لحفاظ على التنوع البيولوجي في الأردن

على الرغم من صغر رقعة الأردن الجغرافية ,إلا أنه يتمتع بغنى وتنوع فريد بالموائل الحيوية والذي يمثل التنوع البيولوجي للأراضي الجافة ,وذلك لتميز الطبيعة الأردنية بتعدد المناخات والتراكيب الجيولوجية, حيث تنقسم البلاد إلى أربع مناطق حيوية جغرافية: منطقه إقليم البحر الأبيض المتوسط، الإقليم الإيراني- الطوراني ،الإقليم الصحراوي (المنطقه الصحراوية العربية) والإقليم السوداني .تعتبر هذه الأقاليم عناصر أساسية في دعم التنوع البيولوجي، وتحتوي على ثلاثة نظم بيئية رئيسية – الأرضية والبحرية والأراضي الرطبة.

biodiversity_jordan

دور التنوع الحيوي في البيئة الأردنية

ساهم التنوع الطبوغرافي في الأردن في وجود تنوع حيوي ومناخي ساعد على ظهور بيئات متنوعة لعبت دوراً هام في التنوع الحيوي والإستقرار البشري وضمان بيئة صحية للسكان. إن من المعروف أن النظم البيئية الطبيعية تدعم الأنشطة البشرية في مجالات مختلفة منها :الزراعة والثروة الحرجية والثروه الحيوانية والسياحة والمنتجات الدوائية وأدوية الطب البديل وغيرها, هذه الأنظمه البيئية  مهمه لقيمتها الجوهرية، ولحمايتها لنوعية البيئة بشكل عام. كما أن بعض الموائل تعتبر كنوز جينية  مازالت تنتظر من يكتشفها.

الوضع الحالي والمخاطر الرئيسية على التنوع الحيوي في الاردن

 لقد مرت دول المشرق العربي بشكل عام  والأردن بشكل خاص بتغيرات كبيرة خلال القرنين الماضيين وعلى كافة أصعدة الأنشطة البشرية المختلفة, والتي تعتبر تهديداً حقيقاً للنظم البيئية الطبيعية والتي تدهورت نتيجة التطور التكنولوجي والزراعي والصناعي. حيث عانى التنوع الحيوي من تهديدات خطيرة في السنوات الأخيرة نتيجة لتأثر المناطق الطبيعية والحياة البرية سلبياً وبشدة  بالنشاط الحضري المتسارع الناتج عن النمو السكاني والهجرة، كما أدى سوء الإستغلال والتوسع الصناعي  والرعي وأعمال البناء وغيرها من الأنشطة البشرية إلى إستنزاف النظم البيئية الطبيعية وإختلال توازنها وتآكل التربة والتصحر وتجزئة الأراضي وتدمير واسع للغابات والغطاء النباتي والشعب المرجانية.

بالإضافة إلى ذلك ,باتت بعض الأنواع الحيوية النادره مهدده بالانقراض. كما أدى الضغط المتزايد والمستمر على مصادر المياه المحدودة إلى الإفراط في إستغلال الموارد المائية وتدهور جودتها وتلوثها.وعلاوة على ذلك, أدى التوسع الزراعي إلى سوء إستغلال الموارد المائية وإنخفاض تعداد بعض الأنواع نظراً لتغيير بيئتها الطبيعية ,حيث أجبر شح المياه بعض الحيوانات على ترك موطنها والإنتقال إلى بيئة جديدة , مما سبب في تغير التوازن البيئي للوسط الجديد والذي بدروه قد يؤدي إلى هلاك هذه الكائنات أو هلاك الكائنات المستوطنة أصلاً, وعلى النقيض من ذلك كانت هذه التغيرات البيئية سبباً في زيادة أنواع اخرى.

environment-jordan

لقد أدى تفشي إستخدام المبيدات والأسمدة الكيماوية إلى تلوث التربة والموارد المائية في حين أن الإستخدام الجائر للآلات الزراعية قد ساعد على  تآكل التربة ,أضف إلى ذلك أن إستخدام المركبات المتزايد والسريع أدى إلى تآكل التربة وموت الحيوانات. ومن المعروف أيضاً أن الرعي الجائر من أهم الأسباب المؤدية إلى التصحر،والذي يؤدي إلى زيادة نسبة الغبار في الغلاف الجوي؛ والذي من شأنه أن يخلق مشاكل صحية للبشر والحياة البرية. وعلاوة على ذلك ،يعتبر الرعي الجائر ضاراً بالكائنات الحية الموجودة في التربة والتي تعتمد صحة النظام البيئي بأكمله عليها. وبالرغم من إلتزام الأردن بإتفاقية التجارة العالمية للأصناف المهددة بالإنقراض(CITES) إلا أن الصيد غيرالقانوني مايزال شائعاً والذي يشكل تهديدا لأنواع الحياة البرية المختلفة.

التوصيات

أدرك الأردن خطورة التدهور الذي طرأ على التنوع الحيوي بكافة أشكاله ,ولذلك فإن الأردن يعمل جدياً على تطبيق سياسات وخطة إستراتيجية كإستجابة لمتطلبات إتفاقية الأمم المتحدة للتنوع الحيوي ,وذلك بهدف رفع مستوى الوعي العام حول حفظ التنوع البيولوجي، وتوجيه الإهتمام الوطني وعلى كافة الأصعدة نحو حفظ وإدارة مستدامة للموائل الطبيعية. ينبغي أن تشرك هذه الخطة أصحاب القرار والإهتمام، بما في ذلك الحكومة والمنظمات غيرالحكومية المختصة والمجتمعات المحلية وممثلي مبادرات الأبحاث. وكإستجابة للحاجة الملحة لحفظ التنوع البيولوجي في الأردن، تاليا أهم  المفترحات والحلول :

إعادة تأهيل المناطق المتدهورة والساخنة بيئياً, كما يجب العمل على إيجاد وتطبيق حلول لمشكلتي الفقر والبطالة, حيث يعتبر التدهور البيئي سبباً مهما للفقر ,كما يعتبر الفقر تهديداً حقيقياً للتنوع الحيوي حيث يضطر الفقراء إلى ممارسات من شأنها أن تؤدي إلى تدهور البيئة مثل قطع الأشجار.

تعديلات أساسية في السياسة المائية الوطنية بهدف إيجاد حلول طويلة الأمد لمشكلة الشح المائي وتخفيف الضغط المتزايد على الموارد المياه خاصة في ظل الأوضاع السياسية الراهنة وتزايد أعداد اللاجئين إلى الأردن بشكل كبير.

إشراك المجتمعات المحلية والمؤسسات غير الحكومية المتخصصة والقطاع الخاص في تبني وتطبيق سياسات فيما يتعلق بالصيد وإستخدام المياه ومنع الممارسات الضارة مثل الرعي الجائر.

معالجة المشاكل التي يواجهها أصحاب الماشية مثل تأسيس بنية تحتية لتسويق الحليب ومنتجات الماشية الاخرى.

التخطيط المستدام لإستخدام الأراضي حيث أن هنالك حاجة ملحة لتشجيع تحويل الضغط العمراني على الأراضي الزراعية إلى الأراضي البور، كما ينبغي إعتماد توجهات جديدة للحد من إنخفاض الرقعة الحرجية والعمل على إعادة التشجير.

