (pp. 81). National Risk Management Research Laboratory Office Of Research And Development: EPA.
  4. Bryden, J., Riahi, L., & Zissler, R. (2013). MENA Renewables Status Report. In L. Mastny (Ed.), (pp. 21). REN21 Secretariat, Paris, France.
  5. Colla, S. R., Packer, L., & Willis, E. (2009). Can green roofs provide habitat for urban bees (Hymenoptera: Apidae)? . Cities and the Environment 2(1), 1-12. http://digitalcommons.lmu.edu/cgi/viewcontent.cgi?article=1017&context=cate
  6. Dinsdale, S., Pearen, B., & Wilson, C. (2006). Feasibility Study for Green Roof Application on Queen’s University Campus: Queens University.
  7. Dunnett, N. (2006). Green Roofs For Biodiversity: Reconciling Aesthetics With Ecology. Paper presented at the Fourth Annual Greening Rooftops for Sustainable Communities Conference, Boston.
  8. Green Roof Benefits. (2013).   Retrieved 12/9/2013, from http://www.greenroofs.org/index.php/about/greenroofbenefits
  9. Hermy, M., Mentens, J., & Raes, D. (2006). Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landscape and Urban Planning, 77, 217–226. Retrieved from www.sciencedirect.com website: http://www.floradak.be/downloads/eng.pdf
  10. The Future of Green Roofs.   Retrieved 12/18/2013, from http://www.hrt.msu.edu/greenroof/future/index.html
  11. The social role of green space – health, education and enjoyment of life. (2005).   Retrieved 12/18/2013, from http://www.thesteelvalleyproject.info/green/intro/people-2.htm#well
  12. Urban Challenges in the MENA Region. (2013).   Retrieved 12/14/2013, from http://goo.gl/IT8rWo 
  13. What Is an Urban Heat Island? (2013).   Retrieved 12/14/2013, from http://www.epa.gov/hiri/about/index.htm

Republished by Blog Post Promoter

Energy Management in the Middle East

Managing and reducing energy consumption not only saves money but also helps in mitigating climate change and enhancing corporate reputation. The primary objective of energy management is to achieve and maintain optimum energy procurement and utilisation, throughout the organisation which may help in minimizing energy costs and mitigating environmental effects. Infact, energy management is widely acknowledged as the best solution for direct and immediate reduction of energy consumption.

Importance of Energy Management

Energy should be regarded as a business cost, like raw material or labour. Companies can achieve substantial reduction in energy bills by implementing simple housekeeping measures. Reduction and control of energy usage is vital for an organization as it:

  • Reduces costs: Reducing cost is the most compelling reason for saving energy. Most organisations can save up to 20% on their fuel cost by managing their energy use;
  • Reduces carbon emissions: Reducing energy consumption also reduces carbon emissions and adverse environmental effects. Reducing your organisation’s carbon footprint helps build a ‘green’ image thereby generating good business opportunities; and
  • Reduce risk: Reducing energy use helps reduce risk of energy price fluctuations and supply shortages.

Regulatory requirements aiming to reduce carbon emissions and energy use require accurate energy data collection and effective management systems. Good energy management practices are compliant with these requirements and help fulfil regulatory obligations. Businesses worldwide are showing interest in appointment of a formal/informal energy manager to coordinate energy management activities. The main task of an energy manager is to set up a system to collect, analyse and report on energy consumption and costs which may involve reading electricity meters regularly and analysis of utility bills.

Carbon emissions from energy use dominate the total greenhouse gas emissions of most organisations. Sound energy management is rapidly emerging as an integral part of carbon management which in turn helps organisations in effective overall environmental management. In addition to financial benefits, energy management has other significant advantages for an organisation such as:

  • Organisations achieve stronger market position by demonstrating ‘green’ credentials. Energy management improves competitive advantage as most consumers prefer to source from socially responsible businesses;
  • Organisations adopting energy management systems can influence supply chains by preferring suppliers who adopt environment management practices; and
  • Energy management creates a better workplace environment for employees by improving working conditions.

Energy Management in the Middle East

In recent years, energy consumption in the Middle East is rising exponentially due to rapid industrialization and high population growth rate. Infact, the level of primary energy consumption in MENA region is one of the highest worldwide.  However, the efficiency of energy production and consumption patterns in the region requires improvement. Though the per capita energy consumption in the GCC sub-region are among the world’s top list, more than 40 percent of the Arab population in rural and urban poor areas do not have adequate access to energy services.