إنشاء المزيد من المحميات الطبيعية والحمى (مثل :حمى بني هاشم) ذات القيمة الجمالية بهدف الحفاظ عليها للأجيال القادمة  والحفاظ على الموارد الجينية ورصد التنوع البيولوجي في تلك المناطق.

الدعم والتشجيع اللازمين للمزارعين لتبني سياسات وممارسات مستدامة والتي تشمل :مكافحة الأمراض وإختيار المحاصيل مثل أشجار النخيل أو التوجه نحو إنتاج العسل.

تفعيل تطبيق الأنظمة والقوانين الخاصة بحماية البيئة وعلى كافة الأصعدة ,حيث يعتبر الحفاظ على التنوع الحيوي واجباً وطنياً تقع مسؤوليته على عاتق الجميع.

الأولويات الوطنية

إن إلتزام الأردن بدراسة تنوعه البيولوجي ينبع من هدف الحفاظ على الموارد الطبيعية وضمان الإستخدام المستدام .كما تعتبر مسألة الحفاظ على أصناف الحياة على الأرض مسألة ذات بعد علمي وعملي وجمالي وأخلاقي. بالإضافة إلى ذلك, تعتبر دراسة التنوع البيولوجي أساساً للتعاون وتبادل المعلومات والخبرات بين دول المنطقة مما يؤدى إلى التكامل العلمي بين الأردن وبقية دول العالم .كما ستفتح جهود الحفاظ على البيئة والطبيعة المجال لفرص عمل جديدة مما يساهم في حل مشكلة الفقر.

تستمر التغيرات البيئية مع إستمرار الأنشطة البشرية  ,لذلك يواجه الأردن مجموعة متزايدة التحديات البيئية المعقدة, والتي يجب أن تكون الإستجابة لها علمية ومبنية على نتائج بحوث متعددة التخصصات وطويلة الأمد. تبرز العلاقة القوية والهامة بين جهود صون التنوع الحيوي وإكتشاف أنواع جديدة من الموارد الحيوية الوطنية,حيث أن الأبحاث البيئية والمسح البيولوجي ضروريين لرصد التغيرات في النظم البيئية وإكتشاف أنواع حيوية جديدة .لذلك فإن التوجه الوطني نحو هذا المجال مطلوب فضلاً عن الحاجة إلى تمويل وطني ودولي لهذه الأبحاث. ينبغي على المنظمات الإنمائية تشجيع البحوث في علم الأحياء التصنيفية لتحديد الأنواع الحيوية بهدف الحفاظ عليها ومنع إنقراضها.

لقد شهد الأردن مؤخراً حراكاً على جميع الأصعدة لحماية تراثه الطبيعي بكافة مكوناته, فعلى سبيل المثال ,يتطلب إﻗﺎﻣﺔ أي ﻣﺸﺮوع إﺳﺘﺜﻤﺎري دراﺳﺔ ﻣﺪى الأﺛﺮ البيئي لهذا المشروع ﻛﺸﺮط أﺳﺎﺳﻲ لتنفيذه. ونتيحة لإتخاذ تدابير الإستدامة والتي بلغ تطبيقها على نطاق واسع, فأنه قد لوحظ إنتعاش وتحسن النظام البيئي في الأردن .

ترجمة

سلام عبدالكريم عبابنه

مهندسه مدنية في شركة المسار المتحده للمقاولات – مهتمه في مجال البيئه و الطاقة المتجدده

أهم المشاكل البيئية في الأردن

يعتبر الأردن مهداً لعدد من الحضارات فلقد تم إنشاء المستوطنات البشرية فيه منذ أوائل التاريخ القديم , وكنتيجة طبيعية لما يشهده العالم من تغيرات كبيرة وكثيرة في كافة المجالات خاصة في مجال الإتصال والمواصلات في أواسط القرن الماضي, ومع تزايد أعداد السكان وتغير نمط حياتهم تتفاقم المشاكل البيئية التي تهدد الفوائد البيئية والإقتصادية والروحية والجمالية والثقافية التي يتم إستنباطها حالياً من الموارد الأرضية الحية .ومما زاد المشكلة سوءاً هو تأثر المملكة بالوضع السياسي في المنطقة وموجات النازحين التي أدت إلى زيادة عدد السكان بشكل غير عادي ومفاجئ وبالتالي فإن الضغط على الموارد الطبيعية كإستعمالات المياه والطاقة شهدت تزايداً ملحوظاً خلال العقود الماضية.

environmental issues in Jordan

تكمن مشاكل الدول النامية عامة والأردن خاصة بالمشاكل المادية ونقص الخبرات المؤهلة, ومن المهم التطرق إلى ذكر أكبر وألد أعداء البيئة وهي الحروب حتى بالنسبة لدولة مثل الأردن التي لم تتورط بأي حرب حتى الآن, فمن المعروف أن البيئة لا تعترف بالحدود السياسية ,فالتلوث الناجم عن الحروب مثل تلوث الهواء لا يؤثر فقط على الدول المتورطة بل وعلى الدول المجاورة أيضاّ. سيتم التطرق في هذه المقالة الى المشاكل  البيئية التي  تعاني منها المملكة على وجه العموم.

النفايات الصلبة العامة

تعتبر النفايات واحدةً من أكبر المشاكل البيئية في الأردن حيث تصل نسبة إنتاج النفايات الصلبة حالياً إلى 1,670,000  طن سنوياً بمعدل (3850) طن يومياً, ما يقارب 52% منها عبارة عن مواد عضوية وهذه النسبة تزيد في المناطق خارج عمان , ويتم نقل هذه النفايات إلى المكبات حيث يوجد حاليّاً 21 موقع مكب في الأردن. ويبين الجدول (1) تطور إنتاج الفرد من النفايات والإنتاج  التراكمي  في الأردن من عام 2001 حتى 2006.

السكان

المعدل اليومي للفرد (كغم)

السنة

2724346

0.915

2001

2814249

0.928

2002

2907120

0.941

2003

3000147

0.954

2004

3096152

0.967

2005

3192133

0.980

2006

التصحر

تعتبر ظاهرة التصحر من أهم وأخطرالمشاكل البيئية التي تهدد الأراضي الزراعية ومعظم المناطق القاحلة وشبه القاحلة في الأردن, فالتصحر يؤثرعلى التنوع البيولوجي مما يؤدي إلى الإخلال بالتوازن البيئي الذي بدوره يؤدي إلى مشاكل بيئية وصحية ,كما أن للتصحرآثاراً أمنية وإجتماعية وثقافية وسياسية .عالمياً ووفقاً لتقديرات برنامج الأمم المتحدة للبيئة فإن القيمة الإنتاجية المفقودة سنوياً في الدول النامية بسبب التصحر تقدر بـ 16 مليار دولار.إن من أحد أهم الأسباب التي تؤدي إلى تفاقم ظاهرة التصحر في الأردن هو الزحف العمراني المستمرعلى الأراضي الزراعية, حيث خسرنا في العقود الثلاثة الماضية حوالي 25% من الأراضي الصالحة للزراعة لغايات البناء والإسكان. ويجدر بالذكر أن الأردن وقع في على الإتفاقية الدولية لمكافحة التصحر في عام 1996.

مشكلة المياه

يعتبر الأردن إحدى الدول الأربع الأفقر بمصادر المياه في العالم , كما أكدت إحصائيات وزارة المياه أن حصة المواطن من المياه تقلصت إلى 160 متراً مكعباً سنوياً ،فيما تشير المقاييس الدولية إلى أن خط الشح المائي 500 متر مكعباً سنوياً, إن عشرة أحواض مائية في الأردن من أصل 12 مستنزفة إستنزافاً شديداً وبحسب رأي الخبراء فإن إحتياطي الأردن من المياه سينفد بحلول عام 2025 .وبالرغم أن الأردن لا يتعبر بلداً مسبباً للتغير المناخي، إلا أنه سيتأثر بهذا التغير من حيث حدوث تراجع كبير في مصادر المياه السطحية بنسبة 30% وتراجع في هطول الأمطار وفي الإنتاجية الزراعية وهي تمثل عصب الحياة والتنمية في العالم العربي والأردن .

water-conservation-arabs

مشاكل تلوث  الهواء

ساهمت الصناعة بشكل عام بالتأثير سلباً على البيئة الأردنية من خلال تلويث الهواء والضجيج وإنتاج النفايات الصلبة ومياه الصرف الصحي والروائح العادمة والتأثيرات السلبية على حياة الإنسان. خاصة الصناعات الثقيلة والمتوسطة منها,مثل مصفاة البترول والفوسفات والإسمنت وغيرها التي تعتبر المصادر الرئيسية الثابتة لتلوث الهواء في الأردن.أما أكبر وأخطرالمصادر المتحركة لتلوث الهواء تتمثل بقطاع النقل حيث أن زيادة عدد السيارات ووسائل النقل المختلفة أدت إلى زيادة متوقعة في تلوث الهواء خصوصًا في الأماكن المزدحمة بالحافلات والمواقع الصناعية المضغوطة, ويتطلب ذلك إستخدام التقنيات البيئية الحديثة في تقليل نسب إنبعاثات التلوث من المصانع.

الطاقة

 يواجه الأردن تحديات بيئية كبيرة في الطاقة؛ إذ يستورد 96 % من الطاقة التي يستهلكها.إن تسارع النمو الاقتصادي والسكاني أدى إلى إزدياد معدلات إستهلاك الطاقة بجميع أشكالها من النفط الخام ومشتقاته والغاز الطبيعي والكهرباء والطاقة الشمسية وخاصة للأغراض الصناعية والمنزلية ليرتفع إستهلاكها بنسبة 5,40 % .حالياً مما يخلق ضرورة ملحة لتوجه الأردن نحو فتح كل مجالات الإبداع الوطني في إيجاد وإستخدام مصادر طاقة بديلة ومستدامة مثل الطاقة الشمسية والغاز مع إمكانية تطوير تكنولوجيا لإستخلاص الطاقة من الصخر الزيتي بطريقة مجدية اقتصادياً ونظيفة بيئياً .

مشكلة تأثر التنوع الحيوي و الإنقراض 

 يوافق الإقتصاديون والبيئيون أن للتنوع الحيوي قيمة للإنسانية فهو بإختصار أداة لمحاربة الفقر وتحسين نوعية الحياة من ناحية إقتصادية وصحية وبيئية. لقد بات التراجع العالمي في التنوع الحيوي واحداً من أهم القضايا البيئية الخطيرة التي تواجه الإنسانية ,فبالرغم من الدعم الهام الذي يقدمه التنوع الحيوي للمجتمعات الإنسانية بيئياً وإقتصادياً وصحياً وثقافياً وروحياً, إلا أن النظم البيئية تتعرض لتدهور في الأنواع وفي التنوع الجيني والذي يتناقص بمعدلات خطيرة خاصة في البلدان النامية, أدى التأثير الناجم عن التراجع الملحوظ على التنوع الحيوي إلى الخروج بالإتفاقية العالمية للتنوع الحيوي والتي صادق عليها الأردن عام    1993.

water management in petra

تتميز المملكة بوجود تنوع حيوي وبيئي كبير حيث أن موقع الأردن بين ثلاث قارات منحه أربع مناطق بيئية جغرافية مميزة هي: منطقة حوض البحر المتوسط,والمنطقة الإيرانية-الطورانية ,والمنطقة الإفريقية- تحت الإستوائية ,والمنطقة الصحراوية العربية مما يجعل يعتبر التنوع الحيوي فيها مثيرًا للإهتمام .خلال المئة وعشرين عاماً الماضية فقد الأردن العديد من الأنواع النباتية والحيوانية المحلية أوأصبحت هذه الأنواع  تواجه الإنقراض, تقدر خسارة الأردن ما يقارب 330مليون دينار سنويا نتيجة لتدهور التنوع الحيوي .إن حالة التناقص الرئيسي الحاصل في أعداد الحيوانات المعروفة غالباً مثل الطيور والثدييات غير معروفة لأغلب الأنواع على المستوى الوطني ,وذلك لوجود نقص بالبحث العلمي المنظم وعدم وجود أسلوب علمي موحد للدراسة .ونادراً ما نجد دراسات أردنية حول إستخدام التقنيات الحيوية بشكل مباشر أو غير مباشر فيما يتعلق بالتنوع الحيوي.

مشكلة الفقر

إن البيئة السليمة تقود إلى إقتصاد قوي ومجتمع صحي قادر على التعامل مع الطبيعة الهشة للنظم البيئية والتي تحوي الظروف الإجتماعية والإقتصادية والجغرافية والمناخية للبلاد, حيث أن الحفاظ على والإستعمال الحكيم للمصادر البيئية والتنوع البيئي  يعتبر أساساً لرفاهية أي مجتمع ومحاربة الفقر و تحسن الظروف الصحية خاصة في المناطق الريفية .إن للفقرعلاقة متبادلة مع البعد البيئي في التنمية حيث يعتبر الفقراء أكثر فئات المجتمع تأثراً بالتدهور البيئي,كما أن الفقر قد يكون أحد مسببات التدهور البيئي حيث أن إحتياجات الفقراء وسبل معيشتهم الملحة تعني غالباً القيام بممارسات مدمرة للبيئة مثل الرعي الجائر وقطع الأشجار.

Islam, Economics and a Blueprint for Sustainable Development

Islamic economic thought is heavily based on the concepts of fairness and justice. Trade is encouraged- but only within the guidelines of the Shariah (Islamic law). As a result, the Islamic economic system is largely value-driven and fits within the principles of sustainability.

A key Islamic principle concerns how “everything belongs to God, and wealth is held by people in trust”. [1] This means that human beings have a God-given duty to care for the Earth. In turn, this links with the idea of Khilafa (stewardship).  The Holy Qur’an states,

“Corruption has appeared in the land and the sea on account of what the hands of men have wrought, that He may make them taste a part of that which they have done, so that they may return” (Ar-Rum, 30:41).