The Middle East is making a steady change towards energy efficiency and alternative sources of energy. Several declarations have been issued in recent years emphasizing concerns and commitment of regional powers to achieve sustainable development. Energy Strategy 2030 introduced by Dubai aims to reduce energy demand and carbon dioxide emissions by 30% by the year 2030 through secure energy supply and efficient energy use while meeting environmental and sustainability objectives. Simalarly Saudi Arabia and Qatar are seriously pursuing the use of alternative energy in power generation. This is an attractive driver for businesses to adopt solutions that reduce overall energy consumption. 

Considering the rapid rise in power demand in the region, governments are now looking to diversify their energy mix from their primary energy source to a greater reliance on renewable energy. Middle East energy efficiency ranking is expected to get a major boost due to the development of large renewable energy projects in UAE, Saudi Arabia, Jordan etc. Balanced approaches are being employed to drive feasible clean energy projects while developing the regulatory framework and adaptation of energy efficient technologies.

Many businesses in the Middle East have set dynamic strategic direction to achieve immediate reduction in energy consumption. The trend towards energy efficiency will only continue to grow to sustain this demand. With increasing environmental awareness, there is significant room for growth and leadership within the Middle East for the adoption of energy optimisation, introduction of specialised energy-saving systems and implementation of sustainable energy technologies.

Republished by Blog Post Promoter

Overview of Composting Methods

The composting process is a complex interaction between the waste and the microorganisms within the waste. The microorganisms that carry out this process fall into three groups: bacteria, fungi, and actinomycetes. Actinomycetes are a form of fungi-like bacteria that break down organic matter. The first stage of the biological activity is the consumption of easily available sugars by bacteria, which causes a fast rise in temperature. The second stage involves bacteria and actinomycetes that cause cellulose breakdown. The last stage is concerned with the breakdown of the tougher lignins by fungi.

Types of Composting

The methodology of composting can be categorized into three major segments—anaerobic composting, aerobic composting, and vermicomposting.

In anaerobic composting, the organic matter is decomposed in the absence of air. Organic matter may be collected in pits and covered with a thick layer of soil and left undisturbed six to eight months. The compost so formed may not be completely converted and may include aggregated masses.

Aerobic composting is the process by which organic wastes are converted into compost or manure in presence of air and can be of different types. The most common is the Heap Method, where organic matter needs to be divided into three different types and to be placed in a heap one over the other, covered by a thin layer of soil or dry leaves. This heap needs to be mixed every week, and it takes about three weeks for conversion to take place.

The process is same in the Pit Method, but carried out specially constructed pits. Mixing has to be done every 15 days, and there is no fixed time in which the compost may be ready. Berkley Method uses a labor-intensive technique and has precise requirements of the material to be composted. Easily biodegradable materials, such as grass, vegetable matter, etc., are mixed with animal matter in the ratio of 2:1. Compost is usually ready in 15 days.

Vermicomposting involves use of earthworms as natural and versatile bioreactors for the process of conversion. It is carried out in specially designed pits where earthworm culture also needs to be done. Vermicomposting is a precision-based option and requires overseeing of work by an expert. It is also a more expensive option (O&M costs are high).

However, unlike the above two options, it is a completely odorless process making it a preferred solution in residential areas. It also has an extremely high rate of conversion, so quality of the end product is very high with rich macro and micronutrients. The end product also has the advantage that it can be dried and stored safely for a longer period of time.

 

Republished by Blog Post Promoter

Preserving Biodiversity in Jordan

Jordan is situated at the center of unique biota, representing the biodiversity of dry lands. The natural ecosystems in Jordan support human activities in agriculture, forestry, animal husbandry, tourism, traditional and pharmaceutical health products, traditional medicine and many others. These ecosystems are also important for their intrinsic value, and for protection of overall environmental quality.

The Levant states in general, and Jordan in particular, went through changes during the past two centuries from various anthropogenic activities. These changes are threatening the natural ecosystems, which have been destroyed to make way for agricultural, industrial, or housing developments. Species biodiversity have been severely affected, with many facing extinction. Rare and endemic plant and animals are endangered.

Biodiversity in Jordan

Despite its relatively small size, Jordan is highly rich in biodiversity. The country is divided into four different bio-geographical zones – the Mediterranean, Irano -Turanian, saharo-Arabian and Sudania. These zones are key elements in supporting biodiversity, containing three major ecosystems – terrestrial, marine, and wetland.

Biodiversity in Jordan has been seriously threatened in recent years. Natural areas and wildlife has been severely affected due to rapid urban growth resulting from population growth, large-scale migration and rapid industrial expansion has led to depletion of natural ecosystems.  Agriculture, animal-grazing, construction and other human activities has led to soil erosion, desertification and fragmentation of the land and reduction or extinction of wildlife. Furthermore, the increasing stress on limited water supplies has led to overexploitation of water resources and a decline in its quality and general decline in biological systems.