Thus, Islam clearly sets out a sustainable economic and development model. This is as, “it is the responsibility of humans to strive for harmony in our relations with the natural world”. [2]  In turn, the Islamic notion of development is highly environmentally conscious. It emphasizes the necessity of mutual relationship with the natural world. Thus, the Islamic model contrasts with the dominant free-market capitalist paradigm.

Environmental sustainability is closely aligned with the Islamic economic vision. Environmental sustainability involves, “the capacity to improve the quality of human life while living within the carrying capacity of the earth’s supporting ecosystems”. [3] Methods to achieve environmental sustainability include recycling, reforestation, renewable energy and the conservation of natural resources.

islam-sustainability

Environmental sustainability reflects the Islamic concept of mizan (balance) as it promotes sustainable consumption. Effective recycling can be achieved through the creation of drop-off facilities within easy reach of residential and commercial neighbourhoods. In addition, reforestation can be encouraged through government sponsored tree-planting programmes.

Renewable energy is a viable alternative to coal-powered facilities and reduces overall pollution levels. Possible renewable energy sources include biomass, geothermal, hydroelectricity, solar and wind. The wide range of renewable energy options ensure considerable scope throughout the world. Therefore, renewable energy meets twenty-first century sustainability concerns.

Also, conservation is another method for ensuring long-term environmental sustainability. The establishment of protected areas helps conserve both nature and wildlife. Conservation can be achieved through the creation of protected reservations for wildlife and laws that protect species at risk of extinction. This is vital given the considerable impact of biodiversity loss and mass extinction events.

Moreover, Islamic political discourse perceptively, “links faith, reason and empathy to ensure… ecological insight”. [4] The notion of ecological insight is based on a deep-seated connection to nature. In the long term, the introduction of  environmental education in schools can foster increased ecological awareness. Hence, the need to stress, “the beauty and majesty of nature and the cosmos”. [4] In turn, reverence for nature imparts moral values like co-operation, humility and self-control within growing minds.

In the long term, environmental education can fuel ijtihad (environmental innovation). This encourages the development of a new generation of Muslim scholarship with the capacity to respond to changing conditions. On a practical level, this can be demonstrated through the establishment of eco-friendly mosques in Morocco and the centrality of energy-efficient strategies. On a larger scale, such policies necessitate the creation of a, “Green Endowment Fund (Waqf) to support a transition to sustainable economy”. [4] Thus, producing the dynamism required to change urban planning for the better and emphasize Islamic ethics.

environmental-education

Overall, the achievement of full environmental sustainability is heavily dependent on the common good. As Islamic economic thought provides a framework for ethical politics, it is essential to current concerns about sustainability.

Note: This article is in memory of David Gibbs, an inspirational teacher

Bibliography

[1] Allawi, Ali A. 2009. The Crisis Of Islamic Civilization. 1st ed. New Haven, Conn.: Yale University Press.

[2] McDermott, Mat. 2018. “Humans Are Trustees Of Allah’s Creation: Islam & The Environment”. Treehugger. https://www.treehugger.com/humans-are-trustees-of-allahs-creation-islam-the-environment-4856051.

[3] Al-Jayyousi, Odeh. 2018. “How Islam Can Represent A Model For Environmental Stewardship”. UN Environment. https://www.unenvironment.org/news-and-stories/story/how-islam-can-represent-model-environmental-stewardship.

4 Ways to Make Your Garage More Nature-friendly?

Becoming environmentally aware and going green is important in your home, for the sake of your family, your community, and the planet as a whole. While doing so, however, it is easy to overlook the garage. The garage takes up a considerable space, and there are several ways to improve energy efficiency and reduce your environmental impact, even there. Below are some ways to make your garage eco-friendly.

1. Lighting

You may think that a garage doesn’t need windows, but in reality, installing them can help make your garage eco-friendlier. Windows allow for natural sunlight to help you consume less power using electric lighting during the day. They also help warm up your garage on sunny winter days. Install some black-out blinds to keep it cooler inside during the summer.

For light during nights and for darker areas, opt for LED light bulbs as they are known for energy-efficiency. They are also very durable and offer unmatched brightness.

2. Insulation

A garage can easily trap heat in the summer and cold in the winter, making it harder and more expensive to cool or heat the rest of the house (unless you have a detached garage) – insulation is even more vital if your garage itself is heated. For the walls, you will want to thoroughly seal the cracks with caulking, and in some cases with wear and tear, add a layer of insulation before sealing your walls.

On the other hand, you will definitely want to have another look at your garage door, for it is one of the main heat-leaks in any garage. Some doors are designed to be more energy-efficient than others; ones that contain eco-friendly insulation materials will help maintain the temperature in your garage.

In addition, the use of weather-stripping or a door threshold seal to line the bottom of your garage door opening will further help keep outdoor weather out. You will want to get the help of garage doors Perth to help you optimize your upgraded, eco-friendly garage.

3. Electronics

Many people use the garage as an extension to their home, hosting a fridge, a deep freezer, a washing machine or a dryer. While these are all essential appliances in every home, shopping around to find the energy-efficient models would be a great plus.

It may seem like you are paying a chunk of money for a new machine now, but you will be saving more in energy costs in the long run, and preventing the production of tons of greenhouse gases.

4. Park Responsibly

In addition to environmentally friendly lighting solutions, insulation, and energy-saving appliances, you can also consider the remaining aspects of your garage space. You can install solar panels to generate clean, renewable energy; collect rainwater from the garage roof that you can use to wash your car; or build a living roof or a green roof on top of your garage with beautiful flowers and herbs that will leave your driveway smelling fresh all season.

7 Ways to Cut Energy Costs in Small Spaces

Global energy demand continues to rise and is expected to increase by 50% by 2050. This has raised concerns about environmental sustainability, and finding ways to cut energy costs has become a priority for many. Fortunately, there are several effective strategies that can be implemented to reduce energy consumption and lower energy bills in small spaces. By making changes to daily habits and adopting energy-saving technologies, you can achieve significant cost savings while contributing to a more sustainable future. From simple behavioral changes to the implementation of energy-efficient appliances like a single zone mini split system, our comprehensive guide can help you reduce energy consumption in small spaces.

Ways to cut energy bills at home

1. Conduct an Energy Audit

Conducting an energy audit is an essential first step in identifying areas of energy waste and implementing effective energy-saving measures. By conducting a thorough assessment of your small space’s energy usage, you can identify specific areas where energy is being consumed inefficiently and develop a targeted plan for improvement.

Start by examining your utility bills to get an overview of your energy consumption patterns over time. Look for any noticeable trends or spikes in energy usage to help you identify areas that require immediate attention. Use energy monitoring devices, smart meters or apps to track real-time energy usage and identify any abnormal patterns or excessive energy consumption. These devices can provide valuable insights into your energy usage habits.

Next, inspect for any energy leaks or inefficiencies. Check for drafts around windows and doors, inadequate insulation and any areas where conditioned air may be escaping or outside air may be infiltrating. Additionally, assess your lighting fixtures, appliances and heating and cooling systems for outdated or inefficient models. Switch to energy-efficient models with high ENERGY STAR ratings.

2. Upgrade Your HVAC

Upgrading your HVAC system can improve your home’s energy savings. Older HVAC units tend to be less efficient and consume up to 50% more energy. Consider investing in energy-efficient options such as the MRCOOL mini split. MRCOOL DIY mini split systems offer advanced technologies to optimize performance. These include smartphone connectivity for precise temperature control and five operating modes to reduce energy consumption.

The system also offers an impressive 21 Seasonal Energy Efficiency Rating (SEER). This is eight points above the nationally recommended minimum, resulting in substantial long-term energy savings.

3. Install a Programmable Thermostat

Installing a programmable thermostat is a simple yet effective way to save energy and reduce costs. With a programmable thermostat, you can set temperature schedules based on your daily routine. This ensures that your heating and cooling system operates efficiently when needed and adjusts to energy-saving temperatures when space is unoccupied.

how to reduce heating and cooling costs at home

For example, you can program the thermostat to lower the temperature during the hours when you’re away from home or asleep and raise it before you return or wake up. By reducing the temperature inside your home by approximately 10°F for at least eight hours, you can save up to 10% on your energy bills annually without sacrificing comfort. A programmable thermostat gives you the flexibility to customize your energy usage and optimize it according to your lifestyle.

4. Use Natural Lighting

Lighting can account for up to 15% of your home’s total energy costs. Rather than switching on overhead lighting or lamps during the day, maximize the natural light in your home. Natural lighting is a fantastic resource for small spaces, providing numerous benefits while helping cut energy costs. By harnessing the power of sunlight, you can create a bright and inviting atmosphere while minimizing the need for artificial lighting.

Position furniture, workstations, and areas where natural light is desired near windows. Keep drapes and blinds open during daylight hours to allow sunlight to flood the space. Install sheer curtains or light-filtering blinds that allow sunlight to penetrate while providing privacy. These window treatments soften harsh sunlight, reducing glare while still allowing ample natural light into the space.

When you do need to use artificial light, ensure you switch the bulbs in your home from incandescent to CFL or LED bulbs. These energy-efficient bulbs can save an average home up to $225 on your monthly energy bill. They also last longer, with CFL bulbs providing around 15,000 hours of illumination and LED bulbs giving 35,000 hours, compared to just 1,500 for incandescent bulbs.

5. Unplug Appliances When Not in Use

Standby power consumption, also known as vampire power, occurs when appliances and electronic devices, like televisions, computers, chargers and small kitchen appliances, continue to draw power even when not used. According to the U.S. Department of Energy, standby power can account for up to 10% of residential electricity usage, costing the average household as much as $100 per year.

unplug-gadgets

Pull that plug!

To combat these unnecessary energy costs, unplug appliances when they are not actively being used. Common energy-draining culprits include televisions, computers, game consoles, chargers, kitchen appliances and audio systems. Plug multiple appliances into power strips with built-in on/off switches. This allows you to conveniently turn off the entire strip with a single switch, cutting off power to all connected appliances simultaneously. It’s especially useful for devices that are grouped together, such as entertainment systems or computer setups.

6. Reduce Water Heating Expenses

Reducing water heating expenses is a practical and effective way to lower energy costs in small spaces. Water heating accounts for around 20% of the energy costs in small homes. To reduce these expenses, consider insulating your pipes to minimize heat loss and maintain hot water temperatures for longer periods. Insulating hot-water pipes prevent heat from dissipating as the water travels from the water heater to the faucets or showers, resulting in less energy wasted on reheating water.

Most water heaters are set at a higher temperature than necessary. Lowering the temperature setting can result in energy savings. Aim for a temperature around 120°F which is still hot enough for most household needs while minimizing energy consumption. Leaky faucets, pipes or fixtures not only waste water but also lead to increased energy consumption. Fixing leaks promptly prevents hot water from being wasted and ensures that the water heater isn’t continuously working to reheat the water.

Replace old, inefficient appliances such as dishwashers with energy-efficient models that use less hot water. Additionally, consider installing low-flow showerheads and aerators on faucets to reduce hot water usage without compromising water pressure.

7. Improve Your Home’s Insulation

Proper insulation is essential for creating energy-efficient small spaces. Insulate walls, floors and ceilings to minimize heat transfer and maintain a comfortable indoor temperature. Insulation acts as a barrier that prevents heat from escaping during cold seasons and entering during hot seasons, reducing the need for excessive heating or cooling. Sealing air leaks around windows, doors and other openings can also prevent drafts and energy loss. Try using weatherstripping, caulk or insulation materials to seal these gaps effectively.

Improving insulation and sealing air leaks can help create a more energy-efficient environment and reduce heating and cooling costs by approximately 15%. Proper insulation keeps your space comfortable and contributes to long-term energy savings and a more sustainable lifestyle.

Small Homes, Big Savings: Take Charge of Your Energy Expenses Today!

Small homes may have limited space, but they offer immense potential for big savings when it comes to energy expenses. By taking charge of your energy usage and implementing smart strategies, you can reduce your energy consumption and lower your bills.

Through simple actions like maximizing natural lighting, unplugging appliances when not in use and adopting energy-efficient practices, you can make an impact on your energy savings. With determination, awareness and a commitment to energy efficiency, you can achieve big savings and create a better future for yourself and the planet.

The Reuse of Greywater: Insights

Greywater includes water from showers, bathtubs, sinks, kitchen, dishwashers, laundry tubs, and washing machines. The major ingredients of greywater are soap, shampoo, grease, toothpaste, food residuals, cooking oils, detergents, hair etc. In terms of volume, greywater is the largest constituent of total wastewater flow from households.

In a typical household, 50-80% of wastewater is greywater, out of which laundry washing accounts for as much as 30% of the average household water use. The key difference between greywater and sewage (or black water) is the organic loading. Sewage has a much larger organic loading compared to greywater.

greywater-reuse

Importance of Reuse of Greywater

If released directly into rivers, lakes and other water bodies, greywater can be a source of pollution which can affect marine life, human health, ecology etc. However, after appropriate treatment, greywater is suitable for irrigating lawns, gardens, ornamental plants and food crops, toilet flushing, laundry washing etc. Reusing grey water for irrigation and other non-potable water applications will help in reconnection of urban habitats to the natural water cycle, which will contribute significantly to sustainable urban development.

Reuse of greywater can help in substituting precious drinking water in applications which do not need drinking water quality such as industrial, irrigation, toilet flushing and laundry washing. This will, in turn, reduce freshwater consumption, apart from wastewater generation. For water-scarce regions, countries, such as the Middle East and Africa, greywater recycling can be instrumental in augmenting national water reserves. An increased supply for water can be ensured for irrigation thus leading to an increase in agricultural productivity.

The major benefits of greywater recycling can be summarized as:

  • Reduced freshwater extraction from rivers and aquifers
  • Less impact from wastewater treatment plant infrastructure
  • Nutrification of the topsoil
  • Reduced energy use and chemical pollution from treatment
  • Replenishment of groundwater
  • Increased agricultural productivity
  • Reclamation of nutrients
  • Improved quality of surface and ground water

How is Greywater Reused?