The agricultural expansion has led to ecological changes in two ways: decrease in population of some species due to alteration of their natural habitat, and over-exploitation of water resources. For some species, the lack of water has forced the animals to move or die, although for others it has increased their population. Rampant use of pesticides and chemical fertilizers has contaminated soil and water resources while reckless use of heavy agricultural machinery on marginal arid lands has encouraged soil erosion.

Overgrazing is widely recognized as harmful to ecosystems as it may lead to desertification, which increases atmospheric dust; such dust creates a health problem for both humans and wildlife. Furthermore, overgrazing is harmful for soil microorganisms on which the health of the entire ecosystem depends upon. Desertification and deforestation causes the land to deteriorate rapidly. Although Jordan is committed to the Convention on International Trade in Endangered Species (CITES), illegal hunting and trapping is still common which is threatening a host of wildlife species. Traffic and vehicular movement is increasing rapidly in Jordan which is also reading to soil erosion and death of animals.

Roadmap for Biodiversity Conservation

Jordan is working toward more profound strategic policies and actions to meet the requirements of the Convention on Biological Diversity. At the national level, the goal is to raise public awareness about nature as related to the conservation of biodiversity, and to direct national concern in different sectors about the conservation and management of Jordan’s natural habitat in a sustainable way. Decision makers in Jordan should be more aware of the threats facing biological diversity and the degree of its deterioration.

An important development is a multidisciplinary approach that uses geographic information system (GIS) analysis. The plan should involve many stakeholders, including the government, specialized nongovernmental organizations, local communities, and representatives research initiations and universities. As a response to the urgent need for conservation of biodiversity in Jordan, I suggest the following solutions:

  • Rehabilitation of damaged ecosystems in order to promote biodiversity and solving causes of poverty and unemployment – Poverty is both a cause and a consequence of biodiversity degradation: poor people are forced to put urgent needs before the long-term quality of the biodiversity.
  • Designing water supply models and monitoring water quantity and quality for plant and animal biodiversity. To reduce pressure from the growing urban demand, a long-term water solution will require fundamental changes in national water policy and adoption of a large-scale management by the Jordanian government.
  • Coordinating implementation of the plan between the local communities, government agencies and the private sector. It is important to involve local communities in decision making regarding hunting, water use and grazing.
  • Implementation of comprehensive plan, guidelines and national and international policies for sustainable development of arid areas, preservation of biodiversity, and adoption of strategies to prevent harmful practices such as overgrazing or over extraction of water.
  • Establishment of separated areas for biodiversity conservation, off-limits to grazing and other activities, and the monitoring of biodiversity in those areas.
  • Addressing the problems faced by farmers, such as crop selection. There is currently a lack of information on alternative crops that are tolerant to water stress and water-saving irrigation techniques. Livestock owners need services such as grazing reserves and infrastructure for marketing milk and other products.
  • Land use plans are essential for conservation of biodiversity of Jordan, there is an urgent need to encourage shifting the rural pressure to none fertile land, also new trends should be adopted to minimize reduction in forested land and reforest cleared areas.
  • Establishment of more natural reserves to give Jordanians beautiful places to visit and preserve Jordan’s beauty for future generations. A network of protected areas for ecosystems species and genetic resources preservation must also be established.
  • Introduction of sustainable systems for farming, include disease control and crops that help to regenerate soils. Appropriate support and encouragement to farmers to adopt new policies and new practices, such as water-saving irrigation techniques and plantings of sustainable crops such as date palms or honey production.

Jordan is committed to study its biodiversity to conserve its natural resources and ensure the sustainable use of its resources. It is also hoped that Jordan Biodiversity study will be the basis for cross-cultural cooperation and exchange, resulting in scientific integration between Jordan and the rest of the World. The result of applying there principle across several areas will be a visible recovery and improvement of Jordan’s ecosystem. Additionally, new jobs will be created as part of the conservation efforts.

A biological survey is necessary to monitor changes in the Jordanian ecosystems.  National guidance is required, as well as national and international funding for these activities. Appropriate development organizations should encourage research in ethno-biology to identify plant and animal species used by local people, which will prevent species from being irretrievably lost. 

As human induced environmental change continues, society is facing an increasing array of pressing environmental challenges. Answers to these complex challenges must be informed by coordinated, long-term interdisciplinary research. The LTER sites (Long term ecological research sites) are poised to address a set of new initiatives to be pursued in response to these environmental challenges.

Considering that one third of the land mass surface of the earth is classified as arid land, knowledge of the composition of their bio-communities and of how these communities are affected by landscape sustainability measures will find wider application in landscape sustainability programs and contribute to future global policies. Government and specialized environmental NGO involvement is essential for the success of these measures.

Republished by Blog Post Promoter