There are two main systems for greywater recycling – centralized or decentralized. In a decentralized system, greywater collected from one or more apartments is treated inside the house. On the other hand, a centralized system collects and treats greywater from several apartments or houses in a treatment plant outside the house.

hot-water-conservation

Greywater reuse treatment systems can be simple, low-cost devices or complex, expensive wastewater treatment systems. An example of a simple system is to route greywater directly to applications such as toilet flushing and garden irrigation. A popular method for greywater reuse is to drain water from showers and washing machine directly for landscaping purposes. Modern treatment systems are complex and expensive advanced treatment processes comprised of sedimentation tanks, bioreactors, filters, pumps and disinfections units.

In order to transform greywater into non-potable water source, water from baths, showers, washbasins and washing machines has to be collected separately from black water, treated and eventually disinfected for reuse. Garden irrigation is the predominant reuse method for situations where greywater can be bucketed or diverted to the garden for immediate use.

Advanced greywater recycling systems collect, filter and treat greywater for indoor applications like toilet flushing or laundry washing. Greywater from laundry is easy to capture and the treated greywater can be reused for garden watering, irrigation, toiler flushing or laundry washing.

Water-efficient plumbing fixtures are vital when designing a household greywater reuse system. Some examples are low-flow shower heads, faucet flow restrictors, and low-flow toilets. Greywater systems are relatively easier to install in new building constructions as house or offices already constructed on concrete slabs or crawlspaces are difficult to retrofit.

Protection of public health is of paramount importance while devising any greywater reuse program. Although health risks of greywater reuse have proven to be negligible, yet greywater may contain pathogens which may cause diseases. Therefore, proper treatment, operation and maintenance of greywater recycling systems are essential if any infectious pathways should be intercepted.

The Popular Methods for Aluminium Recycling

The demand for aluminium products is growing steadily because of their positive contribution to modern living. Aluminium is the second most widely used metal whereas the aluminum can is the most recycled consumer product in the world. Aluminium finds extensive use in air, road and sea transport, food and medicine, packaging, construction, electronics and electrical power transmission.

The excellent recyclability of aluminium, together with its high scrap value and low energy needs during recycling make aluminium highly desirable to one and all. The global aluminium demand is forecasted to soar to nearly 70 million tons by 2020 from around 37 million tons currently.

Aluminium_cans

Recycling of Aluminium

Global aluminium recycling rates are high, with approximately 90 per cent of the metal used for transport and construction applications recovered, and over 60 per cent of used beverage cans are collected.

Aluminium does not degrade during the recycling process, since its atomic structure is not altered during melting. Aluminium recycling is both economically and environmentally effective, as recycled aluminium requires only 5% of the energy used to make primary aluminium, and can have the same properties as the parent metal. Infact, aluminium can be recycled endlessly without loss of material properties.

During the course of multiple recycling, more and more alloying elements are introduced into the metal cycle. This effect is put to good use in the production of casting alloys, which generally need these elements to attain the desired alloy properties.The industry has a long tradition of collecting and recycling used aluminium products.

Over the years, USA and European countries have developed robust separate collection systems for aluminium packaging with a good degree of success. Recycling aluminium reduces the need for raw materials and reduces the use of valuable energy resources. Recycled aluminium is made into aircraft, automobiles, bicycles, boats, computers, cookware, gutters, siding, wire and cans.

How are Aluminium Cans Recycled?

Aluminum can is the most recycled consumer product in the world. Each year, the aluminum industry pays out more than US$800 million for empty aluminum cans. Recycling aluminium cans is a closed-loop process since used beverage cans that are recycled are primarily used to make beverage cans. Recycled aluminium cans are used again for the production of new cans or for the production of other valuable aluminium products such as engine blocks, building facades or bicycles.

aluminium-cans-recycling

In Europe about 50% of all semi-fabricated aluminium used for the production of new beverage cans and other aluminium packaging products comes from recycled aluminium.

The major steps in aluminium can recycling are as follows:

Step 1: Aluminium cans are collected from recycling centers, community drop-off sites, curbside pick-up spots etc.

Step 2: Compressed into highly dense briquettes or bales at scrap processing facilities and shipped to aluminum companies for melting.

Step 3: Condensed cans are shredded, crushed and stripped of their inside and outside dyes. The potato chip-sized pieces are loaded into melting furnaces, where the recycled metal is blended with brand new aluminum.

Step 4: Molten aluminum is converted into ingots which are fed into rolling mills that reduce the thickness to about 1/100 of an inch.

Step 5: This metal is then coiled and shipped to can manufacturers. The cans are then delivered to beverage companies for filling.

Step 6: The new cans, filled with your favorite beverages, are then returned to store shelves in as little as 60 days … and the recycling process begins again!

Recycling of Aluminium Packaging

Aluminium packaging fits every desired recycling and processing route. Aluminium packaging needs to be separated from other packing material when intended for material recycling. A growing number of sorting facilities are equipped with eddy current separators which offer a comprehensive means of sorting the aluminium fraction.

Multi-material packaging systems may consist of plastics, tinplate, beverage cartons and paper packaging, apart from aluminium packaging, e.g. beverage cartons. A variety of systems have been developed to extract aluminium from complex packaging systems, such as repulping, mechanical separation and pyrolysis.

In pyrolysis, the non-metallic components are removed from the aluminium by evaporation. A newer technology is the thermal plasma process where the three components – aluminium, plastic and paper – are separated into distinct fractions.

Aluminium from Urban Wastes

Aluminium exposed to fires at dumps can be a serious environmental problem in the form of poisonous gases and mosquito breeding. Recycled aluminium can be utilized for almost all applications, and can preserve raw materials and reduce toxic emissions, apart from significant energy conservation.

Aluminium can also be extracted from the bottom ashes of municipal solid waste incinerators as aluminium nodules. In many European countries, municipal solid waste is entirely or partly incinerated; in this case the contained thin gauge aluminium foil is oxidized and delivers energy while thicker gauges can be extracted from the bottom ash.

Renewable Energy Investment in Jordan

Jordan has tremendous wind, solar and biomass energy potential which can only be realized by large-scale investments. In 2007, the Government of Jordan developed an integrated and comprehensive Energy Master Plan. Renewable energy accounted for only 1% of the energy consumption in Jordan in 2007. However, ambitious targets have been set in the Master Plan to raise the share to 7% in 2015 and 10% in 2020.

solar-power-jordan

This transition from conventional fuels to renewable energy resources will require capital investments, technology transfer and human resources development, through a package of investments estimated at US $ 1.4 – 2.2 billion. The investment package includes Build-Operate-Transfer (BOT) deals for wind energy with a total capacity of 660 MW and solar energy plants of 600 MW. This will be paralleled with the reduction of energy produced from oil from 58% currently to 40% in 2020.

As most of the clean energy technologies require high capital cost, investments in wind, solar and waste-to-energy plants will be possible only with appropriate support from the Government. Notably, the Government has expressed its readiness to provide necessary support within the framework of available resources.

The Ministry of Planning and International Cooperation (MOPIC), is responsible for coordinating and directing developmental efforts in coordination with the public and private sectors, and civil society organizations. MOPIC is actively seeking support for renewable energy and energy efficiency initiatives through continuous cooperation with international partners and donors.

solar-mosque

Jordan has significant strengths in the form of renewable energy resources, a developed electricity grid, strong legal and intellectual property protections, a market-friendly economy and a skilled workforce. So it is well positioned to participate in the expanding cleantech industry. The best prospects for electricity generation in Jordan are as Independent Power Producers (IPPs).  This creates tremendous opportunities for foreign investors interested in investing in electricity generation ventures.

Jordan enacted a Renewable Energy Law in 2010 which provides for legislative framework for the cleantech sector. The main aim of the law is to facilitate domestic and international projects and streamline the investment process.  The Law permits and encourages the exploitation of renewable energy sources at any geographical location in the Kingdom.

In April 2012, the Ministry of Energy and Mineral Resources announced that it has qualified 34 international and local companies for investment in renewable energy projects, with an overall capacity reaching 1000 MW. Of the qualified companies, 22 companies will invest in solar power projects and the rest in wind energy.

Keeping in view the renewed interest in renewable energy, there is a huge potential for international technology companies to enter the Jordan market.  There is very good demand for wind energy equipment, solar power units and waste-to-energy systems which can be capitalized by technology providers and investment groups from around the world.

Water Crisis in Refugee Camps

The refugee crisis has hit record heights in recent years. According to the UNHCR, as of the end of 2019 there were approximately 79.5 million refugees worldwide. This is a significant increase from a decade ago, when there were 37.5 million refugees worldwide.

Syria’s ongoing civil war, with 7.6 million people displaced internally, and 3.88 million people displaced into the surrounding region and beyond as refugees, has alone made the Middle East the world’s largest producer and host of forced displacement. Adding to the high totals from Syria are displacements of at least 2.6 million people in Iraq and 309,000 in Libya. This significant increase in refugees has only escalated the need for specific water quality and quantity regulations for refugee camps.

zaatari-water

Water Shortages in Refugee Camps

A human being can survive a week without food but cannot live more than three days without water. While the abundance of water in our daily lives means most of us take it for granted, the reality on the ground is that millions around the world suffer from lack of access to water – many of which are refugees. Refugee camps often do not have enough water to supply all refugees residing within them.

Majority of refugee camps in the world are unable to provide the recommended daily water minimum of 20 liters water per person per day. In addition, many countries holding refugees are water-scarce. Jordan, for example, is one of the top 10 water-scarce countries in the world and holds more than 1.4 million refugees (mainly from Syria). This has caused tremendous strain on the country’s very low water resources, making it extremely difficult to supply sufficient water for refugees. However the biggest reason behind lack of water at refugee camps across the globe is the lack of water infrastructure.

The lack of water infrastructure makes it very difficult to transport sufficient amounts of water, and provide proper sanitation to all residents of a refugee camp. In fact, a recent study by the Jordanian Ministry of Water and Irrigation showed that the country’s sewerage network are being overflowed and are subsequently leaking due to the increase in the number of refugees.

Furthermore, studies have shown that water borne diseases are more persistently present when the minimum water requirement (20 liters per person) is not met simply because there is less water for sanitation and cleaning purposes. That is why it is absolutely vital that governments ensure that recommended daily water minimum is provided to all refugees.

Water Quality Issues

Poor quality of water in refugee camps has created a “crisis within a crisis” causing outbreaks of waterborne diseases such as cholera, typhoid and hepatitis. This is due to misuse of the water quality regulations present and the lack of time available to implement these regulations on water quality in refugee camps.

In refugee camps, surface water is usually treated in three steps:

  • Sedimentation: The water is stored for a few hours so that the biggest particles can settle to the bottom.
  • Filtration: It is then necessary to get rid of the small, invisible particles by filtering the water through sand filters.
  • Chlorination: The last stage, chlorine solution is added to the water which kills all the microorganisms.

Groundwater, on the other hand, is generally subjected to chlorination. These techniques seem to be sufficient to provide an acceptable quality of drinking water. However, according to Syed Imran Ali, an environmental engineer affiliated with UC Berkley, who worked extensively in refugee camps across Africa and the Middle East, the amount of chlorine used to purify the water is not sufficient enough to completely eliminate all the bacteria in the water used in refugee camps.

The reason being that the current emergency guidelines on free residual chlorine concentrations (0.2 – 0.5 mg/L in general, 0.8 – 1.0 mg/L during outbreaks) are based on conventions from municipal piped-water systems (i.e. used in cities) rather than refugee camps.

water-scarcity

A study conducted by Ali in South Sudan, where there was an outbreak of hepatitis E and other waterborne diseases, showed that the decay of chlorine added to drinking water is much faster in refugee camps than it is under urban conditions, and within 10-12 hours of household storage and use the chlorine all but disappears.

Within a refugee camp, water is distributed from one point within the camp, carried to homes via containers and then stored and used over 24 hours or more. Therefore, due to all these different factors the guidelines used may not be sufficient enough to maintain an acceptable quality of water in all refugee camp settings.

Refugee camps must have specific guidelines created to deal with the water quality provided within the camps to prevent outbreaks and improve livelihood within the refugee camps. In his study in South Sudan, Ali recommended that guidelines for chlorination control to be revised to 1.0 mg/l in the camps there rather than 0.2 – 0.5 mg/l. This would provide protection of at least 0.2 mg/l for up to 10 hours post-distribution, which is consistent with the recommended concentration for point-of-use water chlorination in emergency and nonemergency settings and is within the WHO limits generally considered to be acceptable to users (2.0 mg/L).

Time to Act

With the refugee situation worsening and no permanent solution to this crisis in sight, the minimum that can be done is to provide an adequate amount and quality of water for these refugees. The current water purification techniques are not efficient enough to protect refugees from all harmful bacteria. There are a variety of ways that water can be provided.

Wastewater treatment, rainwater harvesting, humidity harvesting, among others are sustainable sources of water. However, providing water is not sufficient; water quality is just as important as water quantity. There must be water quality regulations specific to refugee camps that take into account the different aspects that might affect the quality of water (transport, storage, temperature).

If things are to improve, it is absolutely vital for concerned governments, aid agencies, NGOs, volunteers etc. to band together and create water quality guidelines specific to refugee camps and that are capable to withstand different aspects within these camps. Without these guidelines, the condition of refugees will continue to worsen, and the refugees will continue to flee to Western countries in search of better living conditions.

Agricultural Biomass Resources in the MENA Countries

Agriculture plays an important role in the economies of most of the countries in the Middle East and North Africa region.  Despite the fact that MENA is the most water-scarce and dry region in the world, many countries in the region, especially those around the Mediterranean Sea, are highly dependent on agriculture.

The contribution of the agricultural sector to the overall economy varies significantly among countries in the region, ranging, for example, from about 3.2 percent in Saudi Arabia to 13.4 percent in Egypt.  Large scale irrigation coupled with mechanization has enabled extensive production of high-value cash crops, including fruits, vegetables, cereals, and sugar in the Middle East.

The term ‘crop residues’ covers the whole range of biomass produced as by-products from growing and processing crops. Crop residues encompasses all agricultural wastes such as bagasse, straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc.

Wheat and barley are the major staple crops grown in the Middle East region. In addition, significant quantities of rice, maize, lentils, chickpeas, vegetables and fruits are produced throughout the region, mainly in Egypt, Tunisia, Saudi Arabia, Morocco and Jordan.

Egypt is the one of world’s biggest producer of rice and cotton and produced about 3.9 million tons of rice and 68,000 tons of cotton in 2023. Infact, crop residues are considered to be the most important and traditional source of domestic fuel in rural Egypt. The total amount of crop wastes in Egypt is estimated at about 16 million tons of dry matter per year. Cotton residues represent about 9% of the total amount of residues. These are materials comprising mainly cotton stalks, which present a disposal problem. The area of cotton crop cultivation accounts for about 5% of the cultivated area in Egypt.

Cotton_Biomass

Date palm is one of the principal agricultural products in the arid and semi-arid region of the world, especially Middle East and North Africa (MENA) region. The Arab world has more than 84 million date palm trees with the majority in Egypt, Iraq, Saudi Arabia, Iran, Algeria, Morocco, Tunisia and United Arab Emirates.

Date palm trees produce huge amount of agricultural wastes in the form of dry leaves, stems, pits, seeds etc. A typical date tree can generate as much as 20 kilograms of dry leaves per annum while date pits account for almost 10 percent of date fruits. Some studies have reported that Saudi Arabia alone generates more than 200,000 tons of date palm biomass each year.

date-palm-waste-management

Agricultural output is central to the Tunisian economy. Major crops are cereals and olive oil, with almost half of all the cultivated land sown with cereals and another third planted. Tunisia is one of the world’s biggest producers and exporters of olive oil, and it exports dates and citrus fruits that are grown mostly in the northern parts of the country.

To sum up, large quantities of crop residues are produced annually in the MENA region, and are vastly underutilised. Current farming practice is usually to plough these residues back into the soil, or they are burnt, left to decompose, or grazed by cattle. These residues could be processed into liquid fuels or thermally processed to produce electricity and heat in rural areas. Energy crops, such as Jatropha, can be successfully grown in arid regions for biodiesel production. Infact, Jatropha is already grown at limited scale in some Middle East countries and tremendous potential exists for its commercial exploitation.

Litani River: A Sorry State of the Affairs

The Litani River, the largest river in Lebanon, faces a multitude of environmental problems. Due to decades of neglect and mismanagement, the river has become heavily polluted. The main contributors to the degradation of Litani River are industrial pollution from factories and slaughterhouse, untreated sewage, chemicals from agriculture runoffs and disposal of municipal waste. The pollution has reached such a level where it is obvious to the human eye and causing serious health issues for people drinking its contaminated water.

litani-river-pollution

The Litani River is a source of income for many families who use it in summer for many recreational activities; moreover, it is used for irrigation. On the banks of the Litani River, many hydroelectric and electric projects have been set up. The Lebanese government had made a dam that is linked to a hydroelectric power plant of 185MW capacity. The dam had been responsible for the formation of Qaraoun Lake; a polluted man-made lake.

In 2016, the World Bank approved a loan of $55 million to address the wastewater and agricultural runoff along the lake and the river.  The problem of the fund is that they did not give a bigger investment to agricultural runoff. The Litani provides irrigation to 80% of agriculture lands in Bekaa and 20% in south Lebanon.

Many agricultural projects were implemented on the basin as Joun project and Al-Qasmieh project. Farmers are using the fertilizers and pesticides that are polluting the river with chemicals. On the other hand, farmers are impacted by the water they are using to irrigate their crops since it is polluted with chemicals and full of soil, gravel and sand.

litani-river-degradation

Serious and concerted efforts are urgently required to restore Litani River to its lost glory

Serious and concerted efforts are urgently required to restore Litani River to its lost glory. Two years ago, the Lebanese government announced $730 million project to clean up the pollution of Qaraoun Lake and Litani river. The seven years ambitious plan is divided into four components: $14 million will go to solid waste treatment, $2.6 million for agricultural pollution, $2.6 million for industrial pollution and $712 million for sewage treatment. However, there has been very little progress in implementing these project.

The Way Forward

In order to save the Litani River, here are few steps that must be taken urgently:

  • Establish a sewage system especially for the new refugee camps near the river basin.
  • Promote measures to tackle the industrial pollution.
  • Stop industrial effluents from polluting the River.
  • Establish waste treatment plants in the area.
  • Hire staff to operate existing wastewater treatment plants. For example Zahle plant that lacks staff to operate.
  • Build water treatment facilities for the local communities.

Small steps can effectively reduce the pollution and restore the lost glory of the Litani River.  Thousands of people volunteered to clean up the Litani River on the national day of the Litani River. This took place after there was a huge online campaign titled “Together to Save the Litani River” initiated by activists. Thousands of people engaged online and then onsite to fish out rubbish; bulldozers removed accumulated sands and mud in the river from nearby sand quarries.

Animal Waste Management in Africa: Perspectives

Livestock and poultry production are among the main economic activities in rural as well as urban areas of African countries. The livestock sector, in particular sheep, goats and camels, plays an important role in the national economy of African countries. In addition, the region has witnessed very rapid growth in the poultry sector.

The livestock industry and poultry industry, however, are contributing heavily to greenhouse gas emissions and waste crisis in Africa due to the absence of a sustainable animal waste management system. Most of the manure is collected in lagoons or left to decompose in the open which presents a severe environmental hazard.

animal-manure

The use of anaerobic digestion for animal waste disposal is an attractive way to address environmental problems, especially methane emissions. Anaerobic digestion of livestock manure and poultry waste is an alternative pathway for managing large organic waste loads and its associated problems encountered in large feeding lots and confined animal feeding operations.

Despite the numerous benefits associated with anaerobic digestion as a sustainable waste management strategy, these combined merits have never been quantified in African countries. The biogas potential of animal manure can be harnessed both at small- and community-scale. An essential aspect for adopting anaerobic digestion systems is the development of a methane market that acknowledges role of biomass systems in mitigating climate change and fostering rural development.

With the present energy and pollution problem in Africa, conversion of animal manure as source of clean energy as well as organic fertilizer offers a great advantage. Anaerobic digestion technologies can help preserve and integrate livestock production within communities and create renewable energy resources to serve a growing bio-economy within rural communities.

Cow_Manure_Biogas

Anaerobic digestion is a controlled biological treatment process that can substantially reduce the impact of livestock and poultry waste on air and water quality. An anaerobic digestion plant produces two outputs, biogas and digestate, both can be further processed or utilised to produce secondary outputs. Biogas can be used for producing electricity and heat, as a natural gas substitute and also a transportation fuel.

A biogas plant is a decentralized energy system, which can lead to self-sufficiency in heat and power needs, and at the same time reduces environmental pollution. The main features of a biogas facility are as follows:

  • Processing of renewable energy source
  • Reduction of malodors
  • Removal of harmful pathogens
  • Reduction of COD & BOD contents of processed waste
  • Production of organic fertilizer for green areas
  • Reduction in emissions of greenhouse gases
  • Production of relatively clean water for flushing or irrigation

Animal manure-to-biogas transformation has enormous potential in reducing greenhouse gas emissions and harnessing the untapped renewable energy potential of animal manure. Biogas can be used as a fuel for internal combustion engines, to generate electricity from small gas turbines, burnt directly for cooking, for space and water heating. or for running vehicles.